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Abstract 
Two tasks in Graph Visualization require partitioning: the as-
signment of visual attributes and divisive clustering. Often, we 
would like to assign a color or other visual attributes to a node or 
edge that indicates an associated value. In an application involv-
ing divisive clustering, we would like to partition the graph into 
subsets of graph elements based on metric values in such a way 
that all subsets are evenly populated. Assuming a uniform distri-
bution of metric values during either partitioning or coloring can 
have undesired effects such as empty clusters or only one level of 
emphasis for the entire graph. Probability density functions de-
rived from statistics about a metric can help systems succeed at 
these tasks. 
CR Categories and Subject Descriptors: I.3.6 [Computer 
Graphics]: Methodology and Techniques – Interaction Tech-
niques; I.3.8 [Computer Graphics]: Applications 
Additional Keywords: graph visualization, graph navigation, 
metrics, clustering 

1. INTRODUCTION 
A key issue when visualizing graphs in information visualization 
is the size of the data. Many applications of graph visualization 
require analysis of graphs with several thousand nodes and edges. 
Innovative techniques are needed to navigate, to filter, or to create 
abstractions from these graphs in order to make them usable in 
practice. Many interesting results have been published in the past 
few years and this area of research is still very active (see, for 
example, the survey on graph navigation[1]). 

The use of metrics is one of the interesting techniques in this 
area. The concept of a metric appears in several places in the lit-
erature[2-6], although the terminology varies. In this paper, we 
will use the term to refer to a measure that is associated with a 
node or an edge in the graph. The measure can be application-

specific, can be the result of some function (usually combinato-
rial) of the graph structure, or a combination of these. A few ex-
amples of metrics based on graph structure are the degree of a 
node (i.e., the number of edges adjacent to the node), the size of a 
subtree for a tree, or the measure of the flow of information in a 
directed graph. In general, the goal is to define the relative impor-
tance of a node or an edge with respect to some semantics, where 
elements with high metric values are considered more interesting 
than those with low values. 

Metric values that are associated with nodes and edges can be 
used to determine visual attributes such as color and saturation in 
order to emphasize differences among elements. A technique that 
we find useful renders an edge with continuously shaded color 
that reflects the metric values of the nodes at its endpoints. In this 
approach, higher metric values are considered more interesting 
and are assigned higher saturation values for emphasis. The over-
all effect is the emphasis of edges in the graph with the “most 
interesting” metric values. This design of graphical attributes 
based on metrics has already been discussed in [5, 6]. For exam-
ple, Figure 1 shows this effect when zooming into the details of a 
graph; the darker and thicker lines help to navigate towards more 
complex areas of the graph (this particular example uses the 
Strahler metric, described in Herman et al. [5]).  

Another use of metrics is the generation of fisheye views, as 
presented in the seminal paper of Furnas[2]1, where he computes 
the “degree of interest” of elements in a tree. Elements with low 
values are hidden to improve the display of the structure (some-
times referred to as semantic fisheye) and help emphasize the 
more important elements in the tree. 

 Generating such visual cues is not the only way to use metrics. 
In a type of divisive clustering, data sets are partitioned according 
to metric values, with the metric value determining group mem-
bership. This subdivision helps the user to partition the graph into 
subgraphs of manageable sizes. This technique is not only vital to 
navigation in large graphs but also helps the user to identify im-
portant relations among elements, thereby making the information 
visualization application much more effective (see Section 5 for 
an example). Such subdivision procedures become particularly 
important if the underlying graph structure is not a tree, where no 
“natural” subdivision (i.e., subtrees) exists. 

It is important to note that all these techniques are automatic, in 
the sense that no further user input is necessary to generate the 
visual attributes or the clusters. A straightforward approach is to 
apply a simple linear mapping from the metric values to, for ex-
ample, color saturation. This approach can work well when there 
is a uniform distribution of metric values. However, experience 
shows that more control over this mapping is necessary for cases 

                                                               
1 Furnas used the term “degree of interest” but, in our terminology, his 
DOI function could be considered a type of metric. 
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where the distribution is not uniform. Essentially, the spread of 
the metric values over the full interval should be taken into ac-
count: a finer subdivision might be necessary in more densely 
populated areas when doing clustering or assigning colors. 
Mathematically, this means that the statistical behavior of the 
metric values should be taken into consideration in the mapping. 
Presenting this approach is the focus of this paper. 

