
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Formal Methods in the Development of PREMO

D.A.Duce, D.J.Duke, P.J.W.ten Hagen, I. Herman, G.J. Reynolds

Computer Science/Department of Interactive Systems

CS-R9465 1994

Formal Methods in the Development of PREMO

D�A� Duce

Informatics Department� DRAL

Chilton� Didcot� Oxon OX�� �QX� United Kingdom

dad�inf�rl�ac�uk

D�J� Duke

Department of Computer Science� University of York

Heslington� York� YO� �DD� United Kingdom

duke�minster�york�ac�uk

P�J�W� ten Hagen� I� Herman� G�J� Reynolds

Department of Interactive Systems� CWI

P�O� Box ���	�� ���� GB Amsterdam� The Netherlands

�paulh�ivan�reynolds��cwi�nl

Abstract

ISO�IEC JTC��SC�� are developing a standard for the presentation of multimedia objects� called Premo

�Presentation Environments for Multimedia Objects�	 Premo is a multipart standard� the most well
de�ned

parts of which� at the time of writing� are at the stage of Committee Draft	

This paper describes how formal description techniques are being used in the development of the Premo

standard� shadowing the development of the standard itself	 The approach taken uses a combination of Z and

Object
Z	 The motivation and merits of this approach are discussed� and illustrated with a description of some

fundamental concepts of the Premo object model	

AMS Subject Classi�cation ������� �N��
CR Subject Classi�cation ������� D	�	��D	�	��D	�	��F	�	��H	�	��I	m�K	�

Keywords � Phrases� PREMO� formal methods� multimedia� object models� active objects� Z� Object
Z	

Note� This paper has been o�ered for publication in the journal �Computer Standards and Interfaces�	

�� Introduction

Premo � Presentation Environments for Multimedia Objects � is the name of a standard under
development within ISO�IEC JTC��SC��� the ISO�IEC committee responsible for standardization in
the area of computer graphics and image processing� The project was approved during ����� Premo
is a multipart standard� which currently consists of four parts	

� Part �	 Fundamentals of Premo

� Part �	 Foundation component

� Part
	 Modelling� rendering and interaction component

� Part �	 Multimedia systems services component

Further parts may be added in the future� At the time of writing �October ������ Parts � and �
had the status of Committee Draft and Part
 is a Working Draft� Part � is at an earlier stage within
ISO�IEC� An overview of Premo is given in Herman et al �
��

Formal Methods in the Development of PREMO

Recognizing the importance of formal description techniques� SC�� appointed a Special Rapporteur
for Formal Description Languages �G�J� Reynolds� in July ���
 and invited him to call an ad hoc
meeting of experts and provide an initial report on the applicability of formal description techniques
to SC�� standards� with particular regard to formally specifying object behaviour and interfaces� by
May ����� The authors of the report are included amongst the authors of this present paper� The
report was duly delivered �
� and the following resolutions were passed at the SC�� Plenary in June
�����

�� Encouragement to use Formal Description Techniques� ISO�IEC JTC��SC�� actively
endorses and encourages the use of formal description techniques during the development of
SC�� standards�

�� Endorsement to use Formal Description Languages in the Development of Premo�

ISO�IEC JTC��SC�� endorses the use of the formal description language� Object�Z� in the
development of Premo�

� Publicationof Formal Descriptions of SC�� Standards	 ISO�IEC JTC��SC�� encourages
the publication of formal descriptions of SC�� standards according to the guidelines in Annex
F of JTC� Directives� Second Edition� ����� This includes publication as an ISO Technical
Report� if the Formal Description is not published with the standard�

Within computer graphics and interactive systems� there is an extensive literature on the use of
formal description techniques to describe particular features of systems� for example �� �� �� �� ��� ���
��� �� �� ��� ��� ��� ��� ���� A book by Kilov and Ross of Bellcore��� is an indication of the uptake of
formal methods �in this case Object�Z� in industry� further examples are contained in a forthcoming
book by Hinchey and Bowen ����
The choice of Z ��� and Object�Z �� for the work described here was motivated by three consider�

ations�

�� Premo is a state�based system and there is a natural a�nity to a state�based formal description
technique� such as Z� The object�oriented nature of the Premo functionality a�ords the use of
an object�oriented formal description technique�

�� Within ISO�IEC� the only formal description technique which has the status of International
Standard is LOTOS ���� LOTOS is a language based on process algebra� though it is loosely
coupled to an algebraic speci�cation language� ACTONE� The present Premo work is concerned
with the description of the Premo object model� including intra and inter object communication�
LOTOS was considered inappropriate for this work� at least initially� because it is not state�
based and not object�oriented� However� some work is planned to look in more detail at the
appropriateness of LOTOS for describing the communications aspects of Premo� building on
the object model de�nition described here�

� There was expertise in the group in both Z and Object�Z� more so than in process based no�
tations� The existence of appropriate expertise in formal description techniques is a signi�cant
hurdle to overcome in gaining acceptance for formalism� It is important that experts in a stan�
dardization committee who do not have expertise in writing formal descriptions should at least
have the opportunity to learn to read them at relatively low cost� This implies that there should
be good access to training materials such as books� courses and case studies� There is excellent
material on Z available under all
 categories�

The next section illustrates how Z and Object�Z are being used in the development of Premo in
particular to describe the Premo object model� The description is based on the description of Premo
in the Committee Drafts of Parts � and � of the standard ��� ���� The version of Object�Z used in
this paper is that described in the University of Queensland Technical Report ���

�

Formal Methods in the Development of PREMO

�� The Premo Object Model

��� Overview
The Premo standard poses some particularly interesting issues for formal description in that the
Premo de�nition follows an object�oriented style and is designed to be extensible in the tradition of
object�oriented systems� The key concept in Premo in this respect is the object model� The object
model describes the object type structure and subtyping relationships� references to objects� non�
object types� operations on objects� subtyping and inheritance� operation dispatching� the semantics
of servicing requests for operations to be performed on an object� the object life�cycle� and the event
model�
In order to describe Premo in a formal description technique it is important to be able to describe

the behaviour of Premo objects in the context of the Premo object model� It would in principle be
possible to use an object�oriented formal description technique for which the semantics of the Premo
object model were included in the semantics of the formal description technique itself� In practice�
such an approach would mean de�ning a new formal description technique�
Instead the approach being taken is to have two levels of speci�cation� The �rst describes the object

model itself� This speci�cation is given in Z� The second describes the behaviour of Premo objects
themselves and for this the Object�Z notation is used� Certain aspects of the Object�Z speci�cation are
interpreted with respect to the semantics of the Z object model speci�cation� the link between the two
levels of the speci�cation de�nes how this is done� This situation is similar to the di�culty encountered
in building object�oriented systems� when the object model of the system being constructed does not
correspond to the object model of the language in which it is being written� An example of this was
encountered in the Made project ���� where the Made object model is not the same as the object
system of C�� in which Made is implemented� The result was that it was necessary to explicitly
code some aspects of the Made object model in C��� rather than rely on mechanisms intrinsic to
C���
The Premo object model de�nes the semantics of object types and object interactions�

� A Premo system consists of a collection of components�

� A component consists of a collection of object types�

� An object is considered to be an instance of some object type�

� Objects have a basic characteristic that is their distinct immutable identity�

� Objects can be related to one another in supertype�subtype relationships�

� Operations are applied to objects�

The object model makes a distinction between an object�s identity and an object reference� An
object reference is a value that reliably denotes a particular object together with information about
the type structure of that object� An object reference that refers to no object has a distinguishable
value�
Operations are actions that can be applied to an object� Each operation has a signature which

consists of a name� a list of parameter types and a list of result types� When an operation request is
issued� a speci�c operation implementation is selected for execution� This selection process is termed
operation dispatching� The process of selecting which operation implementation to invoke �bearing
in mind that an object may contain di�erent implementations of an operation of the same name� is
based on a controlling parameter of the actual call� which de�nes the type with which the object is
to be viewed for this call�
The Premo object model�s concept of operation dispatching has a strong operational bias� for

example� in the di�erent kinds of service request semantics� Objects may de�ne their operations as
being synchronous� asynchronous� or sampled� The intuitive meaning of these concepts is	

Formal Methods in the Development of PREMO

� synchronous	 the caller is suspended until the callee has serviced the request�

� asynchronous	 the caller is not suspended� and the service requests are held on the callee�s side�
no return values are allowed in this case�

� sampled	 the caller is not suspended� at most one pending request is held by the callee� Subse�
quent requests will overwrite any pending request�

The Premo object model introduces the concept of non�objects� A non�object is considered to be
an instance of some non�object type� Non�objects di�er from objects in that they do not form part
of an object type hierarchy and do not have an object reference� Examples in Premo are integer and
real numbers� Premo de�nes a hierarchy of non�object data types� containing both simple �basic�
data types and constructed data types� This can be modelled by a free�type de�nition in Z� an extract
of which follows	

non�obj 		� int valuehhZii � Integers
j real valuehh�ii � Real numbers
j char valuehhCharii � Characters
j seq valuehhseq non�obj ii � Sequence
j � � �

Further consideration of the description of non�object types is beyond the scope of this paper�

��� The Premo Object System
This section presents an initial speci�cation of the Premo object system using a combination of Z
and Object�Z� Since Premo is very much an evolving standard this description is not intended to
be de�nitive in any sense� Rather� the aim is to demonstrate the feasibility and utility of using an
object�oriented formal description technique to obtain a precise description of the standard�
It is convenient to factor the formal account into three	

� The �rst is concerned with the Premo object model and the way in which the collection of
objects that make up a running Premo system can interact with each other� This is developed
in this section�

� The second focuses on the structure and behaviour of individual Premo objects� Section ��

demonstrates the approach adopted for Premo�

� Premo de�nes the concept of a component as a way of organising a collection of objects that
together implement certain services into a single abstraction� This aspect of Premo is described
in Section �� Initial attempts to formalise the notion of component revealed the need for further
clari�cation of the concepts�

The Object Model� As the Premo standard makes a clear commitment to a particular view of
object references and object types it is useful to capture these ideas explicitly� Two �given� sets are
introduced� Each names a set of values that are of interest in the speci�cation� but whose structure is
unimportant� The state of an object is not an explicit part of this model� An object type de�nes the
behaviour common to a set of objects� This behaviour includes changes to the state brought about
by operations�

object � � object identities
objtype� � object types

An object reference is a value that reliably denotes a particular object� An object reference that
refers to no speci�c object is given a distinguished null value� NULLobject�

�

Formal Methods in the Development of PREMO

objref � � object references	 these are used to refer to objects

NULLobject 	 objref

Each object type has an interface� consisting of the set of operations that an object of that type can
be requested to perform� It is important to distinguish between an operation as something that can
be performed to achieve an e�ect� and an operation name as something that can be passed around as
a value� The former concept is denoted by the type operation and the latter by opname�

operation� � operations e�ect state change
opname� � set of operation names

The structure of Premo object types is captured by the schema given below� An object type
introduces a collection of operation names and de�nitions which may build on the structure of other
object types through inheritance� In order to de�ne the meaning of inheritance within Premo we
need to distinguish between the de�nitions given explicitly within an object type� and the larger set
of operations made available to the type through inheritance� This process is simpli�ed by de�ning a
framing schema� �interfaces� to represent the structures common to the internal and external interface
of an object type� The name of the schema is pre�xed with the symbol ��� to indicate that this is an
auxiliary de�nition� and not part of the system being de�ned�
The interfaces of object types are described by two functions� One function gives the set of operation

names� The second takes an object type to a mapping from operation names to operation de�nitions�
that is� for each object type it assigns an implementation to each operation name de�ned for that
type�

�interfaces
names 	 objtype �� Popname
defns 	 objtype �� �opname �� operation�

� t 	 objtype� o 	 opname � names�t� � dom�defns t�

An object type is de�ned by introducing the interface twice� The internal interface represents the
operations de�ned explicitly by an object type� The external interface represents all of the operations
available� both from the type and its supertypes �those types from which it inherits�� Variables are
tagged with either the subscript �int� or �ext� to indicate which interface they refer to� A new variable�
inherits�from� is introduced to represent the type inheritance hierarchy�
One of the di�culties in de�ning the meaning of inheritance is accounting for the possibility of name

clashes caused by multiple inheritance� The solution described in this paper is to map each operation o
and object type t to a de�nition graph �defgraph� that represents the inheritance relationship between
supertypes of t that de�ne the operation� For each operation de�ned within t � there must be a unique
�minimum� supertype of t �possibly t itself� in which the operation is de�ned� The function that
determines the minimal elements of a relation is generic� and is given by	

X �
min 	 �X � X �� PX

�R 	 X � X � let items �� domR � ranR �
� v 	 items � v � min�R�
	
� v � 	 items � v �
� v � �v � v �� � R

The structure of Premo object types is then represented by the following schema	

�

Formal Methods in the Development of PREMO

types
�interfacesint
�interfacesext
inherits�from 	 objtype � objtype

defgraph 	 �opname � objtype�� �objtype � objtype�

� o 	 opname� t 	 objtype � ��
defgraph�o� b� � f s� t 	 objtype j b inherits�from� s o � namesint�s�

 o � namesint �t� s inherits�from� t g

� t 	 objtype� o 	 opname � ��

o � nameext�t�	

�
� o � namesint �t�

�
� s 	 objtype � t inherits�from s o � namesext�s�

�
A

� o 	 opname� t 	 objtype � o � namesext �t�� min�defgraph�o� t�� � � ��

� t 	 objtype � defnsext �t� �
f o 	 opname� s 	 objtype j o � namesext �t� min�defgraph�o� t�� � fsg g ��

The four key predicates have been numbered� �� de�nes the structure of the de�nition graph for
each operation� For each operation o� an object type s is related to another� t � provided that both
de�ne o and that s inherits from t � Intuitively� this means that the de�nition of o given in s is more
speci�c than t � and should override it when the corresponding operation is invoked on an instance of
s�
�� states that an operation name is part of the external interface of a type if it is either de�ned

by the type or is part of the external interface of some inherited type� Predicate
� requires that
for each operation available in the external interface of a type there is a unique �closest� type that
de�nes the operation� The purpose of this constraint is to ensure that any operation name in the
external interface of an object type has a unique implementation� This is explicated by the fourth
predicate� which states that the external de�nition of a type t maps each operation name o in the
external interface of t to the de�nition of o that dominates� As consequence of this� if s de�nes an
operation o to have implementation ops � and t inherits from s but overrides the de�nition of o with
opt � then any client of t that requests o will invoke opt �
Premo also de�nes a subtype relationship between object types� In the current draft this is equated

with the inheritance hierarchy� However� inheritance as implemented in object�oriented systems is not
generally a re!exive relation �an object type does not inherit from itself�� whereas the intuition un�
derlying subtyping suggests that any object type is a subtype of itself� Consequently the speci�cation
has been weakened to require only that s is a subtype of t if s inherits from t �

subtypes
types
is�subtype�of 	 objtype � objtype

� s� t � u 	 objtype �
s inherits�from t � s is�subtype�of t
s is�subtype�of s
s is�subtype�of t t is�subtype�of s � s � t
s is�subtype�of t t is�subtype�of u � s is�subtype�of u

