
Plugging Graphics into Distributed Multimedia

D.J. Duke
Department of Computer Science, The University of York, Heslington, York, YO1 5DD, UK

email: duke@minster.york.ac.uk

I. Herman
Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

email: Ivan.Herman@cwi.nl

Abstract

Advances in hardware, software, and coding standards for digital media have now made the de-
livery of multimedia information a standard component of many systems. Unfortunately, the
pace of this technological development, coupled with strong commercial competition between
leading vendors, has meant that little consensus has emerged over the design of programming
interfaces to allow the creation, manipulation and presentation of such data. PREMO (PResen-
tation Environments for Multimedia Objects) is a project within the SC24 committee of the In-
ternational Organisation for Standardization (ISO) aimed at developing an API (Application
Programmer Interface) for distributed multimedia. This work goes beyond previous SC24
standards such as GKS and PHIGS in combining both synthesised graphics with general digital
media. This paper describes the contents of the PREMO standard and explains how the integra-
tion of graphics into a general framework for media processing is achieved.

Keywords: Distributed multimedia, Standards, PREMO.

1 Introduction

The origins of PREMO date back to 1989, when discussion within SC24 began on a proposed
new standard for Computer Graphics. The distinctive feature of the proposed project would be
the use of object-orientation as the fundamental design framework. Such an approach seemed
timely, as object-oriented design and programming was rapidly becoming established, and work
on a number of experimental object oriented APIs for computer graphics indicated that there
was considerable virtue in such an approach. Indeed, it was around this time that Silicon Graph-
ics Inc. were developing the Open Inventor toolkit. The ‘PREGO’ project, as it became known,
evolved into PREMO as the result of two further requirements. First, any new standard in the
area of graphics should encompass other media, such as video, audio (both captured and syn-
thetic) [6], and in principle be extensible to new modalities such as haptic output and speech or
gestural input. Second, the standard should allow the construction of distributed systems, where
parts of a system involved in the generation, processing and presentation of media data could
be distributed across geographically remote sites, interacting through a network. These three is-
sues: object orientation, multimedia data, and distribution, became the key design constraints
on the PREMO project [7,8,10], which was initiated within ISO/IEC JTC 1 in 1992. PREMO
will become an International Standard early in 1998 [13].

One of the problems faced by the designers of PREMO integrating the generation and
processing of synthetic graphics, which is traditionally viewed as a pipeline from modelling
primitives through to raster output, with continuous media such as video and audio. More spe-
cifically, it should be possible to integrate different kinds of media within the description of a
presentation, and yet utilise media-specific processing elements and devices in the realisation
of that description. One part of the solution came to the PREMO working group in the form of

Ivan Herman,M360,4163,020-6478
16th Annual Conference of the Eurographics UK Chapter, Leeds, 25-27 March 1998.

the Multimedia Systems Services framework, a proposal for media processing developed in in-
itially by the IMA (Interactive Multimedia Association), a consortium of systems vendors [11].
Significant refinements were made to the original IMA material, in particular to integrate the
concepts and facilities of the MSS with the underlying framework and basic components of
PREMO. While MSS provides architectural support for viewing graphics processing in similar
terms to other media processing structures and tasks, it does not directly address the data that is
used to describe the presentation. This becomes an issue within the Modelling, Rendering and
Interaction (MRI) component of PREMO, which defines a hierarchy of abstract primitives for
representing media content, and extends the provisions of the MSS component with devices that
utilise this notion of primitive. However, primitives in PREMO are quite unlike those in other
APIs such as GKS, PHIGS, or OpenGL [2]. PREMO is not intended as a rendering engine, but
as a framework for integrating media processing and rendering, performing a service for digital
media somewhat like what a coordination language like Linda [4] or Manifold [1] does for con-
current processing. The main objective of this paper is to describe just how PREMO does inte-
grate support for graphics into its general model of distributed multimedia; a second objective
is to provide an overview of the Standard. Section 2 describes the main provisions of the first
three parts of the PREMO standard, namely the object model, the foundations, and the MSS.
Section 3 then describes how modelling and rendering is built on top of this infrastructure.
Some of the issues relevant to the implementation of PREMO are described briefly in Section 4,
which concludes the paper.