The examples in this paper use directed acyclic graphs (DAGs). 
DAGs form an intermediary class between trees and general 
graphs: efficient methods exist which first extract a DAG from a 
directed graph as a pre-processing step (see, for example, the 
book of Battista et al.[7]), which makes them generally useful in 
information visualization. The general methodology presented 
here is not restricted to DAGs, although some of the details may 
have to be investigated for the general case.  

The rest of the paper is organized as follows. In Sections 2 and 
3, we discuss visual attribute mapping, generalizing the method 
illustrated by Figure 1. The same methodology can be reused for 
hierarchical clustering; Section 4 will present the details. A de-
tailed example is shown in Section 5, followed by conclusions and 
directions for future research in Section 6. 

2. ASSIGNING COLORS USING METRIC 
DENSITY 

Assigning a visual attribute (e.g., color, brightness, color satura-
tion, or line width) consists of two steps: 

1. Assign an abstract value, usually between zero and one, to 
each displayable element based on the element’s metric value. 
We will refer to this abstract value as the emphasis of the 
element, and we will also refer to this mapping as the empha-
sis mapping. 

2. Map the emphasis to a visual attribute. We will refer to this 
mapping as the attribute mapping. 

The two mappings have different characteristics. It is therefore 
important to conceptually separate them. The mapping that gener-
ates the final visual attributes, is closely related to issues of per-
ception and cognition, lighting conditions, display gamma values, 
and underlying graphics systems (see Ware’s book[8], for exam-
ple). In some cases, a simple linear mapping from an emphasis 
value to, for example, color saturation is acceptable. In other 

cases, a non-linear mapping is necessary. In our view, a visualiza-
tion system should give the end-user some means of controlling 
the mapping used in order to adjust for his/her viewing conditions. 
The technique used to produce the images in this paper involves 
mapping emphasis values to three visual attributes: color, satura-
tion, and line width. We interpolate between two colors as well as 
between low and high saturation based on the emphasis value. 
Similarly, high emphasis values map to thicker line widths. This 
paper, however, focuses on the emphasis mapping and not on the 
attribute mapping, which would require a separate investigation of 
its own. 

An obvious approach to emphasis mapping is to apply a simple 
linear function: the metric values for a specific graph are normal-
ized and linearly mapped onto the unit interval. More precisely, 
the emphasis value associated with a metric value x is computed 
by )/()( mMmx −− , where m and M are the minimum and 

maximum metric values in the graph. This is the mapping used to 
generate the images in Figure 1 which shows that, at least in some 
specific cases, this mapping works well. But this is not always the 
case. Figure 2/(a) shows the image of a DAG. We can use what 
we call the flow metric to emphasize important parts of the graph. 
This metric, introduced in [6], simulates the flow of information 
in a DAG using concepts similar to Kirchoff’s equations for elec-
trical current.2 However, if we use a linear emphasis mapping, the 
result is a practically blank image, because most of the edges have 
very low color saturation. It should be noted that this is not the 
result of artifacts in the attribute mapping: modifying the distor-
tions of the attribute mapping will not improve the picture, just 
make all edges uniformly darker, for example. 

The reason is that the linear mapping does not take into consid-
eration how the metric values are spread over the available inter-
val. If the distribution is uniform, the linear mapping works fine. 
The values of the Strahler metric on trees, for example, are “al-
most” uniformly distributed and this is why the example on Fig-
ure 1 works well. However, the flow metric produces a relatively 
large number of low values. If a linear mapping is used with the 
flow metric, most of the metric values yield a low emphasis value, 
which leads to low visual attribute values. 

                                                               
2 Another useful analogy for this metric is the flow of water if poured into 
the entry nodes at the top of the graph. 

 
 

Figure 1. Effects of emphasis mapping on a tree. The right side shows the same portion of a tree but with edges emphasized through 
metric values. 