Separating subtyping and inheritance in the formal de�nition has shown a need to clarify the
conditions in Premo which are su�cient to guarantee the existence of subtypes�

�

Formal Methods in the Development of PREMO

Object types act as templates for the construction of object instances within a Premo system�
These instances are accessed through object references� which identify both the object instance and
a �reference type� which may di�er from the �immediate type� of the object �the type from which it
was created�� In general� an object�s reference type can be any super type of the immediate type� a
situation that is illustrated in Figure ���� In the �gure� the object type scrollable�window has been
created by inheriting from �window� and �scroll�bar�� the two operations taken from window have
been overridden� An object of type scrollable�window has been created� and is accessible through
two references� ref�A and ref�B� Sending the message �move� to the object via ref�A will result in
the operation op�m� being invoked� sending the same message through ref�B will invoke op�m� the
implementation of move de�ned in the supertype�

window scroll-bar

scrollable-window

resize
move

op-r
op-m

scr-up
scr-dn

op-u
op-d

resize
move
scr-up
scr-dn

op-r1
op-m1
op-u
op-d

object

ref-B

ref-A

imm-type

instance

instance

ref-type

ref-type

Figure ���	 Object types� instances� and references�

The relationship between objects and types is captured formally by the schema given below� Names
in the schema are consistent with Figure ����

objects
subtypes
instance 	 objref �� object
imm�type 	 object �� objtype
ref �type 	 objref �� objtype

� r 	 objref � imm�type�instance�r�� is�subtype�of ref �type�r�
ran instance � dom imm�type
dom instance � dom ref �type

It is unclear from the current draft what axioms� if any� can be asserted to hold over the object
system� If the speci�cation was extended to model the storage allocation of objects� then an obvious
requirement would seem to be no �dangling references�� that is every reference either identi�es some
object in the store� or is null� Unfortunately this requirement may not be easy to enforce within some
Premo implementations�
The object model may also support query operations� such as inquiring the immediate supertypes of

a speci�c object type� The result is a sequence whose order is not de�ned� The foundation component
must provide services used by Premo objects to inquire type structures� for example	

�

Formal Methods in the Development of PREMO

ImmediateST
"objects
t# 	 objtype
ts$ 	 seq objtype

let tset �� fs 	 objtype j t# subtype sg � ts$ � tset ran ts$ � tset

The interface to this operation is contained in the description of PremoObject in Section
���

Object Life Cycle� The notion of component allows the Premo standard to be structured in terms of
the services provided� Underlying all Premo components is a foundation component �which consists of
a collection of foundation objects� which provides functionality necessary for all Premo components�
The foundation objects include the life�cycle manager object� This provides object life�cycle services
which include the creation of new objects� destruction of objects and object references and management
of object references� It is possible to have more than one life�cycle manager in a Premo system and
to distinguish between di�erent life�cycle managers� A type is introduced to represent the identity of
life�cycle managers�

LMid � � Identify given life cycle managers

A lifecycle schema introduces variables to represent the creator of each object reference �and hence
implicitly of each object�� and the pool of references that can be used by the manager� The predicate
requires that the references allocated by each manager are distinct� and that every object instance
has a creator�

lifecycle
objects
creator 	 objref �� LMid
pool 	 LMid �� Pobjref

dompool � ran creator
�P �Q 	 LMid � P
� Q � pool�P� � pool�Q� � �
dom creator � dom instance

Life cycle manager operations need to take an additional parameter� which is the life cycle manager
identi�er� Life cycle manager �LCM� objects can be accommodated by viewing an operation such as
create�lcm� type� as operation invocations within Object�Z� i�e� lcm�create�objtype�� The problem of
connecting Z and Object�Z descriptions is discussed in Section ��
�

�

Formal Methods in the Development of PREMO

create
%lifecycle this operation changes some of the LCM state�
"subtypes but leaves the type structure unchanged�
lcm# 	 LMid
type# 	 objtype
ref $ 	 objref

lcm# � dompool
let lcm�pool �� pool�lcm#� �

ref $ � lcm�pool
pool � � pool � flcm# �� lcm�pool n fref $gg
creator � � creator � fref $ �� lcm#g
� new 	 object �

new
� ran instance
instance� � instance � fref $ �� newg
ref �type� � ref �type � fref $ �� type#g
imm�type� � imm�type � fnew �� type#g