2 An Overview of PREMO

The PREMO Standard consists of four parts, also called components. PREMO was designed
from the outset to be extensible - it was envisaged that the needs of specific domains or appli-
cation areas would be met by creating new components. Typically, a component will define a
number of object and non-object types. Object types provide services (in the form of operations
that can be invoked by clients), or can have a more passive role, for example as data encapsu-
lators. Not all of the types defined within a component are necessarily needed in a given context,
and PREMO components define one or moreprofiles which consist of a cluster of type defini-
tions. A component can build on (extend) the profiles of other components. The four compo-
nents of the PREMO Standard are as follows:

1. Fundamentals. This specifies the object model used by PREMO, and the requirements
that a PREMO system places of its environment. Although the PREMO object model is
similar to that of the OMG (Object Management Group), there are some novel features in
the model. In particular, operations are defined to operate in one of three modes: syn-
chronous, asynchronous, and sampled.

2. Foundation. Object and data types that are generic to multimedia applications are defined
in this component, including facilities for event management, synchronization, and time.

3. Multimedia Systems Services. Multimedia systems typically integrate a variety of logical
and physical devices, for example input and output with devices such as video editors,
cameras, speakers, and processing with devices such as data encoders/decoders and
media synthesizers (e.g. a graphics renderer). This component of PREMO defines the
infrastructure needed to set up and maintain a network of heterogeneous processing ele-
ments for media data. These facilities include mechanisms by which media processors
can advertise their properties and be configured to match the needs of a network, and can

then be interconnected and controlled. MSS was originally defined by the Interactive
Multimedia Association [11] and subsequently adopted by SC24 and refined into a
PREMO component.

4. Modelling, Rendering and Interaction. The MSS component defines concepts of streams
and processing resources that are independent of media content. In the MRI component,
these facilities are used to define generic objects for modelling and rendering data, and
basic facilities for supporting interaction. To support interoperability, the component
defines a hierarchy of abstract primitives for structuring multimedia presentations. These
are not sufficient in themselves to build a working presentation, but provide the abstract
supertypes from which a set of concrete primitives could be derived.

The major features of PREMO can be summarised as follows.

• PREMO is a Presentation Environment.PREMO, like previousSC24 standards, aims at pro-
viding a standard “programming” environment in a very general sense. The aim is to
offer a standardised, hence conceptually portable, development environment that helps to
promote portable multimedia applications.PREMO concentrates on the application pro-
gram interface to “presentation techniques”; this is what primarily differentiates it from
other multimedia standardization projects.

• PREMO is aimed at a Multimedia presentation,whereas earlierSC24 standards concen-
trated either on synthetic graphics or image processing systems, multimedia is consid-
ered here in a very general sense; high–level virtual reality environments, which mix
real–time 3D rendering techniques with sound, video, or even tactile feedback, and their
effects, are, for example, within the scope ofPREMO.

• PREMO is a framework. This means that thePREMO specification does not provide all
the possible object types for making a graphics or multimedia system or application.
Instead,PREMO provides a general programming framework, a sort of middleware,
where various organisations or applications may plug in their own specialised objects
with specific behaviour. The goal is to define those object types which are at the basis of
any multimedia development environment, thereby ensuring interoperability.

The remainder of this section describes the first three components of PREMO components in
greater detail. Further discussion of the MRI component, which is fundamental to integrating
graphics into the general media facilities of PREMO, is reserved for Section 4.

Fundamentals of PREMO (Part 1)

The PREMO object model follows widespread practice in the sense that it views objects as en-
tities that consist of a state and a collection of operations on that state. More radical approaches
to object-oriented systems, for example based on delegation models and prototypes [3], were
considered insufficiently mature for the PREMO standard. Instead, each object in PREMO is
an instance of an object type (also called aclass in the literature), that defines the structure of
the state and behaviour of each operation. Each object has an identity that is independent of the
object’s state, and the environment of an object interacts with it by means of an object reference.
Thus to invoke an operation on an object, it is necessary to have a reference to that object. There
is no concept in PREMO of having ‘direct access’ to an object; this is an important principle,
since objects in PREMO may be distributed. However, the object model of PREMO differs
from other standards such as the OMG reference model in two ways. First, any object in
PREMO may be active, with its own thread of control, and second, each operation is defined to
operate in one of three possible request modes, described below.

PREMO makes a distinction between object types and non-object types, which represent
unstructured values such as integers, characters and booleans, and simple structured values such
as sequences. Object references form a non-object data type. An operation consists of a name,
and a signature which consists of a sequence of input types and a sequence of output types. Op-
erations can only accept or yield values of non-object data types, but as the non-object types
include object references it is possible to pass a reference to an object as a parameter to an op-
eration. In particular, the first type in the signature of an operation is a reference to the object
type on which the operation is defined.

An object typeS in PREMO can be defined to be a subtype of another object typeT, mean-
ing that a reference to an object of type S can be used in place of a reference to an object of type
T in any context. Multiple subtyping is allowed, i.e. an object type can be a subtype of more than
one other object type. The standard defines the meaning of subtyping with respect to the signa-
tures of the operations defined by the types. An object type can be defined as an extension of
another object types by inheritance; the ‘new’ object type acquires the state and operations of
the object type that it extends (itssupertype). Multiple inheritance is permitted, but the Standard
does not define the meaning of an object type for which more than one parent provides an im-
plementation of an operation with a given signature. If object typeS inherits from object type
T, thenS is automatically a subtype ofT.

An operation can be defined asprotected, meaning that the operation cannot be invoked
by entities external to instances of the object type, but such an operation can be modified
through inheritance. An operation, when invoked with incorrect data or in an unexpected situ-
ation, can raise an exception, and provision is made for data to be associated with the exception
to indicate the cause. How an exception is handled once raised is dependent on the language
binding. An operation is invoked through an operation request, which depending on the defini-
tion of the operation, is serviced in one of three modes.
• A synchronous operation request causes the caller of the request to be suspended until

the request has been serviced and a result returned.
• The caller of anasynchronous request can continue its own thread of control as soon as

the call is made; at some point the requested operation will be invoked, but no result is
returned.

• A sampled request is similar to an asynchronous request, except that any pending request
for a given operation (i.e. a call that has not been serviced) is overwritten by a new
request; conceptually, each operation has a 1-place buffer for storing pending requests.

The Foundation Component (Part 2)

The role of Part 2 is that of a general purpose toolkit, providing a number of processing facilities
that are needed across a range of multimedia applications, and indeed which have multiple uses
within a single application. Figure 1 gives an overview of the types defined in this part. All ob-
ject types within PREMO are derived ultimately from a common supertype calledPREMOOb-
ject, which defines a number of fundamental services, such as the ability to enquire the type of
an object, and the position of that type within the hierarchy of types defined by inheritance. Be-
low this type the hierarchy bifurcates. The object typeSimplePREMOObject serves as a com-
mon supertype for a group of object types calledstructures. These are object types that
primarily exist to encapsulate data in the form of attributes; the operations of these objects are
of less interest. In contrast,EnhancedPREMOObject is a common supertype for those object
types that can provide services over a network, and which therefore can be distributed. In sup-

port of this role, objects of this type are associated with properties, and the type defines a set of
operations for accessing, creating and modifying these properties. A property is a pair consist-
ing of a key, and a sequence of values. The key is represented by a string, and properties, unlike
the internal state of an object, can be accessed freely by other objects within a system.

PREMO objects can communicate via an event mechanism based on callbacks and event
handlers. Callbacks are now widely used in the graphics and user interface management com-
munities, having been popularised through systems such as the X library, GL, and more recently
the Java AWT. Events are defined as simple object types to carry information, specifically the
name of the event, the source of the event, and any additional data. Figure 2 illustrates the ap-
proach. Objects that are interested in a particular event, such as A in the figure must (1) be of a
type that is a subtype of theCallback object type, which provides acallback operation, and must
register their interest with an instance of theEventHandler object type (2). When an object B
wants to notify its environment that an event has occurred, it invokes thedispatchEvent opera-
tion on an event handler (3), and all objects that have registered with that handler to be notified
of the event will have their callback operation invoked (4).

An important use of event management is to realise synchronization requirements within
an application. Synchronization in PREMO is based on the use of events and event handlers to
achieve complex synchronization patterns. Events related to synchronization are generated by
a type of PREMO object calledSynchronizable objects. These are autonomous objects that have
an internal progression space, on which reference points can be attached. Conceptually, the pro-
gression space represents the temporal extent of some media representation, and progress
through the progression space will be made during processing of that media. The mode -
stopped, playing, paused etc. - of a synchronizable object is controlled by a number of opera-
tions, and a number of attributes collectively define the parameters that affect how progress is
made, for example, the direction of progression. When a reference point is encountered during
progression, an event is sent to a specified event handler. The reference point also contains a
flag which indicates whether progression should be suspended; by placing a synchronizable ob-
ject into a so-called ‘waiting’ state, the processing of one part of a presentation can be delayed
to enforce synchronization constraints with another part.

Fig. 1. The Object Types of the Foundation Component

PREMOObject

SimplePREMOObject EnhancedPREMOObjectCallback

CallbackByNameEvent ConstraintSyncElement ActionElement

ControllerEventHandler

SynchronizationPoint

ANDSynchronizationPoint

Clock

SysClock Timer

Synchronizable

TimeSynchronizable

TimeSlave TimeLine

PropertyEnquiry

PropertyConstraint

 PREMO introduces object types to represent arbitrary clocks, a subtype of clocks repre-
senting ‘real time’ system clocks, and a resetable timer. An important subtype of theSynchro-
nizable object type isTimeSynchronizable, which couples the behaviour of aSynchronizable
object with that of aTimer object, thus making it possible to measure and control thespeed of
progression through the span of a synchronizable object. Two subtypes ofTimeSynchronizable
are identified in the standard. ATimeSlave object is one for which the rate of progression can
be ‘slaved’ to the rate of progression of some other time-synchronizable object. ATimeLine ob-
ject can be used to set reference points against milestones in real time. PREMO also provides
an extended form of event handler to support synchronization. TheANDSynchronizationPoint
object type requires that an object that will dispatch an event to a handler register this with the
handler; only after all objects that have registered to dispatch an event have raised that event
will the callbacks be invoked.

The basic facilities provided byEnhancedPREMOObject to associate values with named
properties is developed by two further object types,PropertyInquiry andPropertyConstraint.
In the first of these types, each property key is associated with a corresponding capability key,
which describes the range of values that the corresponding property can take on. TheProperty-
Constraint type extends this approach through two operations that attempt assign values to
properties based on a set of property values passed as parameters to these operations. Properties
play an important role in allowing PREMO application to be configured from a collection of
possible devices. Mechanisms to support this configuration form part of the Multimedia Sys-
tems Services component, discussed next.

Multimedia Systems Services (Part 3)

Multimedia Systems Services was the name given by the Interactive Multimedia Association to
a model for building distributed multimedia applications. The original model incorporated ideas
such as property management, which were subsumed into Part 2 of PREMO, and a collection
of object types for managing networks of media devices that was developed into the object types
and definitions of PREMO Part 3.

Callback

EventHandlerListener

Notifier

A

B

callback

dispatchEventregister

is-a

is-a

is-a

subtype
of

(1)
(2)

(3)

(4)

Fig. 2. Event Handling in PREMO

The conceptual model of Part 3 (and by implication, of a distributed PREMO system) is
one of a collection of devices, each of which is an autonomous processing unit. The actual
processing component of a device is not specified within PREMO, nor is the means by which
the processor communicates with its environment. What Part 3 of PREMO does define is the
interface of the so-calledVirtualDevice object type, shown in Figure 3. This consists of a col-
lection of input and output ports, with which are associated various objects that characterise the
nature of the communication that takes place via that port. The objects are instances of the types
StreamControl, Format, Protocol, andQoSDescriptor. Ports provide the basis for one of three
ways in which devices can communicate and cooperate. As shown in Figure 4, ports can be con-
nected by, conceptually, a media stream, which is managed by aVirtualConnection object.
There is actually no ‘stream’ object type in the standard, instead the control of data flow from
one device to another is the role of theStreamControl objects attached to the ports involved.
How the communication is actually realised will depend on the kind of environment in which
the PREMO system is running. Connections can be unicast or multicast.

VirtualConnection andVirtualDevice are both subtypes ofVirtualResource, which ex-
tends thePropertyInquiry type of Part 2 with mechanisms that allow resources to be acquired
and released. Resource acquisition utilises the property system to specify requirements on a re-

Fig. 3. Structure of a Virtual Device

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

StreamControl

Callback

Port

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

Port

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

Port

Configuration

Processing Element

Virtual
Connection

Client

Media Stream

Callback

Virtual Device

Factory

Virtual Device

Group

Fig. 4. Media Stream support within MSS

source. Indeed, the use of properties within all of the major object types defined in Part 3 rep-
resents a second mechanism for cooperation between objects in a multimedia network. Device
properties, and specific structures such as theQoSDescriptor, are intended to allow networks of
devices to be configured and controlled through a negotiation mechanism based for example on
constraint management. The range of technologies that might be used for controlling a network
is however large and diverse, and rather than mandate a limited range of solutions, the specifi-
cation of PREMO simply provides appropriate hooks that could be used by a suitable manage-
ment infrastructure.

EachVirtualDevice also contains references to a number of event handlers, and in this
way the event mechanism of Part 2 is available as the third means for communication and co-
operation within a network. Two further subtypes ofVirtualResource are theGroup andLogi-
calDevice object types. The former allows a number of VirtualDevices to be treated as a single
network resource, while the second of these types allows a group of devices to be combined into
a single, higher-level device. These have a further role in the context of modelling and render-
ing, as will be explained shortly.

3 The Modelling and Rendering Component

The fourth component of PREMO describes general facilities for the modelling and presenta-
tion of, and interaction with, multidimensional data that utilises multiple media in an integrated
way. That is, the data may be composed of entities that can be rendered using graphics, sound,
video or other media, and which may be interrelated through both spatial coordinates and time.
The description of the MRI Component consists of three parts. The first concerns the hierarchy
of modelling primitives for characterising multimedia presentation. The second deals with the
collection of devices that extend theVirtualDevice type of the MSS Component to allow mod-
elling, rendering and interaction to take place within a network of arbitrary media processing
elements. The third concerns a particular device, theCoordinator, that plays a key role in map-
ping presentation requirements of media streams against the devices that are available for
processing media.

Primitives in PREMO

The potential domains of application for a system such as PREMO are vast. Two directions in-
itially appear feasible when considering how primitives for modelling and rendering could be
supported in a system like this. First, it would be possible to take an existing set of primitives
from an established system, for example the nodes provided by OpenInventor[15], and adopt
these to the needs of PREMO, possibly through some further extensions. The problem here is
in finding a set of primitives acceptable to all parties, and deciding on what, if any, extensions
to include. The second approach is to derive some minimal framework of elementary primitives
from which those used in practice can be derived by composition. Although an interesting re-
search problem, both this and the first approach are biased towards a model in which PREMO
devices for modelling and rendering would effectively be implementing a new standard for
graphics primitives. It is simply unrealistic today, given the investment in graphics and media
technologies, to expect industries to adopt a new standard. Instead, the approach taken in
PREMO is to view the standard as a framework for supporting the integration of different mod-
elling and rendering technologies within a heterogeneous distributed system. In this context, the
role of primitives is rather different. PREMO cannot and does not attempt to describe a closed
set of primitives for modelling and rendering. Instead, it defines a general, extensible frame-
work that provides a common basis for deriving primitive sets appropriate to specific applica-
tions or renderer technologies. Modellers, for example, may use specific representations such

as constructive solid geometry, NURBS surfaces, particle systems etc. Such techniques may re-
quire an enriched set of basic primitives. The aim of the primitive hierarchy defined in this part
is to provide a minimal common vocabulary of structures that can be extended as needed, and
which can be used within the property and negotiation mechanisms of PREMO as a basis for
devices involved in modelling and rendering to identify their capabilities for use in a network.
The set primitives described in PREMO is shown in Figure 5. The top of this hierarchy consists
of a single abstract object type calledPrimitive, from which is derived seven key subtypes, sev-
eral of which support further sub-hierarchies.

1. Captured primitives allow the import of data encoded in some format defined externally
to PREMO, for example MPEG[12].

2. Form primitives are those where the appearance of the primitive is constructed by some
renderer or more general media engine. These include geometric primitives (polylines,
curves etc.), and audio primitives for speech and music.

3. Wrapper primitives allow an arbitrary PREMO value to be carried as a primitive, for
example for use in returning the measure of an input device.

4. Modifier primitives alter the presentation of forms, for example visual primitives encom-
pass shading, colour, texture and material properties that affect (for example) the appear-
ance of geometric primitives.

5. Reference primitives enable the sharing of primitive hierarchies by names that can be
defined within structures.

Primitive

Form

Captured

Modifier

Structured

Geometry

Visual

Tactile

Text

Reference

Audio

Temporal

TimeComposite

Aggregate
Sequential

Parallel

Alternate

Acoustic

Music

Speech

Light

Shading

Texture

Material

Geometric

VocalCharacteristic

Constraint

Transformation

Tracer

Wrapper
SoundCharacteristic

Fig. 5. The PREMO Primitive Hierarchy

6. Forms and modifiers are combined withinStructured primitives. AnAggregate is a sub-
type ofStructured which contains a set of primitives, where some members of the set
may be interpreted in application dependent ways; it is thus up to an application subtyp-
ing fromAggregate to impose a specific interpretation on such combinations. Of particu-
lar importance, given that PREMO is concerned with multimedia presentation, is the
TimeComposite primitive and its subtypes which allow a time-based presentation to be
defined by composing simpler fragments. Subtypes ofTimeComposite provide for
sequential and parallel composition, as well as choice between alternative presentations
as determined by the behaviour of a state machine. Additional control over timing is
achieved via temporal modifiers, and subtypes ofTimeComposite define events that can
be used within the PREMO event handling system to monitor the progress of presenta-
tion.

7. Tracer primitives carry an event, and are used for synchronization as described later in
this section.

Devices for Modelling, Rendering and Interaction

The MRI Component derives a number of object types from the VirtualDevice type of Part 3.
As in Part 3, these do not represent concrete devices. They instead define the interface that a
device must offer in able to work within a PREMO system, and in the case of Part 4, with prim-
itives derived from the hierarchy described above. Figure 6 shows how a system might be con-
figured using MRI devices, though as MRI devices are abstract types, in practice these would
be concrete subtypes provided by an application or an additional PREMO component.

The MRI component defines a subtype ofVirtualDevice for use as the base type for de-
riving devices for modelling, rendering and interaction. The so-calledMRI_Device object type
is required to support a format that allows MRI primitives to be transmitted and received via the
ports of the device. Such a device is also required to define properties setting out which primi-
tives it can accept, and some measure of the efficiency with which it can process primitives. In
the figure, the following specialisations ofMRI_Device are used:
1. Modellers andRenderers guarantee to provide an output or (respectively) input port that

acceptsMRI_Format streams for carrying primitives. The devices also contain properties
that characterise their ability to process primitives.

2. A MediaEngineis a device that can act both as aModeller and aRenderer, i.e. a device
that can transform one or more streams of primitives into new streams.

3. TheScene object type defines a database that can be used to store primitives produced
and/or accessed by other devices within a network. It is assumed, for example, that mul-
tiple devices may have concurrent read access to specific primitives, but the exact form
of concurrency control is not specified. The interface of the device allows requests for
access to be granted or denied depending on the policies adopted.

4. Two devices are introduced to support interaction. TheInputDevice object type (a mouse
would be a concrete example_ supports interaction in either sampled, request or event
mode through the stream and event handling facilities defined in other parts of PREMO,
while theRouter object type allows streams of data to be directed based on an underlying
state machine.

5. Collections of MRI devices that implement specific functionalities (e.g. provide a form
of workstation) can be organised into higher-level components via theLogicalDevice
object type defined by MSS. Three such devices are shown in Figure 6, identified by the
letters A, B and C.

When accessing primitives stored in a scene, or coordinating the processing of multiple
media streams, it is necessary to be able to determine when a particular stream has been fully
processed (or received, in the case of database access). This task is supported by theTracer
primitive, which carries a reference to anEvent. Whenever such a primitive is encountered at
the port of a device that is a subtype ofMRI_Device, the event carried by the tracer will be dis-
patched to an event handler associated with the port. In this way, other objects that need to be
aware of the progress of media processing can register interest in such events and be updated of
processing activity.

Coordination

The MRI Component also defines a subtype ofMRI_Device called aCoordinator. Such a de-
vice encapsulates a number of other media devices (derived fromVirtualDevice), each of which
provides the coordinator with one input port. The coordinator itself has one input port, and as it
receives primitives inMRI_Format, the coordinator is responsible for decomposing any struc-
tured presentation into components that can be processed by the devices that it encapsulates. In
the example, the coordinator may receive presentations that involve synthetic graphics, video,
and audio components. The audio component of the presentation is delegated to the logical de-
vice responsible for audio rendering, while the graphics and video are managed by the second
logical device. The coordinator is also responsible for ensuring that its components maintain
any synchronization constraints captured by the overall presentation. It does this by monitoring
the overall end-to-end progression of its encapsulated devices, and placing synchronization
constraints on those progression spaces. Note that these encapsulated devices may receive input
from other components of the system; the coordinator is only responsible for realising the pres-
entation of media data received via the designated ports.

Fig. 6. A Configuration of MRI Devices

audio
engine

video
engine

scene

mixing
engine

router

A B

C

Coordinator

audio
modeller

graphics
modeller

audio

graphics

mouse

A
pp

lic
at

io
n

renderer

renderer

device

Further object types are defined within the MRI Component to support these mechanisms,
for example a representation of coordinates within an arbitrary space, colour, and a means of
coordinating synchronization between various processing devices. Figure 7 shows the object
types defined for modelling, rendering and interaction within PREMO.

4 Conclusion

The authors are currently developing a reference implementation of PREMO within the Java
language. The task of implementing PREMO is obviously non-trivial, but there are a number of
issues that arise not from the technical requirements of the standard, but from the fact that
PREMO comes defined with its own object model and assumptions about its environment. Each
object oriented programming language is also equipped with its own object model, and such a
model has a variety of features and constraints, which may or may not be compatible with those
of the standard. SC24 appointed a Special Rapporteur to examine the problems that were likely
to be encountered in mapping PREMO onto an implementation in an object oriented language.
Three of the current ‘state of the art’ languages, specifically C++, Java, and Ada’95 were exam-
ined, and aspects of the binding of PREMO to each of these that would require careful thought
were identified. Issues considered included:
• support for inheritance within the language, for example whether single or multiple

inheritance is permitted;
• support for (or the difficulty of defining) objects with their own thread of control; and
• mechanisms by which the different operation request modes (synchronous, asynchro-

nous and sampled) could be implemented.

VirtualDevice

Modeller

MediaEngineInputDevice

Primitive

PREMOObject

Format

SimplePREMOObject

PropertyInquiry

VirtualResource

EnhancedPREMOObject

PropertyConstraint

MRI_Format

Coordinator RouterScene

EfficiencyMeasure

MRI_Device

Renderer

Coordinate

Colour

Name

Fig. 7. The PREMO MRI Object Types

Controller

In the case of PREMO, there is also a further level of complexity, as PREMO objects are
potentially distributable. It was decided that, in addition to the language binding, a standard like
PREMO would also need to define an environment binding that defines how the requirements
that the standard places on its environment, for example the ability to invoke remote methods,
could be realised through the use of specialised services such as the CORBA technology of
OMG [14], or the RMI package of the Java library. Some of the problems that might have been
encountered during the implementation of PREMO were identified early on in the project
through the use of formal description techniques [5]; the use of these methods in the develop-
ment of PREMO has been the focus of an number of other papers.

Object orientation is now widely used as a design and implementation technology, and it
is very likely that any future work items within SC24 will incorporate this technology. Conse-
quently, the results of the PREMO-related work have implications beyond the immediate life of
the standard.

Acknowledgement

The PREMO Standard is the result of work carried out by the members of ISO/IEC JTC 1/SC24
WG6 over a number of years, and the authors are pleased to acknowledge the contributions that
all members of the committee have made to the successful conclusion of the project. Particular
mention is due to Jim Van Loo of Sun Microsystems Inc. whose effort was instrumental in the
development of the MSS component. Thanks are also due to Scott Marshall (CWI), and to the
ERCIM Computer Graphics Network (European Commission Human Capital and Mobility
Project, contract number CHRX–CT93–0085) that supported development of the standard
through a number of key workshops and working meetings. The helpful comments of the anon-
ymous reviewers are gratefully acknowledged.

References

[1] F. Arbab: “The IWIM model for coordination of concurrent activities”, in:Coordination
Languages and Models, Springer Verlag, Lecture Notes in Computer Science, vol. 1061,
1996.

[2] D.B. Arnold and D.A. Duce, ISO Standards for Computer Graphics: The First
Generation, Butterworths, London, 1990.

[3] S.D. Brookshire Conner and A. van Dam, “Sharing between graphical objects using
delegation”, in: Object–Oriented Programming for Graphics, C. Laffra, E.H. Blake, V.
de May, X. Pintado (Eds), Focus on Computer Graphics Series, Springer Verlag, 1995.

[4] N. Carriero and D. Gelernter: “Linda in Context”. In:Communication of the ACM,
32,1989.

[5] D.A. Duce, D.J. Duke, P.J.W. ten Hagen, I. Herman, and G.J. Reynolds: “Formal
Methods in the Development of PREMO”. InComputer Standards & Interfaces, 17, pp.
491-509, 1995.

[6] J. Gibbs and D.C. Tsichritzis,Multimedia Programming, Addison-Wesley, ACM Press
series, 1995.

[7] I. Herman, G.S. Carson, J. Davy, P.J.W. ten Hagen, D.A. Duce, W.T. Hewitt, K. Kansy,
B.J. Lurvey, R. Puk, G.J. Reynolds, and H. Stenzel, “Premo: an ISO Standard for a
Presentation Environment for Multimedia Objects”, in:Proceedings of the Second ACM
International Conference on Multimedia (MM’94), San Francisco, D. Ferrari, editor,
ACM Press, 1994.

[8] I. Herman, N. Correia, D.A. Duce, D.J. Duke, G.J. Reynolds, and J. Van Loo, “A
Standard Model for Multimedia Synchronization: PREMO Synchronization Objects”, In
Multimedia Systems, to appear in 1998.

[9] I. Herman, G.J. Reynolds, and J. Davy: “MADE: A Multimedia Application
development environment”. InProc. of the IEEE International Conference on
Multimedia Computing and Systems, Boston, L.A. Belady, S.M. Stevens, and R.
Steinmetz (Eds.), IEEE CS Press 1994.

[10] I. Herman, G.J. Reynolds, and J. Van Loo: “PREMO: An emerging standard for
multimedia. Part I: Overview and Framework”, InIEEE MultiMedia, 3, pp. 83-89, 1996.

[11] IMA, Multimedia System Services, Interactive Multimedia Association, September 1994,
ftp://ima.org/pub/mss/.

[12] International Organization for Standardization, Information processing systems —
Information Technology — Coding of Moving Pictures and Associated Audio for Digital
Storage up to about 1.5 Mbit/s (MPEG). International Organisation for Standardization,
ISO/IEC 10744, 1992.

[13] International Organization for Standardization, Information processing systems —
Computer graphics — Presentation environment for multimedia objects (PREMO), ISO/
IEC 14478, April 1998.

[14] R. Otte, P. Patrick, M. Roy,Understanding CORBA, Prentice Hall, 1996.
[15] J. Wernecke,The Inventor Mentor, Addison Wesley, 1994.