 



A more precise formulation is that the linear mapping does not 
take the distribution of the metric values into account. Using a 
linear mapping is equivalent to assuming that the distribution of 
values is uniform. In probabilistic terms, the distribution function 
f can be used to calculate the probability that a given metric value 
x is associated with an element in the graph. This is true if the set 
of possible metric values is discrete. When the set of possible 
values is infinite and fully covers an interval of real numbers, it 
only makes sense to ask for the probability that a metric value lies 
in a given sub-interval [a, b]. In this case, the probability can be 
obtained by summing up probabilities using the integral: 

 ∫
b

a

dxxf )(  

If all values have equal probability of appearing, then the distribu-
tion is uniform and appears as a simple horizontal line above the 
set of possible values. (f(x) is zero outside this domain). If the 
distribution is not uniform, some intervals will have a higher 
probability than others and the curve will be more complex. For 
technical reasons, the density function is often used rather than the 
distribution: 

 ∫
∞−

=
x

dttfxF )()(  

The density function also has an intuitive meaning: it gives the 
probability that a value is smaller than a specific value x. Since 
the density function is monotonically non-decreasing, and it is, in 
most cases, one-to-one, it can be inverted over the domain of met-
ric values3. This property is essential, as we shall see in Section 4. 
It is easy to show that the density function obtained from a uni-
form distribution is piecewise linear and is given by: 

                                                               
3 If the function is not one-to-one, i.e., it has constant values on some 
intervals, the inverse can be deduced using some simple heuristics on 
those intervals. 
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Note that this coincides with the expression used for linear em-
phasis.  

By definition, the curvature of the density function reflects the 
“uneven” spread of values that we want to characterize. Figure 3 
shows an approximation of the density function for the flow met-
ric (see Section 3 for details on how this density function can be 
derived): it shows that for relatively low values the function in-
creases sharply, which indicates that it is highly probable that 
metric values will be concentrated in this area. This is exactly the 
information that we need to perform the emphasis mapping. This 
leads to the main message of this paper: in order to effectively use 
metric values, statistical knowledge about a metric should be 
applied when mapping to an emphasis value. In particular, a met-
ric value should be evaluated by the density function for that met-
ric, and the result of this evaluation should be used as an emphasis 
value. 

Figure 2/(b) shows the result of using the same metric and at-
tribute mapping, but with the density function as the emphasis 
mapping. Although the graph is relatively small, the important 
nodes and edges are picked up by the image, showing where most 
of the information flows through the network.  

This improved emphasis mapping leads to a powerful set of 
navigation tools. For instance, it is easy to choose the direction for 
panning in a zoomed graph (see Figure 1). It is also possible to 
make an abstraction of the image by hiding elements with lower 
metric values. Some of these techniques have been investigated 
before[4, 6], but the use of a density function is essential to ex-
ploit these techniques to their fullest potential.  

 
 

(a) Graph without emphasis mapping (b) Graph with emphasis mapping: highlighted edges are the “im-
portant” edges with regard to flow metrics 

Figure 2. Two views of the same graph. Right side uses emphasis mapping. 

 



3. GATHERING STATISTICS FOR A 
METRIC 

The methodology described in Section 2 is based on the knowl-
edge of the density function for a specific metric. However, find-
ing an analytical description of the density function for a given 
family of graphs is usually a difficult mathematical problem, al-
though some results are already available. As an example, the 
distribution of the width of a (sub)tree (i.e., the number of leaves 
in a tree) can be approximated by a normal distribution (see 
Drmota[9]; see also Herman et al.[5] where this result has al-
ready been exploited for a simple version of visual clustering). 
Metrics that are related to combinatorics may have already been 
investigated by the mathematics community (this is the case for 
the Strahler metric[10], for example). Unfortunately, this is not 
often the case, and the density function must be constructed from 
empirical measurements. 

When no theoretical density function is available, one can cal-
culate an approximation based on the metric values in the graph 
under investigation. It is possible to build an approximation of the 
probability distribution by computing the frequency histogram of 
metric values. Once normalized, this histogram gives the discrete 
form of the distribution. By accumulating the frequencies along 
the range of values, we produce the discrete version of the density 
function, yielding what we call the “local density function”. The 
cumulative histogram is then stored as a look-up table for the 
graph, and this table is used to calculate the density function for a 
specific metric value.  

If both theoretical and local densities are available, which one 
should we use? The choice between theoretical or local densities 
depends on the task we wish to carry out. If the goal is only to 
look at a specific graph, then the local density is probably the 
most appropriate. It provides more accurate information about the 
distribution of values for that particular graph; the local distribu-
tion of the values may indeed differ from the theoretical distribu-
tion. However, if the graph is used as part of the exploration of a 
dataset, or if two graphs representing similar datasets are to be 
compared, then the theoretical density should be used. When used 
in this way, the theoretical density serves as a common reference, 
which is valuable for tasks involving comparison. 

It is important to note that metrics can be associated with either 
nodes or edges, and sometimes with both. The distribution for 

nodes or edges, and thus their density functions, should be treated 
separately, because they may not be identical. This is the case for 
the flow metric, for example: although we can assign a flow value 
for both nodes and edges, their density functions greatly differ. 

There is yet another approach that can help to get an approxi-
mation of the theoretical density, without relying solely on the 
local density. Suppose you have a large set of graphs, all belong-
ing to the same family. Their local density functions can be 
merged, and used to infer what could be the density function for 
metric values on that family. This approach is usable if one can 
randomly generate graphs for that family: merging the local densi-
ties on a larger sample of graphs can lead to a better approxima-
tion of the theoretical density.  This is the method we used, based 
on a tool which one of the authors has developed to generate ran-
dom DAGs [11]. Random DAGs can be generated in large 
quantities by this tool, by controlling some structural features of 
the graphs (e.g., maximal degree of nodes). With a large number 
of random graphs at our disposal, we collected and merged the 
local densities for several metrics. As a last step, either look-up 
tables were generated for the density functions or, if possible, a 
suitable analytical approximation was found. It is worth noting 
that it was possible to define such an analytical approximation for 
most of the metrics that we examined. As an example, the density 
function of the flow metric for edges could be approximated by 

CxexF −−= 1)( , where C is a suitable constant depending on the 

ratio of edges and nodes in the graph (see Figure 3). 

4. PARTITIONING THE DATASET 
Mapping metric values to colors brings with it several issues of 
cognition and perception. When carried out properly, it allows the 
user to get an idea of the spectrum of metric values but even at its 
best the number of perceptible values is small (there are numerous 
studies on this subject, see again Ware’s recent book[8], for ex-
ample). This is especially true for a dense graph. The cognitive 
limits are often aggravated by the limitation of the physical dis-
play and lighting conditions. 

An abstract view of the graph could be used as an alternative to 
color-based navigation. One way of creating such an abstract view 
is to use clusters. A fundamental technique in graph visualization 
represents the groups, or clusters, of a graph using a special type 
of node called a meta-node. This technique makes it possible to 
represent a large graph by displaying fewer elements, allowing the 
user to control the level of detail by “opening” and “closing” 
meta-nodes (see, for example, Eades and Feng[12] or Schaffer et 
al.[13] for two possible approaches to clustered graphs). To cre-
ate a clustered view of a graph, we first divide the data into clus-
ters, with each cluster representing a particular sub-interval or 
range of metric values. This process is identical to that for map-
ping to colors. A node is added to a cluster if its metric value is 
within the range defined for that cluster. This is a general ap-
proach: as long as you can map the attributes of interest into a 
metric value, this technique will succeed in producing groups 
based on the semantics implicit in the metric. Furthermore, this 
technique is automatic, i.e., it does not require additional user 
input for the creation of the clusters. 

When the partitioning process is repeated on each of the clus-
ters from the previous step, it is called hierarchical clustering, 
and a separate tree, or overview diagram, can represent the result. 
In this tree, the top node represents the graph before partitioning 
and children represent clusters resulting from partitioning their 

 

Figure 3. Density function for the flow metric. 



parents. The overview diagram can be used to navigate the origi-
nal graph (see Figure 7). Rich interaction facilities can be devised 
using this overview graph (see, for example, the papers [14, 15] 
[16] on possible interaction techniques with overview diagrams). 
Of course, partitioning can also be performed based on edge met-
rics. 

It is important to note that when applying hierarchical cluster-
ing to create an overview diagram, the goal is different from that 
of a typical clustering process. Most clustering processes are 
meant to find clusters or classes in the data. Although classes may 
be discovered as a result of using a particular metric, this applica-
tion of hierarchical clustering is primarily meant to divide the data 
into manageable chunks and provide a map into the data based on 
ranges of metric values. Empty clusters and clusters with large 
populations are therefore undesirable because they may either 
provide the user with too little or too much visual information. 
Although it isn’t always possible with a given dataset, the goal is 
an even distribution of population among the clusters. 

If we don’t apply knowledge about the distribution of values, 
we might sort values and dynamically adjust the boundaries to 
achieve the desired populations. However, this technique is too 
expensive for large graphs. Alternatively, we can divide the range 
of values into sub-intervals of equal lengths, but this leads to the 
same problems as for emphasis mapping: some clusters may end 
up with too many elements and others may end up too small. A 
partitioning with even cluster populations can be accomplished by 
using the density function of the metric on which the partitioning 
process is based. 

The density function can be used as follows (see Figure 4). The 
[0,1] density interval is divided into equal subintervals (three in 
our example). By applying the inverse of the density function, 
these intervals give us the required upper and lower boundaries on 
the x-axis. (This inverse mapping is usually described by follow-
ing the dotted lines going from the y-axis back to the x-axis.) 
These intervals will then be used to classify elements, based on 
their metric values. What happens here is a quantization of the 
emphasis mapping used for visual attributes. The advantage of 
this hierarchical subdivision is that it can be done recursively for 
any of the subintervals, either automatically or as a result of user 
interaction. 

In the automatic case, the stop condition for the subdivision can 
be expressed in terms of the density function. The stop condition 
we use is: 

 ε<−
∈

)()(max
,

bFaF
Cba

  

where C is a cluster and ε is a suitably small number. The formula 
can be viewed as expressing a density-dependent size of a cluster, 
i.e., the stop condition halts the process when the density-
dependent size of the cluster becomes small. 

5. AN EXAMPLE APPLICATION 
Two of our colleagues have collected the bibliography entries, as 
well as the cross-references, of all the articles published in the 
IEEE Visualization proceedings, starting from 1990 until 1999. A 
directed graph can be constructed from this dataset: a link from 
node A to node B represents a citation, i.e., the paper represented 
by A has a reference to the paper represented by B. This graph 
can be conveniently displayed by placing all nodes for a specific 
year at the same horizontal position, with the nodes for 1990 on 
the top row and those of 1999 on the bottom row.  The resulting 
graph has edges directed upwards. Note also that this graph is 
acyclic. (With the rare exception of papers published the same 
year and referencing each other. This only occurred in two cases 
and we decided to simply ignore one of the two references). 

The dataset is fairly large: around 600 nodes and 900 edges. If 
the full graph were displayed, it would lead to a uniform “cloud” 
of edges, with no way to discern any detail. This is why we re-
frained from including the complete image of the graph here. 

To use the methods described earlier in this paper, a metric has 
to be defined. This metric has to reflect the kind of investigation 
one intends to pursue with the graph. What we set out to look for 
was the “influence” of papers on the series of the IEEE Visualiza-
tion conferences measured through the number of direct or indi-
rect citations. The metric we use is therefore as follows: for each 
node, we calculate the number of edges (citations) that, directly or 
indirectly, refer to that paper (see Figure 5 for a small example). 
This value is equal to the number of edges one can reach from a 
node by going backwards in the graph (i.e., “back in time”). The 
higher this value, the more “influential” the paper was (at least, in 
a citation index). Since there is no specific edge metric in this 
case, the emphasis value assigned to an edge is the minimum of 
the emphasis on the two end nodes. 

Using a linear emphasis mapping for this metric is unsatisfac-
tory, due to the problems described earlier. Therefore, we used a 
density-based emphasis mapping. We approximated the theoreti-
cal density function using the random DAG generation tool and 
we built a look-up table. (No satisfactory analytical approximation 
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Figure 4. Using the inverse density function for partitioning. 

 

6

0

00

2 1

 

Figure 5. Metric definition for a citation graph. Nodes 
“higher” in the hierarchy represent papers with an earlier 
publication date. 



could be found in this case). The use of the density-based empha-
sis mapping leads to Figure 6. For a better overview, only ele-
ments with an emphasis greater than 0.33 are displayed: a simple 
slider-based interaction has been implemented to discard low 
emphasis elements. 

Figure 6 is certainly an improvement compared to a full image 
of the graph, because only the important nodes and edges (the 
“skeleton”) are visible. However, it is still difficult to differentiate 
among the remaining elements. This is apparently due to the diffi-
culty of comprehending relations between large numbers of visual 
attributes such as different shades of color. Zooming into a 
smaller area does not help. 

As the next step in the investigation, a hierarchical partitioning 
was done on the full graph, in the manner described in Section 4. 
A zoomed-in view of the generated overview tree is shown on 
Figure 7/(b). Each node in the overview tree corresponds to a sub-
interval of density values. We can now use various interactive 
techniques on this overview graph (see [15] for more details on 
these techniques). For example, Figure 7/(a) shows a filtered view 
of the original graph with a number of clusters selected for em-
phasis. (The framed nodes in the overview tree are the selected 
clusters. Cluster members are emphasized in Figure 7/(a).)  Using 
the overview tree instead of a slider gives the user more control 
over the selection process. In the figure, we selected nodes in the 
tree in order to highlight all nodes in the graph with emphasis 
value greater than 0.55. Edges and nodes not belonging to se-
lected clusters provide a background context (in light gray).  

This view shows a selection of the most “influential” papers4. 
Of course, this example should not be taken too seriously because 
the influence of a paper should not be measured solely based on 
IEEE Visualization publications (for example, the data set does 
not include the InfoVis symposium!). Furthermore, the number of 
citations is not necessarily the best measure of influence. This 
example is used merely as an illustration of the techniques devel-

                                                               
4 The two “top” papers selected by this process were [17] and [18] 

oped in this paper. Nevertheless, even this simple example shows 
the power of using density functions and derived visualization, 
navigation, and clustering techniques in exploring large graphs5. 

6. CONCLUSIONS AND FUTURE WORK 
Density-based emphasis mapping, whether based on a local or a 
theoretical density, is clearly necessary for a better separation of 
elements in a graph, if a metric is used to control navigation. Den-
sities reflect the range and spread of values within a graph; disre-
garding them could not only lead to unsatisfactory interaction 
tools but, possibly, to erroneous conclusions drawn on the basis of 
the data represented by the graph. 

Different classes of graphs can have different behaviors with 
respect to a particular metric. If such classes have been identified, 
care should be taken to gather separate statistics for each class. 
For a given application, careful analysis of the data might reveal 
that the graphs under investigation share some properties. For 
example, their node degrees might be bound by some value or 
certain types of connections among nodes might be missing or 
improbable. Those properties can then be used to infer the class to 
which a graph belongs. Because each class has its own density 
function, class membership determines the density function to 
apply to the graph. As an example, we found that it was not ap-
propriate to only have one approximation for the density of the 
flow metric. Instead, a parameterized family of functions is used 
(see Section 3). A parameter value (denoted by C in the equation) 
based on the average number of edges per node is used in the 
function. In other words, this property is used to first classify the 
graph and yield a good approximation for the density on that 
graph.  

Obviously, it would be advantageous for information visualiza-
tion if the exact statistical behavior of the applied metrics were 

                                                               
5 Our graph visualization framework (in Java) and an application built 
using it are available at http://www.cwi.nl/InfoVisu/GVF.  

 

Figure 6. Density-based metric coloring of the citation data set produces a skeleton. Only elements with an emphasis greater than 
0.33 are displayed. 



known. This would save us the process of finding an approximat-
ing function or building a look-up table. Unfortunately, some of 
these behavioral descriptions are very involved, and require a 
strong foundation in mathematics. Pursuit of this sort of knowl-
edge is a potential source of fruitful cooperation between the 
visualization and the mathematics communities.  

The use of the density function for emphasis mapping has been 
chosen with the assumption that the important nodes are those 
with higher metric values. The citation example in Section 5 fo-
cused on finding the most influential papers, but one could have 
used the same tools to find, for example, the least influential pa-
pers or the average papers. In general, depending on the applica-
tion, other combinations are possible to slightly modify the em-
phasis mapping itself. For example, one could take the value of 

)()( AFXF − , where A is the metric value of a fixed node, and 

normalize this to [0,1] to yield the emphasis value. This map-
ping would highlight the “distance” of a node in terms of the met-
ric, compared to a fixed one. Alternatively, one could take the 
value of )()( µFXF − , where µ denotes the mean of the distri-

bution. Both of these variants can be considered to be generaliza-
tions of the DOI function of Furnas[2], except that the density 
values are used instead of the direct differences in the metric val-
ues. 
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