As a second example� the cast operation creates a new object reference to a given object� such that
the type of the reference is some supertype of the object�s immediate type� Note that the LCM again
appears as a parameter� which is used in the precondition� Exceptions could be de�ned for trying to
cast a reference to a non�supertype or asking the wrong LCM to operate on a reference�

cast
%lifecycle
"subtypes
lcm# 	 LMid
old# 	 objref
req# 	 objtype
new $ 	 objref

creator�old#� � lcm#
imm�type�instance�old#�� is�subtype�of req#
let lcm�pool �� pool�lcm#� �

new $ � lcm�pool
pool � � pool � flcm# �� lcm�pool n fnew $gg
instance� � instance � fnew $ �� instance�old#�g
imm�type � � imm�type
ref �type� � ref �type � fnew $ �� req#g

Operation Dispatching� Objects in Premo communicate by sending messages which cause the
receiver to perform a speci�ed operation using given arguments� As a result� the state of the receiving
object may change and the operation may return results to the original sender� Although this is quite
close to the model of message passing assumed by Object�Z� some aspects of Premo� such as the
di�erent kinds of service request semantics� have a distinctly operational !avour and are at a level
of detail beyond that usually captured by speci�cation techniques� For Premo� the issues of what
behaviour is expected �i�e� the speci�cation of the object model� partly encompasses issues of how
that behaviour is to be provided �e�g� operational details of the object model��
Operation invocation is subject to three di�erent semantics� depending upon the mode of the

operation receptor� Three request modes are described in the standard� and these are represented
as values in the following free type de�nition	

�

Formal Methods in the Development of PREMO

opmode 		� async � Asynchronous	 no suspension� no results
j sync � Synchronous	 caller suspended� results returned
j sampled � Sampled	 consecutive calls overwrite earlier requests

To assist in de�ning operation request semantics we introduce two type synonyms� The parameters
to an operation are a sequence of non�object values� A request is a pair consisting of an operation
and the object that will perform the operation�

params �� seq non�obj
request �� object � operation

We need to extend both the object and type model to accommodate information about objects�
operations� and results� It is unclear whether this information should be added to the model as part of
operation de�nitions� or earlier� as part of the de�nition of objects and types� as there is some overlap
in discussing these points within the Premo document� Here we follow the former approach�

dispatching
lifecycle
mode 	 operation �� opmode
result 	 operation � object � params �� non�obj
selectable 	 object �� Poperation

� op 	 operation� obj 	 object � p 	 params j �op� obj � p� � dom result �
mode�op� � sync
� nm 	 opname � nm � namesext �imm�type�obj ��

op � defnsext �imm�type�obj ���nm�
� obj 	 object �

selectable�obj �
�
f nm 	 opname j nm � namesext�imm�type�obj �� � defnsext�obj ��nm� g

Selectable operations are those that a particular object is willing to perform at a point in time� how
this set is set or changed is not within the scope of the Premo standard� but rather is a property of
the language�s� within which a particular system is instantiated� In order to model operation request
semantics we need to consider the runtime environment of a Premo system� and this is captured by
the following schema de�nition	

runtime
dispatching
suspended 	 Pobject
pending 	 request � bag�params � object�

� o 	 object � � p 	 operation �
mode�p� � sampled � count�pending�o� p�� � �

An object that invokes a synchronous operation is suspended until the operation has been performed�
Sending a request to an object has the e�ect of making the request pending� the called object and
operation is associated with a bag �multi�set� of invocations for that operation� In the case of sampled
mode operations� that bag can contain at most a single item�
The �rst part of operation performance is called selection� and involves adding an operation request

to the bag of pending requests� If the invoked operation is in sampled mode� any existing item in
the bag is discarded� otherwise the bag is extended with the given parameters and the identity of

��

Formal Methods in the Development of PREMO

the invoking object� The latter is required for synchronous operations� where the caller must be
un�suspended once the request has been serviced�

select
%runtime
"dispatching
sender# 	 objref
receiver# 	 objref
mesg# 	 opname
args# 	 params

let

�
�������

caller �� instance�sender#�
callee �� instance�receiver#�
ans �� �args#� caller�
opn �� defnsext�ref �type�receiver#���mesg#�
call �� �callee� opn�
held �� pending�call�

�
������	
�

caller
� suspended
mode�opn�
� sampled � pending � � pending � fcall �� held � ans��g
mode�opn� � sampled � pending � � pending � fcall �� ans��g
mode�opn� � sync � suspended � � suspended � fcallerg
mode�opn�
� sync � suspended � � suspended

The second stage is evaluation of a pending request� A variable �r �� is used to choose some request
for which there is a non�empty bag of calls� Since we are not fully modelling object state we cannot
explicitly describe the e�ect of evaluating an operation� but instead de�ne an �interface� to Object�Z
in the form of the appropriate method invocation�

evaluate
%runtime
"subtypes
r � 	 request
res$ 	 non�obj

count�pending�r�� � �
let r � �� �opn� callee� � � ps 	 params� caller 	 object �

�args� caller��� pending�r �� �
callee
� suspended
opn � selectable�ob�
res$ � result�opn� callee� args�

An operation is completed by removing the serviced request from the pending bag� and� in the case
of synchronous operations� removing the caller from the suspended set�

��

Formal Methods in the Development of PREMO

return
%runtime
"dispatching
r 	 request

count�pending�r�� � �
let r �� �opn� callee� � letpending�r� �� �args� caller� �

pending � � pending � fr �� pending�r� �� �args� caller���g
mode�op� � sync � suspended � � suspended n fcallerg
mode�op�
� sync � suspended � � suspended

A complete picture of operation invocation can be obtained by using the Z schema calculus to
combine the three stages by forward composition� The semantics of S o

�
T is that the �nal state

achieved by S becomes the initial state acted on by T �just as in ordinary composition of program
statements via �����

perform b� select o

�
evaluate o

�
return

Intermediate states are implicitly hidden� so the variables r � and r introduced to pass the selected
request from performance to return are not visible outside the semantics of invocation� The intention
is that perform captures the semantics of operation invocation within Object�Z type de�nitions� Infor�
mally� the Object�Z expression obj �opn�args� should be understood as applying the perform operation
to the state of the object model�

�� Foundation Objects

��� PremoObject
The previous section has developed a formal model of the Premo object system� covering Part � of
the standard� It is now possible to consider the behaviour of the Premo foundation object types
de�ned in Part �� Premo de�nes a collection of foundation object types which can be formed into
a type hierarchy� PremoObject is the root of this hierarchy� The operations on the PremoObject
type fall into two categories�

� Operations which control the creation and destruction of objects� These operations are used by
life cycle management objects to create and destroy object instances�

� Operations which return information on the object type structure and where the object type
�ts into the type hierarchy�

The speci�cation of PremoObject is given by an Object�Z class de�nition� part of which is illus�
trated below�

PremoObject

� � �

INIT
� � �

inquireImmediateSupertypes
&ImmediateST

t# � ref �type�this�

� � �

��

Formal Methods in the Development of PREMO

The inquireImmediateSupertypes operation makes use of the type information in the object model�
The e�ect of this operation is de�ned in terms of the immediateST operation in the object model� see
Section ���� We adopt a convention that references to object model structures are pre�xed with an
�&� symbol�
An Object�Z class consists of an outer box within which appear the de�nitions of a state �in an

unnamed box�� a schema Init describing valid initial states� and a collection of operations that can
modify the state� Each operation has a Delta�list that mentions those variables changed by the
operation� all other variables are unchanged� so for example moving a mouse does not a�ect the
position of its button� A class can be de�ned as an extension to another using inheritance� the base
class is named at the start of the de�nition� and each state or operation of the base is then part of
the new class� Additional variables or invariants can be added to inherited structures�

��� Events and Event Handling
Premo events provide a general mechanism for synchronisation between separate object instances in
a running Premo system� Within this paper we concentrate on the object type that provides general
services for handling events� This will be used by types de�ned in subsequent components� for example
Multi�Media Services� to implement synchronisation between separate elements in a running system�
An earlier paper �� developed an alternative approach to event handling� The approach described

here treats event handling in terms of an EventHandler object type as de�ned in Part � of the Premo
standard� A set of event names is introduced�

event�name�

and then used within an Object�Z class de�nition� The handling of events draws on facilities
speci�ed within the object model�

EventHandler
PremoObject

register 	 event�name � �opname � objref �

INIT
register � �

register
%�register�
e# 	 event�name
opn# 	 opname
obj# 	 objref

letT �� &ref �type�obj #� �
opn# � &namesext�T �
&mode�defnsext �T ��
� sync

register � � register � fe# �� �opn#� obj#�g

unregister
%�register�
e# 	 event�name
opn# 	 opname
obj# 	 objref

register � � register n fe# �� �opn#� obj#�g

�

Formal Methods in the Development of PREMO

send
e# 	 event�name

� obj 	 objref � opn 	 opname �
e# �� �opn� obj � � register
�
� &perform j sender# � this receiver# � obj mesg# � opn args# � he#i �

Of the operations de�ned by the event manager� both register and unregister are straightforward�
though they involve some checking of operation names and modes� Further development of this point
is beyond the scope of this paper� The third operation� send � represents a signal to the event manager
that the event e# has occurred� In response� the manager must invoke the appropriate operation
on each object that has registered an interest in the event� This is modelled in the speci�cation by
asserting that� for each interested object� some model of the perform operation holds with the input
parameters bound to appropriate values�

�� Components

Objects and their associated operations provide basic units of functional behaviour on which a Premo
application can draw within its implementation� In general an application will be interested in more
than just the isolated behaviour obtained from a single operation� Instead� the Premo standard en�
visages that a collection of objects whose operations together provide various services can be packaged
into larger structures call components�
This section gives a !avour of an approach to an abstract description of components and in particular

the ways in which one component can depend upon another� This functionality is still at an early
stage of development within Premo� Three new types are introduced�

compnm� � the set of component names
servnm� � the set of services �names�

deptype 		� subtype j service

the two given sets are used to name components and the services that can be provided� while deptype
serves to introduce the two types of dependencies that can exist�
The structure of a component is quite simple	 it has a name� and it de�nes a set of types which

it uses to implement a set of services� Finally� it may depend on the existence of other components�
either because it inherits from another type �subtype dependency� or because it uses services provided
by the other� Indeed� these possibilities are not necessarily exclusive�

Component
name 	 compnm
de�nes 	 F objtype
provides 	 F servnm
uses 	 servnm �� F opname
depends on 	 compnm � deptype

name
� dom depends on

The only formal axiom is that a component does not depend on itself� A component A in Premo
may depend on another component B in two ways	

�� there are objects in A whose types inherit from the object types de�ned in B �

��

Formal Methods in the Development of PREMO

�� there are objects in A whose behaviour depends on the services o�ered by B �

The consistency of a collection of components is expressed by the following schema�

Components
objects make use of the object model structure�
units 	 compnm �� Component

� comp 	 ran units � dom comp�depends on � domunits ��
� c 	 domunits � � d 	 compnm� t 	 deptype j �d � t� � c�depends on � ��

t � subtype � � otc 	 c�de�nes� otd 	 d �de�nes � �a�
otc inherits�from otd

t � service � � sv 	 c�provides � �b�
uses�sv� � � f ot 	 c�de�nes � namesext �ot� g

uses�sv� � � f ot 	 d �de�nes � namesext�ot� g

Predicate �� says that the collection of components is closed with respect to the dependency relations
within each component�
Predicate �� expresses consistency with respect to conditions ��� and ��� above� Predicate �a�

expresses consistency with respect to inheritance and predicate �b� with respect to services�

�� Multimedia Objects

In Premo emphasis is placed on the ability of objects to be active� This stems from the need
to have development environments where di�erent media may be presented in an integrated way�
and which allow for the various medium�speci�c presentation techniques to coexist within the same
system� Conceptually� di�erent media �e�g� a video sequence and a corresponding sound track� may
be considered as parallel activities that have to reach speci�c milestones at distinct synchronization
points�
An approach to the speci�cation of multimedia objects has been described in a paper by Duce et

al��� at the Eurographics ��� conference� It is felt that the ideas in this paper will provide a good
starting point for a formal description of Part
 of Premo as this becomes more concrete�

�� Conclusions

This paper set out to demonstrate the approaches being taken to the formal description of the emerging
Premo standard� The formal description work is undertaken by a subset of the experts engaged in
the Premo work and aims to track the development of the standard� The major bene�t obtained at
this stage is insight into the emerging design� The development of the speci�cation is a very useful
forcing function for clarifying the fundamental concepts of Premo and their interrelationships� The
speci�cation exercise reported here on the Committee Drafts of Parts � and � has revealed a number
of ambiguities� con!icts and issues requiring resolution� which are being fed into the next stage of
processing�
The realization that a two�level speci�cation would be required in order to separate the object

model and runtime behaviour from object behaviour is interesting� At the present time there is no
object model which has the status of ISO�IEC International Standard� and as object technology is
still an evolving subject� there is good reason to accept that di�erent application domains will evolve
di�erent object models until common understanding of requirements is attained� In consequence� it
is unlikely that the object model in a new area such as multimedia systems� will directly match the
object models in existing object�oriented speci�cation languages� Since object models are primarily
concerned with implementation issues rather than program semantics� it is unlikely that this position
will change�
A single notation can be used to describe both the object model and higher level structures� if both

are encoded in the same way� An example of this approach is contained in Sufrin and He�s paper ����

��

Formal Methods in the Development of PREMO

The di�culty with this approach is that key ideas are encoded into and obscured by the formalism�
The main bene�t for formal methods in standards is most likely to be as a way of identifying and
de�ning precisely what the key concepts are and how they interrelate� rather than as a vehicle for
proving assertions about a standard�
There may be ways to make speci�cation languages more !exible in terms of capturing both object

and meta�level concepts in the one model� One of us DJD� has done some exploratory work with
order�sorted algebras which shows promise� but at the present time such notations are less familiar
than model�based speci�cation languages and there is still much work to be done to demonstrate the
hypothesis�
A problem with the two�level approach is that the connection between the object and runtime

model is necessarily informal� The best that we can do is to link equivalent parts of the two models
using common naming conventions� Such linkage between models is not necessarily bad � for example
Barwise
� notes that multiple models are routinely used in engineering� However� one of the bene�ts
of formal description techniques is that they support formal reasoning about speci�cations� and this
cannot be carried out where informal conventions are used to bind together a heterogeneous model�
the best that can be done is to reason formally within each model and use rigorous argument to reason
between models�

Acknowledgements

The authors of this paper have been brought together under the auspices of the ISO�IEC JTC��SC��
Study Group on Formal Description Techniques� This has been enabled through participation in the
ERCIM Computer Graphics Network funded under the CEC Human Capital and Mobility Programme�

References

�� G� D� Abowd� Formal Aspects of Human�Computer Interaction� PhD thesis� University of Oxford
Computing Laboratory	 Programming Research Group� ����� Available as Technical Monograph
PRG����

�� D� B� Arnold� D� A� Duce� and G� J� Reynolds� An Approach to the Formal Speci�cation of
Con�gurable Models of Graphics Systems� In G� Mar'echal� editor� Proceedings of Eurographics
��	� North�Holland� �����

� J� Barwise� Heterogenous reasoning� In Conceptual Graphs for Knowledge Representation
 First
Intl� Conf� on Conceptual Structures� number � in Lecture Notes in Computer Science� Springer�
Verlag� ���
�

�� D� A� Duce and L� B� Damnjanovic� Formal Speci�cation in the Revision of GKS	 An Illustrative
Example� Computer Graphics Forum� �����	�� �
�� �����

�� D� A� Duce� D� J� Duke� P� J� W� ten Hagen� and G� J� Reynolds� PREMO � An Initial Approach
to a Formal De�nition� Computer Graphics Forum� �
�
�	C�
�
 � C����� �����

�� D� A� Duce and E� V� C� Fielding� Towards a Formal Speci�cation of the GKS Output Primitives�
In A�A�G� Requicha� editor� Proceedings of Eurographics ���� North�Holland� �����

�� D� A� Duce� R� van Liere� and P� J� W� ten Hagen� An Approach to Hierarchical Input Devices�
Computer Graphics Forum� �����

�� D� J� Duke and M� D� Harrison� Abstract Interaction Objects� Computer Graphics Forum�
���
�	C��� � C�
�
�
� ���
�

�� R� Duke� P� King� G� Rose� and Smith G� The Object�Z Speci�cation Language Version �� Tech�
nical Report ����� Software Veri�cation Research Centre� University of Queensland� Australia�
�����

��� G� P� Faconti and F� Patern'o� An Approach to the Formal Speci�cation of the Components
of an Interaction� In C� E� Vandoni and D� A� Duce� editors� Proceedings of Eurographics ���

��

Formal Methods in the Development of PREMO

North�Holland� �����

��� M� D� Harrison and A� Dix� A state model of direct manipulation� In M� D� Harrison and H� W�
Thimbleby� editors� Formal Methods in Human Computer Interaction� pages ��� � ���� Cambridge
University Press� �����

��� M� D� Harrison and D� J� Duke� A review of formalisms for describing interactive behaviour�
Technical report� Department of Computer Science� University of York� ����� �To be presented at
the workshop on Research Issues in the Intersection of Software Engineering and Human�Computer
Interaction in conjunction with ICSE���� Sorrento���

�
� I� Herman et al� PREMO	 A ISO Standard for a Presentation Environment for Multimedia
Objects� In D� Ferrari� editor� Proceedings of the Second ACM International Conference on Mul�
timedia� ACM Press� �����

��� I� Herman� G�J� Reynolds� and J� Davy� MADE	 A Multimedia Application Development En�
vironment� In L�A� Belady� S�M� Stevens� and R� Steinmetz� editors� Proceedings of the IEEE
International Conference on Multimedia Computing Systems �ICMCS���� IEEE CS Press� �����

��� M� Hinchey and J� Bowen� Applications of Formal Methods� Prentice Hall International Series in
Computer Science� ����� �to appear��

��� International Organisation for Standardisation� Information processing systems � Computer graph�
ics and image processing � Presentation Environments for Multimedia Objects �PREMO � Part �

Fundamentals of PREMO� Document ISO�IEC JTC��SC�� N���� �����

��� International Organisation for Standardisation� Information processing systems � Computer graph�
ics and image processing � Presentation Environments for Multimedia Objects �PREMO � Part �

Foundation component� Document ISO�IEC JTC��SC�� N���� �����

��� ISO�IS ����� International Organisation for Standardisation� Information processing systems �
Open Systems Interconnection � LOTOS � A Formal Description Technique Based on Temporal
Ordering of Observational Behaviour� �����

��� Haim Kilov and James Ross� Information modeling
 an object�oriented approach� Prentice�Hall�
�����

��� P� Nehlig and D� A� Duce� GKS��x	 The Design Output Primitive an Approach to a Speci�cation�
Computer Graphics Forum� �
�
�	C�
�� � C�
��� �����

��� F� Patern'o and G� F� Faconti� On the Use of LOTOS to Describe Graphical Interaction� In
D� Diaper A� Monk and M�D� Harrison� editors� People and Computers VII
 HCI�� Conference�
BCS HCI Speicalist Group� Cambridge University Press� �����

��� G�J� Reynolds� Con�gurable Graphics Systems
 Modelling and Speci�cation� PhD thesis� School
of Information Systems� University of East Anglia� September �����

�
� G�J� Reynolds� D�A� Duce� and D�J� Duke� Report of the ISO�IEC JTC��SC�� Special Rapporteur
Group on Formal Description Techniques� Document ISO�IEC JTC��SC�� N����� International
Organisation for Standardisation� �����

��� D� Soede et al� The GKS Input Model in Manifold� Computer Graphics Forum� ���
�	��� � ����
�����

��� J� M� Spivey� The Z Notation
 A Reference Manual� Prentice�Hall� second edition� �����

��� B� Sufrin and J� He� Speci�cation� re�nement and analysis of interactive processes� In M� D�
Harrison and H� W� Thimbleby� editors� Formal Methods in Human Computer Interaction� pages
��
 � ���� Cambridge University Press� �����

��

