@ Centrum voor Wiskunde en Informatica

GraphXML -- An XML based graph interchange format
I. Herman, M.S. Marshall
Information Systems (INS)

INS-R0009 April 30, 2000

Report INS-R0O009
ISSN 1386-3681

CWiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

GraphXML — An XML Based Graph Interchange Format

I. Herman, M.S. Marshall
CwiI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Email: {l.Herman, M.S.Marshall}@cwi.nl

ABSTRACT

GraphXML is a graph description language in XML that can be used as an interchange format for graph drawing
and visualization packages. The generality and rich features of XML make it possible to define an interchange for-
mat that not only supports the pure, mathematical description of a graph, but also the needs of information visualiza-
tion applications that use graph—based data structures.

1999 ACM Computing Classification System: D.2.12, H.3.5, 1.3.6, 1.3.8, .7.2,

Keywords and Phrases: information visualization, graph visualization, user interfaces, XML

Note: The work was carried out under the project INS3.1 “Information Visualization”.

1 INTRODUCTION

GraphXML is a graph description language in XML". The goal of GraphXML is to provide a general interchange
format for graph drawing and visualization systems, and to connect those systems to other applications. The re-
quirements of information visualization have greatly influenced design decisions during the development of
GraphXML. Although GraphXML can be used for the description of purely mathematical graphs, restricted to the
set of nodes and edges, information visualization applications require more features. For example, it should be pos-
sible to label graphs, nodes, and edges. It should also be possible to attach application-dependent data and external
references. Applications might produce not just a single graph, but also a whole series of graphs, possibly ordered in
time. We might want to control the visual appearance of the graphs, such as the colour of the edges, images used
when iconifying a window containing a specific graph. The interchange format should be able to cope with these
demands as well.

As part of alarger project in graph visualization, we needed a graph description language. We initially looked for an
existing standard or widely used format. We also hoped to find an existing parser in Java for such a graph descrip-
tion, which would save us from having to develop our own. However, such aformat does not exist. The closest we
found is a language called GML[4], which was originally proposed as a general interchange format in the graph
drawing community. Although GML is a capable description language for graph drawing purposes and includes pro-
visions for extension, the mechanism for associating external data with a graph element is not well-defined, which
would lead to a proliferation of incompatible GML diaects when adapted to specific applications. Other formats
exist, such as WebDot's DOT format[5], but also couldn’t support the needs of information visualization. Conse-
quently, we decided to develop our own format, in an effort to meet those needs. We based the format on XML in
order to take advantage of several features and the benefits of an existing standard. The detailed specification of our
file format, as well as the Java—based parser we have devel oped, have been put into the public domain. We hope that
the format will enter widespread use. In our view, this would be beneficial for the graph visualization community.

To use the terms defined for XML[1,2,3] , GraphXML is an “application”’” of XML. There are several reasons
for choosing XML as the basis, which included:

e XML is used by many different application areas to define input and output formats including those for data-
bases, chemical compound definitions, and schematic graphics. A graph interchange format based on XML has a
greater chance of being accepted by other application communities.

“XMLisa specification developed by the World Wide Web Consortium (http://www.w3c.org).

T The term XML “vocabulary” is also used.

e XML defines clear syntactic rules on how to define a specific “language” for an application through the Docu-
ment Type Definition (DTD) files. These rules allow extensions as well. What this meansis that, although a pre-
cise specification of GraphXML is provided, the end—user has the option of adding hig’her extensions to
GraphXML, if clear guidelines are followed.

e There are a number of XML-based specifications that are being defined by communities, both within and out-
side the World Wide Web Consortium. GraphXML can reuse some of these applications. An example is
XLink[4], which defines rules for linking to other information, much like the <a> tag of HTML. Another exam-
pleis a specification of a binary exchange format for XML documents: although it is still in a planning phase,
such aformat can significantly speed up the transfer and the processing of these files.

* Alarge number of software tools are emerging, which are either based on XML or work with XML. For exam-
ple, the new releases of the Web browsers (Internet Explorer 5, the upcoming Netscape 5 and Opera Browser
Version 4) can, or will be able to, view XML files. There are also anumber of XML editors, both as products and
in the public domain. Although these applications do not replace graph visualization tools, they can be very help-
ful in managing graph description files, and they can facilitate the development of new visualization tools and
their interfaces with other applications.

e A number of XML parsers are available, some of them free of charge. Of course, these packages cannot be used
directly for an application like GraphXML: the semantic interpretation of the application is still to be provided.
Nevertheless, these packages form the bulk of afull parser, including error management, syntax checking, etc. In
our own experience, developing a parser for an application like GraphXML becomes arelatively straightforward
work, compared to what would be needed to develop afull parser even if toolslike yacc or bison were used. This
development is greatly facilitated by the fact that the World Wide Web Consortium has also defined a Document
Object Model (DOM)[6], i.e. aset of class specification representing the run—time “view” of the XML parsetree.
This DOM model is implemented by most packages. As a consequence, a specific parser, such as the one we
have developed for GraphXML, can be implemented in such away that the dependency on a particular XML can
be greatly reduced.

In what follows, an overview of the main features of GraphXML is given. Thisis followed by a more detailed speci-
fication of al tags used in GraphXML (Section 7). A rudimentary knowledge of XML, or at least of HTML, isre-
quired to understand this description.

2 GRAPH STRUCTURESIN GRAPHXML

2.1 Asimple example

The following code segment shows the simplest possible use of GraphXML that describes a graph with two nodes
and asimple edge:

1 <?xm version="1.0"?>

2 <I DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dt d" >
3 <G aphXM.>

4 <gr aph>

5 <node name="first"/>

6 <node name="second"/>

7 <edge source="first" target="second"/>

8 </ graph>

9 </ G aphXM_>

This example shows the basic style of a graph description in GraphXML. It greatly resembles the way HTML docu-
ments are written, albeit using different tags.

Thefirst lineisrequiredin all XML files. The second line identifies the file's type, i.e. that thisisan XML appli-
cation based on the document type description called Gr aphXM.. dt d”. Finally, the third and the last lines enclose
the real content of the files, much like the <ht ml > tag that precedes and closes a well-formed HTML file. The real

* To be precise, this line specifies that the DTD file is on the local file system. This could be replaced by a URL specification, placing the
DTD file onto the World Wide Web for public access.

content begins with line number 4, which defines a full graph. We delineate graph definitions with the <gr aph> tag
so that afile can contain several graph definitions. The body of the graph description is quite straightforward: two
nodes and a connecting edge are defined. Note that adding the <node> tag is not compulsory; the semantics of the
parser is such that if an edge is defined with nodes, and the nodes are not (yet) specified, a“minima” node will be
created on thefly. If no additional attributes are attached to the nodes, this can lead to asignificant savingin file size
for large graphs.

Much like HTML, “attributes’ can also be defined for each of the elements: these are key—value pairs. The
document type definition of GraphXML defines, for each element, the set of allowable attributes, and the parser is
supposed to check those. It is partly through those attributes that additional information about nodes, edges, or
graphs can be conveyed to the application. For example, the <gr aph> tag can use keys such asver si on, vendor,
preferredLayout, i sPl anar, i sDirected, i sAcyclic, orisForest (the first two attributes can have any
string value, the third one can refer to a series of well accepted “names” for layout algorithms, the others can only
take on the values of t rue or f al se). The semantics attached to these keys is self-explanatory”. For example, the
graph specification above could be:

4 <graph i sPlanar="fal se" isDirected="true" vendor="CW, Ansterdani version="1.0"> \

The example above contains all the elements that are necessary to describe a purely mathematical graph, without
any connection to an external application. However, in applications, graphs usually represent domain-specific data
aong with its semantics, which must also be represented in the interchange format.

2.2 Application dependent data

Application data can be added to different levels of the graph description through a series of additional elements
defined by GraphXML. These elements are meant to represent the different types of data that might be assocaited
with a graph, anode, or an edge. GraphXML defines the following application data:

e Labels (<l abel > tag): whereas the nane attribute is used for identification, which means that it must be unique
within one graph description, the label can contain any kind of text and does not have to be unique. Applications
can use these to label nodes and edges, or as atitle in the window.

< Data (<dat a> tag): application-dependent data represented by a node, edge, or even the full graph. The <dat a>
tag can contain any kind of information that can be described in XML,

< Data references (<dat ar ef > tag): application dependent data, which, instead of being directly incorporated
into the graph files, is referred to through external references.

The format of external references (within the <dat ar ef > tag) follows the specification of a separate document of
the World Wide Web consortium, called Xlink[7]. For our purposesit is sufficient to say that the format of the refer-
encesisvirtualy identical to the URL formats used in HTML.

The following example describes the same graph as in the previous section, except that the first node is enriched
with application dependent data. The kind of data used in the example may be appropriate for the input of a visual
Web Navigator: the data attached to the first node gives a more detailed description of the represented Web page.

1 <?xm version="1.0"?>

2 <! DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dtd" >

3 <G aphXM.>

4 <gr aph>

5 <node nanme="first">

6 <l abel >Proj ect Hone page</| abel >

7 <dat a>

8 This is a description of the CW Information Visualization project.
9 </ dat a>

10 <dat ar ef >

" Some of these attributes have a default value, which is automatically added to the result of the parsing if the user does not provide one. This
is an example of asmall, but very helpful feature provided by XML and the parser APIs cited above.

T Although XML describes everything in terms of strings, it has its own formalism, called entities and notations, which can be used to in-
clude binary data, too. However, using external references, through the <dat ar ef > tag, may be more appropriate for this.

11 <ref xlink:role="Project |eader" xlink:href="http://ww.cw .nl/~ivan"/>
12 <ref xlink:role="Description" xlink:href="http://ww.cw .nl/InfoVisu"/>
13 </ dat ar ef >

14 </ node>

15 <node name="second"/>

16 <edge source="first" target="second"/>

17 </ gr aph>

18 </ GraphXM_>

Note the use of the xI i nk: r ol e attribute in the example (see lines 11 and 12), which can be used to describe what
the exact role of the link is. This can provide a useful indication to the application.

It is important to note that XML files form, structurally, a tree: a <dat ar ef > tag is the child of the containing
<edge> or <node> tag, these are children of <gr aph>, etc. This simple observation isimportant to understand the
exact details of the semantics attached to the elements; example will follow in the forthcoming sections.

2.3 Hierarchical graphs

All the examples mentioned until now refer to one graph. However, information visualization applications usually
use very large graphs, and one of the ways of handling this problem isto define the information in terms of a hierar-
chy of graphs, or clusters, instead of one single graph. What this means is that the nodes of one graph can refer to
other graphs, these can refer to yet another graph, and so on. Powerful techniques exist to cluster graphsinto hierar-
chies and to visualize the hierarchies (see [8,9] or the survey of Herman et. al[10] for further details).

GraphXML offers away to describe such graph hierarchies. Consider the following example:

19 <?xm version="1.0"7?>
20 <! DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dt d" >
21 <G aphXM.>

22 <graph i d="1evel One-1">

23 <node nanme="first"/>

24 <node nane="second"/>

25 <edge source="first" target="second"/>

26 </ gr aph>

27

28 <graph i d="1evel One-2">

29 <node nane="thi rd"/>

30 <node nanme="fourth"/>

31 <edge source="third " target="fourth"/>

32 </ graph>

33

34 <graph i d="1evel Two">

35 <node isMetanode="true" name="clusterl1" xlink:href="#| evel One-1"/>
36 <node i sMet anode="true" name="cl uster2" xlink:href="#| evel One-2"/>
37 <edge source="clusterl1l" target="cluster2"/>

38 </ graph>

39 </ G aphXM_>

Although very simple, the example shows the tools introduced in GraphXML to describe graph hierarchies. First, a
single GraphXML document can contain several graph descriptions. Each graph description can use a (unique) iden-
tifier, using the i d key. A “cluster” or “meta’ node in ahigher level in the hierarchy uses thisidentifier to “1 i nk” to
another graph, using the xI i nk: hr ef attribute key (see line numbers 35 and 36). Thei sMet anode attributeis used
to unambiguously identify a node that refers to another graph. Using these definitions, this example describes atwo
level graph with two nodes and one connecting edge, where each node represents another graph.

Thex! i nk: hr ef attribute for a meta node follows the same rules as the attribute in the <a> tag of HTML when
used to identify atarget within adocument. The full format of the valueis:

URL#i dentifier

where the identifier refers to a graph identifier within the document referred to by the URL. If the target isin the
same document as the source, the URL part can be left out. This version is used in the example.

This simple adaptation of the well-known rules of HTML introduces an extremely powerful feature to
GraphXML. It isindeed possible to define a clustering hierarchy for a graph that is in another file, possibly on an-
other Internet location than the cluster description itself. Applications making use of this possibility can use their
own clustering techniques to visualise public datasets.”

2.4 Dynamic graphs

If a graph visualization system is used interactively, the system may be asked to store the history of the user’s ac-
tions in some form of journaling. What this means is that an interchange format should be able to describe not only
the initial graph, but also any editing steps that have changed the structure or the attributes of the graph. Thisis one
example when the editing tags of GraphXML become essential.

The edit sections in an GraphXML are syntactically similar to graph specification, except for the use of the
<edi t > tag instead of <gr aph>. Furthermore, the <edi t > tag has a required attribute keyed act i on, whose value
can berenove orr epl ace. Hereis an example:

1 <?xm version="1.0"7?>

2 <! DOCTYPE G aphXM. SYSTEM "fil e: G aphXM.. dt d" >

3 <G aphXM.>

4 <graph version="1.0" vendor="cwi " id="t heG aph">
5 <node nane="first">

6 <l abel >A | abel on this node</I| abel >

7 <dat ar ef >

8 <ref xlink:href="Biglcon.gif"/>

9 <ref xlink:href="Mediumcon.gif"/>

10 <ref xlink:href="Smalllcon.gif"/>

11 </ dat ar ef >

12 </ node>

13 <node nane="second"/>

14 <edge nane="t hi sEdge" source="first" target="second">
15 <dat ar ef >

16 <ref xlink:href="External Dat a. bnp"/>

17 </ dat ar ef >

18 </ edge>

19 </ graph>

20

21 <edit action="replace" xlink:href="#theG aph">
22 <node nanme="first">

23 <l abel >Anot her | abel </ | abel >

24 <dat ar ef >

25 <ref xlink:href="anot herlmage.gif"/>

26 <ref xlink:href="tiny.gif"/>

27 </ dat ar ef >

28 </ node>

29 <edge nanme="t hi skdge" source="first" target="second"/>
30 </edit>

31 </ GraphXM_>

The semantics of the editing element (line 21) is as follows: in general, each element in the XML hierarchy is
defined by its position in the hierarchy; an icon group belongs to a specific node, the latter to a graph, and so on. In
principle, al elements have al their possible sub—elements defined, by possibly empty values. In other words, if no
label has been defined for a node, it is considered to be defined with an empty label. To perform editing, the
application has to find the “deepest” element in the hierarchy in the specification in the edit element, not including
the links within the <dat ar ef s> tag (i.e. it is not possible to individually edit the content of this“collection”-like
entity). This controls what is being edited. The value of the acti on attribute determines what happens. the
corresponding element will either be removed (i.e. replaced by an empty element) or will be replaced by the content
inthe <edi t >. Therestriction on the data references meansthat it is not possible to edit the detailed content of these
elements, only as complete units.

* Note that WebDot's DOT format includes facilities to describe clusters, but the formet is limited to local graphs only.

The result of the editing action in the example above can be represented by an GraphXML description as
follows:

1 <?xm version="1.0"7?>

2 <! DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dt d" >

3 <G aphXM.>

4 <graph version="1.0" vendor="cwi " id="theG aph">
5 <node nane="first">

6 <l abel > Anot her |abel </I|abel >

7 <dat ar ef >

8 <link xlink:href="anotherl mage. gi f"/>

9 <link xlink:href="tiny.gif"/>

10 </ dat ar ef >

11 </ node>

12 <node name="second"/>

13 <edge nane="t hi sEdge" source="first" target="second"/>
14 </ graph>

15 </ G aphXM_>

Note the disappearance of the data references in the edge (lines 15-17 in the previous example). Thisis because the
editing action has replaced those with their “empty” counterpart from within the editing element (line 29 in the pre-
vious example).

If, in the same example, the act i on attribute was set to r enove, the result would be as follows:

1 <?xm version="1.0"7?>

2 <! DOCTYPE G aphXM. SYSTEM "fil e: G aphXM.. dtd" >

3 <G aphXM.>

4 <graph version="1.0" vendor="cw " id="theG aph">

5 <node nane="first">

6 </ node>

7 <node name="second"/>

8 <edge nane="t hi sEdge" source="first" target="second">
9 </ edge>

10 </ graph>

11 </ GraphXM.>

Thexl i nk: href attribute used by the edit element has the same syntax and semantics as described for hierarchical
graph descriptions. In other words, an edit element can refer to agraph in another file or even another Internet loca-
tion, too.

As afinal touch to editing, GraphXML also introduces the <edi t - bundl e> tag, which is simply a sequence of
edit tags:

1 <edi t - bundl e>

2 <edit .> ..</edit>
3 <edit .> ..</edit>
4 </ edi t - bundl e>

This simple grouping of editing elements can be useful if the application wants, for example, to animate the result of
editing, but it is unnecessary to do this on the level of granularity of the individual editing steps. Using this bundling
mechanism, animation can be controlled by the creator of the GraphXML file.

3 STORING GEOMETRY

All the examples in Section 2 described only structural elements: nodes, edges, and hierarchies. Visualization sys-
tems have to layout the graph before presenting it to the user. Layout algorithms can be complex and time consum-
ing. Therefore, it is advantageous if the graph description can store the geometric positions of the nodes and the
edges. If thisinformation is available, the visualization system might decide to use those instead of calculating new
layout positions, thereby saving a significant amount of time. Furthermore, the graph description can become a real
interchange file between different visualization systems, preserving not only structure but also geometry.

3.1 Node positions

The position of a node can be described by adding the <posi ti on> tag as a child to <node>. Syntacticaly, the
element itself issimple:

1 <position x="0.0" y="0.0" z="0.0"/>

which, in this case, assigns the node to the origin in 3D space. Any of the three coordinates can be omitted, in which
case their default value is 0.0. Especially, the user can choose to ignore the z coordinates in all positioning elements
in a graph, thereby placing the full graph ssimply onto 2D. As a convention, the coordinate system is right—handed,
which also meansthat, in 2D, the origin isin the lower left hand corner.

Using the <si ze> tag, the size of the node can also be described:

1 <size wi dth="3.0" height="5.0" depth="4.0"/>

In contrast the position, the width and height attributes are required if this element is used. The depth attribute can
be omitted, in which case its value is set to 0.0 by default. This tag might be especially important for some layout
algorithms, which may want to take the node size into account when laying out the graph; this means that this tag
might be used in isolation, too, without using the <posi t i on> tag.

3.2 Edge positions

Edges differ from nodes insofar as a sequence of coordinates may be necessary to describe a particular polyline or a
curve for the edge. Thisis achieved through the <pat h> tag:

1 <path type="pol yline">

2 <position x="0.0" y="0.0"/>
3 <position x="0.1" y="0.0"/>
4 <position x="0.1" y="0.1"/>

5 </ pat h>

which contains a sequence of control points. Thet ype attribute can take the value of pol yl i ne, arc, or spl i ne,
depending on whether the edge is to be drawn as a polyline or a spline curve. In the case of a spline, the positions
indicate the spline control points.

3.3 Graphsize

The <si ze> tag can also be used as a direct child element of <gr aph>. It then denotes the full size, or bounding
box, of the full graph. Applications can greatly benefit from such information, because they can allocate the right
area on the screen and set up the necessary coordinate transformations in advance. Using al the elements defined so
far, here is how geometry information could be added to the simple example of page 2:

1 <?xm version="1.0"7?>

2 <! DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dtd" >
3 <G aphXM.>

4 <graph i d="basic">

5) <size width="1.2" height="1.2"/>

6 <node nanme="first">

7 <position x="0.0" y="0.0"/>

8 <size wi dth="0.1" height="0.1"/>
9 </ node>

10 <node nane="second">

11 <position x="1.0" y="1.0"/>

12 <size wi dth="0.2" height="0.2"/>
13 <edge source="first" target="second">
14 <path type="pol yline">

15 <position x="0.0" y="0.0"/>
16 <position x="0.1" y="0.0"/>
17 <position x="0.1" y="0.1"/>
18 </ pat h>

19 </ edge>

20 </ graph>

21 </ G aphXM.>

3.4 Geometry for hierarchical graphs

The geometry definition described in the earlier section become underspecified if hierarchical graphs are used: the
same graph can be included at various places in the second order graph, the geometry must be adapted to the metan-
ode’s position, etc. The solution is to use the <t r ansf or m> tag, which is a child of <node>. This element has no
meaning if the node is not a metanode. Otherwise, it describes the transformation that has to be applied on each co-
ordinate value in the referred graph. The transformation element contains the specification of a transformation ma-
trix. To take a specific example, the following fragment:

1 <node nane="SecondOrder" isMetanode="true" xlink: href="#basic">
2 <transformmatrix="1.0 0.0 0.5 0.0 1.0 0.5"/>
3 </ node>

refers to our example above, but translates all the nodes and points to the (0.5,0.5) point.

The <t r ansf or > element contains either 6 numbers to describe a 2x3 matrix row—by—row, or 12 numbers to
describe a 3x4 matrix, again row—by—row. In both cases, the convention is that coordinate vectors are column vec-
tors, multiplied by the transformation matrix from the left (see, for example, [12] for further details on how these
transformation matrices are used in computer graphics).

4 VISUAL PROPERTIES

Beyond the pure geometry, the visual appearance of a graph is also determined by visual properties, such as line
width, colour of the components, icons replacing nodes, etc. It is anatural requirement to store those values, too.

In GraphXML, the simplest way of controlling these propertiesisto use the <st yl e> tag as a direct descendent
of anode or an edge. A style can include thetags <l i ne> or <f i | | >. In the case of anode, the line tag controls the
border of the symbol drawn for the node, whereas the fill tag controls the interior. For example, the fragment:

1 <node nane="first">

2 <styl e>

3 <line linestyl e="dashed" |inew dth="1.2" col our="red"/>
4 <fill fillstyle="solid" col our="blue”/>

5 </styl e>

6 </ node>

7 <edge source="first" target="second">

8 <styl e>

9 <line linestyle="solid" |inew dth="1.0" col our="cyan"/>
10 <fill fillstyle="none"/>

11 </styl e>

12 </ edge>

defines a node symbol to have a red dashed boundary drawn with aline width of 1.2, and filled with solid blug’. The
edge is to be drawn in cyan without filling the interiors (in the case the edge is drawn as a polygon, for example).
There are 13 predefined colours that can be referred to through their symbolic names; aternatively, the binary value
for the RGB or RGBA values can be specified directly’. Similarly, there are four predefined line styles, but a 16 bit
value integer can also be specified which acts as a dash pattern for the line.

Thefill element can also refer to an image file instead of specifying the colour and the fill style. This instructs
the visualizer to use the image as an icon to display the node. For example, line 4 could be replaced by:

4 <fill xlink:href="http://ww.sone.site/imgefile.gif"/>

to use an icon for the node.

Although the mechanism described so far is useful, it would lead to many repeated visua control tags, greatly
increasing the size of the graph file. In addition, it might become cumbersome to adapt a graph file to a new envi-

" Note that this specification does not specify the exact glyph to be drawn by the visualizer. This is either left to the implementer of the visu-
alization system, or specified via a more sophisticated control tag, called <i npl errent at i on> . See Section 7.9.3 for further details.

" For those who prefer the American spelling to British, the attribute name “col or ” is also accepted.

ronment with other visual characteristics. To solve these problems, we added a more complex mechanism to the vis-
ual property control. It isinspired by the general principle of separating style from content: whereas the structural
content of agraph, aswell asits geometry, is an inherent part of the graph description, visual properties may change
from one environment to the other. The goal isto provide a general mechanism that allows for an easy adaptation.

First of all, a style element can be added on the graph level, to control the overall apperance of the graph. This
means that the example above could be replaced by:

1 <gr aph>

2 <styl e>

3 <line tag="node" |inestyl e="dashed" |inew dth="1.2" col our="red"/>
4 <fill tag="node" fillstyle="solid" col our="blue"/>

5 <line tag="edge" linestyle="solid" |inew dth="1.0" col our="cyan"/>
6 <fill tag="node" fillstyle="none"/>

7 </styl e>

8 -

9 <node nanme="first"/>

10 <edge source="first" target="second"/>

11

12 </ grébh>

resulting in the same visual effect, except that the visual properties are valid for all nodes and edges in the graph
(note the use of the t ag attribute in the line and fill elements to differentiate between nodes and edges). Thereis an
exception, though: if a node does have alocal style specification for one of the visual properties, this takes priority
over the global value.

To make one step further, nodes and edges can also use the cl ass attribute to categorize tags with common
visual properties. Using this additional identification (which is different from the name, because it is not necessarily
unigue for an element), a finer control over the visual attributes can be achieved by targeting a specific visual
attribute to a class of nodes or edges. For example, in

1 <gr aph>

2 <styl e>

3 <line tag="node" |inestyl e="dashed" |inew dth="1.2" col our="red"/>
4 <fill tag="node" fillstyle="solid" col our="blue"/>

5 <fill tag="node" fillstyle="solid" col our="green" class="special"/>
6 <line tag="edge" |linestyle="solid" |inew dth="1.0" col our="cyan"/>
7 <fill tag="node" fillstyle="none"/>

8 </styl e>

9 ..

10 <node name="first"/>

11 <node nane="second" cl ass="special"/>

12 .

13 <node nanme="nth" cl ass="special "/>

14 ...

15 <edge source="first" target="second"/>

16

17 </ grébh>

the node first will be displayed the same way as before; however the nodes second and nt h will become green
instead of red. Thisis because line 5 specifies that “all nodes of class ‘special’ should be filled in green”, which is
the case for second and nt h.

In general, the class attribute value is set for each element by the author of the XML file. There is one exception,
though: all metanodes are automatically assigned the cl ass="met anode" attribute (unless an explicit class
assignment overridesthis).

The <styl e> tag can also appear as a direct child element of the root (i.e. <GraphXM.>) affecting all graph
specifications in the file. Going from aleaf (i.e. a node or an edge) in the XML tree toward the root, the priority of
the visual property statements diminish: if a property is specified in the graph, this overrides the specification on the
root level, the element level description overrides the graph level one, etc. Finally, the class related specifications
override the general specifications.

Another syle control facility is special to metanodes. Consider the following example:

10

<?xm version="1.0"7?>
<! DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dt d" >
<G aphXM.>
<graph i d="1evel Two">
<node i sMet anode="true" name="clusterl1" xlink:href="http://ww. soneurl|">
<subgr aph- styl e>
<line tag="edge" col our="red"/>
</ subgr aph-styl e>
</ node>

O©CoO~NOODWNE

11 </ gr aph>
12 </ G aphXM_>

The graph refers, through a metanode, to another graph which, in this case, happens to be on a remote Internet
location. By adding the <subgr aph- st yl e> element, this specification will control the visual apperance of the
included graph. Semantically, this is similar to a <styl e> element placed on the file level in the remote graph.
However, the user is not forced to modify the remote graph in order to gain control over the visual properties. As
with the priority of other style statements, these visua properties have a lower priority than the statements in the
remotefile.

Using the entity mechanism of XML, it is possible to include an XML file in another (see Section 9 on how this
can be done). This is particularly handy when controlling styles: it is possible to collect all the style elementsinto a
separate file and include it in a graph specification. If achangeis donein that stylefile, all graphs using it will have
their visual properties automatically updated.

5 USEREXTENSIONS

Although the specification of GraphXML includes rich facilities for the addition of data to node and edge defini-
tions, it is not possible to predict all possible information an application might want to add. For example, if the ap-
plication is aweb visualizer, it might want to add information on a MIME type for anode. In other words, the appli-
cation would need to have its own, <ni me> tag for each node, beyond those defined by the basic GraphXML.

Such extensions are possible using GraphXML. Thisis how an extension mechanism can be added to a graph:

13 <?xm version="1.0"?>

14 <! DOCTYPE GraphXM. SYSTEM "fil e: GraphXM.. dtd" [
15 <IENTITY % nodeExt ensi ons "| mi nme" >

16 <! ELEMENT mi me EMPTY>

17 <! ATTLI ST m ne

18 type CDATA #REQUI RED

19 appl i cati on CDATA #| MPLI ED

20 >

21 1>

22 <G aphXM_>

23 <gr aph>

24 <node nanme="first">

25 <| abel >Pr oj ect Hone page</| abel >

26 <dat ar ef >

27 <ref xlink:href="http://ww.cw .nl/InfoVisu/description.pdf"/>
28 </ dat ar ef >

29 <m e type="application/pdf" application="Adobe Acrobat"/>
30 </ node>

31

32 </ graph>

33 </ G aphXM_>

The file contains what is called an “internal DTD” (lines 15-21), which extends the possible elements that can be
included in a node definition. The definition states that a <mi ne> element can be added as the child of a node, that

11

this is an element that contains only attributes (i.e. no sub—elements), and that the attributes can be t ype and
appl i cati on (thefirst being compulsory, the second optional)".

The syntax is a bit cryptic: thisis a side—effect of the complexity of XML. However, the end—user does not nec-
essarily have to include such internal DTD’s into all his’lher GraphXML files. Instead, using standard XML mecha
nisms, it is possible to define a separate DTD file containing the application specific extensions (and a reference to
the G aphXM.. dt d, of course). Using such extension, the example becomes simply:

1 <?xm version="1.0"7?>

2 <I DOCTYPE GraphXM. SYSTEM "file: \WebVi sualizer.dtd ">

3 <G aphXM.>

4 <gr aph>

5) <node nanme="first">

6 <| abel >Pr oj ect Hone page</| abel >

7 <dat ar ef >

8 <ref xlink:href="http://ww.cw .nl/InfoVisu/description.pdf"/>
9 </ dat ar ef >

10 <m e type="application/pdf" application="Adobe Acrobat"/>
11 </ node>

12

13 </ graph>

14 </ GraphXM.>

The only difference is in line 2, where a reference to WebVi sual i zer . dt d, replaces G aphXM.. dt d. In other
words, the intricacies of the XML DTD syntax remain invisible to most users. The authors of the application can
extend the functionalities of GraphXML once and for all. Furthermore, because the extension is made through a
standard XML mechanism, the basic GraphXML parser remains unchanged, only the application—-dependent part has
to be adapted for the new extensions. Section 7.10 describes the application specific DTD’s in more details.

6 APPLICATION CONTROL

A single GraphXML file can be used in many different visualization systems, each with its own special features. It is
very useful if the description of agraph could contain a statement such as “if displayed in this application, use these
flags, if displayed in that application, use those flags”, etc.

The standard XML processing instructions can be used for that purpose. An XML file can contain the following
lines:

1 <?Appl i cati onNane Par anet er sfort heapplication ?>

An XML processor does not interpret these lines directly, but tries to identify the application Appl i cat i onNane,
and forward the parameters (i.e. al characters between the application name and the closing “?>" sequence).’

This XML feature can be used in GraphXML. As a convention, the parser of GraphXML should identify whether
the application, which has invoked the parser, is Appl i cat i onName; if yes, the parameters should be forwarded to
the application, otherwise the processing instruction is ignored. For example, if the GraphXML fileis parsed by the
application called Royere, which is a graph visualization system that was developed at CWI, the following line:

1 <?Royere Tiner=true ?>

will instruct the program to turn its debug timer on during the display of that graph.

Of course, the processing instructions can be included in any separate DTD file, just as user extensions can be,
which provides flexible control of applications.

' Actually, extending the GraphXML specification with elements admitting some predefined attributes only is so frequent, that a separate tag,
called <properties> is pre-defined in GraphXML, so that the internal DTD should define the attribute list only (like in lines 17-20, although with
aslightly different syntax. See Section 7 for more details).

"The only restriction is that the application name may not begin with the string ‘xml’. Thisis reserved by W3C.

12

7 DETAILED SPECIFICATION OF GRAPHXML

This section contains a more detailed specification of the XML tags defined in GraphXML. Each element is
described in detail. Familiarity with the basic concepts of XML is necessary to understand this section. The DTD
extracts below are not the exact copies of thereal DTD. Some attributes, whose values are fixed but required by, for
example, XML or XLink, have been omitted to simplify the description. The “real” DTD appearsin the Appendix.

7.1 Common elements

To simplify the description and the DTD, some “common elements’ have been factored out into a separate DTD
entity. These are the application dependent data (see Section 2.2), styles (see Section 4), and extensible properties
(see Section 7.10.1 below). These elements can be used for graphs, nodes, and edges. They must precede the “real”
content of the elements, such as the list of nodes and edges. Details on these elements will be given in Section 7.8
below, but to simplify the forthcoming specification, only the entity itself is described here:

<IENTITY % conmon-el ements "| abel | dat a| dat ar ef | properti es">

The entity specification allows, gramatically, to have more than one common element of the same type as a child.
For example, it is possible to have severa labels added to a node. Although the XML syntax alows this, the
semantics of GraphXML does not: the first element overrides all the others, and the remaining elements (e.g., the
second label) isignored.

7.2 Theroot tag: GraphXML
A GraphXML file can consist of several graph specifications, as well as several edit or edit bundle specifications.

<I ELEMENT GraphXM. ((%onmmon-el enents; |style)*, graph*, (edit|edit-bundle)*)>

7.3 Thegraphtag

Beyond the common elements, the graph element can also use the <i con> and <si ze> elements as part of its
introductory tags. Thefirst is simply areference to an image file and can be used by the application to, e.g., control a
window icon; the second has been described in Section 3.3. Furthermore, a <st yl e> element can also be added, as
described in Section 4. Otherwise, agraph is ssimply a collection of nodes and edges.

The attributes are straightforward. Note that the value of the i d attribute must be unique within afile; it is used
as areference target for hierarchical graph specifications.

<! ELEMENT graph ((%onmmon-el ements; |styl e|icon|size)*, (node| edge)*)>
<! ATTLI ST graph

i sDirected (true|false) "true"

i sPl anar (true|lfal se) "fal se"

i sAcyclic (true|lfal se) "fal se"

i sFor est (true|false) "fal se"
pref erredLayout CDATA #1 MPLI ED
vendor CDATA #| MPLI ED
ver si on CDATA #1 MPLI ED
id I D #1 MPLI ED

<! ELEMENT i con EMPTY>
<I ATTLI ST i con

x|l ink: href CDATA #REQUI RED
>

13

7.4 Theedit and the edit bundle elements

The semantics of these elements has been described in Section 2.4. The target of the xIi nk: href is a URL
containing the i d of the graph. The xI i nk: r ol e can be a useful hint to the application, but it does not have any
predefined semantics.

<I ELEMENT edit ((%onmon-el ements;)*, (node| edge)*) >
<! ATTLI ST edit

action (repl ace| renove) #REQUI RED
xlink:role CDATA #1 MPLI ED
x| i nk: href CDATA #1 MPLI ED

<I ELEMENT edit-bundle (edit*)>

7.5 Thenode e ement

The name of anode must be unique within the graph statement that contains it (although not necessarily within afull
GraphXML file). Thex! i nk: href isused when the nodeis a metanode (i.e. the value of i sMet anode istrue) in
which case it should refer to thei d of agraph. Aswith the edit element, the x1 i nk: r ol e can be auseful hint to the
application, but it does not have any predefined semantics. For details on hierarchical graphs, see Section 2.3.

<I ELEMENT node (% conmmon-el enents; |styl e| subgraph-styl e| position|size|transform*>
<I ATTLI ST node

nanme CDATA #REQUI RED
i sMet anode (true| fal se) "fal se"

xlink:role CDATA #1 MPLI ED
x| i nk: href CDATA #| MPLI ED
cl ass CDATA #1 MPLI ED

>

The <styl e> element can be added, as well as acl ass attribute, which is used to categorize nodes in terms of
common visua properties for visual property control (see Section 4). If the node is a metanode, the <subgr aph-
st yl e> element can be used to control the visual appearance of the graph referred to by the x1 i nk: hr ef attribute.

A node can also specify its position and size (see Section 3.1). Furthermore, if the node is a metanode, the
<t r ansf or m> tag can be used to define a transformation for the referred graph to the current node. See Section 3.4
for further details. Note that the value of the <si ze> element has no semantic meaning in such a case (the size of
the node is determined by the transformed bounding box of the referred graph).

<! ELEMENT transform EMPTY>
<! ATTLI ST transform

matrix CDATA "1.0 0.0 0.0 0.0 0.01.00.00.0 0.00.0 1.0 0.0"
>

7.6 Theedge element

An edge tag is relatively simple: it contains reference attributes to the source and target nodes. The nameis optional.

<! ELEMENT edge (%ommon-el enents; | styl e| path)*>
<I ATTLI ST edge

name CDATA #| MPLI ED
source CDATA #REQUI RED
target CDATA #REQUI RED
cl ass CDATA #| MPLI ED

>

The geometry of the edge can be specified as a sequence of geometric positions, describing either a polyline, a
spline, or a(circular) arc. In the case of an arc only the first three coordinate values are considered.

14

<! ELEMENT path (position)*>
<I ATTLI ST path

type (polyline|spline|arc) "pol yline"
>

The <st yl e> element can also be added, aswell asacl ass attribute, which is used to categorize edges in terms of
common visual properties, and is used for visual property control (see Section 4).

7.7 Geometry specifications

Two geometry specifications are used by nodes and graphs: the <si ze> and <posi t i on> tags. Both are useable for
3D visualization, but defaults are specified in away that a purely 2D environment can function without any further
problems.

<! ELEMENT si ze EMPTY>
<! ATTLI ST si ze

width CDATA #REQUI RED
hei ght CDATA #REQUI RED
depth CDATA "0.0"

<! ELEMENT position EMPTY>
<! ATTLI ST position

X CDATA "0.0"
y CDATA "0.0"
z CDATA "0.0"

7.8 Specification of application data

There are three categories of application dependent data (see Section 2.2): labels, data, and datareferences. Thefirst
two are simple tags, whereas the third is a collection of external references.

<! ELEMENT | abel (#PCDATA) >
<! ATTLI ST | abel

cl ass CDATA #| MPLI ED
>

<! ELEMENT data (#PCDATA) >
<! ATTLI ST data

cl ass CDATA #| MPLI ED
>

<! ELEMENT dataref (ref*)>

Note that in the GraphXML DTD, the <dat ar ef > tag is defined as an “extended” XLink element; in other words
the tag, and its immediate sub tags, can be manipulated as one element. This also explains why editing a data
reference tag through the <edi t > tags can be done as a unit only (see Section 2.4).

<! ELEMENT ref EMPTY>

<! ATTLI ST ref
xlink:role CDATA #| MPLI ED
x| i nk: hr ef CDATA #REQUI RED

15

7.9 Visual attribute control

Visual attributes are controlled via the <st yl e> element, which can be added to graphs, nodes, and edges. The
<subgr aph- st yl e> hasasimilar syntax, although it can be used as a child of a metanode only.

<I ELEMENT styl e (line[fill]inplenentation)*>
<! ELEMENT subgraph-style (line|fill]inplenentation)*>

7.9.1 Lineattributes

The <l i ne> element controls the appearance of the node glyph borders (if the t ag attribute is set to node) or the
edge (if the t ag attribute is set to edge). The t ag attribute is ignored if the <st yl e> tag, containing the <l i ne>
tag, isadirect child of either anode or an edge. The cl ass attribute is a selector for the category of nodes or edges.

<! ELEMENT |ine EMPTY>

<! ATTLI ST |ine
tag (edge| node) "edge"
cl ass CDATA #| MPLI ED
color_start CDATA #1 MPLI ED
col or _end CDATA #1 MPLI ED
col our _start CDATA #1 MPLI ED
col our _end CDATA #1 MPLI ED
col or CDATA #| MPLI ED
col our CDATA #| MPLI ED
linestyle CDATA #| MPLI ED
| i newi dth CDATA #| MPLI ED

>

Colour setting can be done either through the col or or thecol our attributes. If both appear in the tag, the color tag
isignored. The value of the attribute can be:

e one of bl ack, bl ue, cyan, darkG ay, gray, green, |i ght G ay, nagent a, or ange, pi nk, red, white,
yel | ow, to denote a specific colour, or

e a24 hit hexadecima number, using the format #r r ggbb, to set explicit red, green, an blue values, or
« a32 hit hexadecimal number, using the format #r r ggbbaa, to set explicit red, green, blue, and alpha values.

Alternatively, the colour can be set independently to the start and the end of the edge through the col our _start,
col our _end (or, aternatively, through the col or _start and col or _end) attributes. The values for these
attributes is identical to the simple colour setting. Semantically, these attributes set the colours on the two end of the
edges and the application is supposed to provide a smooth transition of the colours along the edge. These settings
have a higher priority than the simple colour setting: if they are al set, the col our attribute value isignored.

The linestyle attribute can be:
e oneof none, sol i d, dashed, dash- dot t ed, dot t ed to denote a specific linestyle, or

« al6 hit hexadecimal number, using the format #bbbb, to define abit pattern to be used when drawing the line.

7.9.2 Fill attributes

The<fil | > element controls the appearance of the node glyph’sinterior (if thet ag attribute is set to node) or the
interior of the edge (if thet ag attribute is set to edge). Thet ag attribute isignored if the <st yI e> tag, containing
the <fil | > tag, is a direct child of either a node or an edge. Note that if edges are rendered with lines, the fill
element may have no effect on the edge at all.

16

<! ELEMENT fill EMPTY>

<! ATTLI ST fil
tag (edge| node) "node"
cl ass CDATA #| MPLI ED
col or CDATA #1 MPLI ED
col our CDATA #1 MPLI ED
fillstyle (solid| none| background) #I MPLI ED
x| i nk: hr ef CDATA #1 MPLI ED
i magefill (resize| duplicate| none) #l MPLI ED

>

The interpretation of the col or and col our tagsis similar to line control. The fi | | styl e attribute determines
whether the fill should be done with the specified (fill) colour, whether no fill should be performed, or whether the
background colour should be used.

The xl i nk: href refersto an image, which can be used as simply an image to be displayed, or as afill pattern
(depending on the capabilities of the underlying visualization system). If specified, filling with a pattern or image
takes precedence over thefi | | styl e and col our attributes.

If the node also specifies its size (through the <si ze> tag), the i magefi | | attribute controls whether the
content of the image must be resized or duplicated to fill the full size, or whether the <si ze> tag should be ignored
and the image displayed with its original size. The dupl i cat e valueis usually used if the image file is a pattern.

7.9.3 Direct implementation control

In some cases, the user might want to have complete control over the implementation of the node and/or the edge
visualization through a script, program applet, Java class, etc. Details of how this can be doneis highly environment
and visualization system dependent. The <i npl enent at i on> tag simply provides the name of a script or class
object which the application can then interpret and invoke. If the <i npl ement at i on> tag is valid for a node or
edge, this overrides al other tags, although the visualization system should convey al other visua properties to the
corresponding class or script.

<! ELEMENT i npl enent ati on EMPTY>
<! ATTLI ST i npl ement ati on

tag (edge| node) #REQUI RED
cl ass CDATA #1 MPLI ED
scri ptname CDATA #1 MPLI ED

7.10 User extensions

The user extension mechanism in GraphXML is based on entities, which are part of the DTD specifications but
whose (initial) value is empty. The extension is done by giving appropriate values to those entities, and defining, if
necessary, other tags in the internal DTD of the GraphXML file. This extension mechanism relies on two important
features of XML DTD'’s:

1. If,inparsingaDTD, the same definition (for an element, entity, attributes, etc.) is encountered twice, the second
occurrence is silently ignored.

2. Theinternal DTD portion is read and parsed before the external DTD.

Two mechanisms for extension are built into the GraphXML DTD: adding properties to tags and adding new tag
specification to existing tags.

17

7.10.1 Adding properties

The common elements (see Section 7.1) include the <pr oper t i es> tag, defined as:

<IENTI TY % admi ssi bl eProperties "">
<! ELEMENT properties EMPTY>
<I ATTLI ST properties
%adm ssi bl eProperties;
>

This means that this <pr oper t y> tag can be used as a direct descendent to all nodes and edges. Because the value
of admi ssi bl eProperties is empty in the GraphXML DTD (i.e. the tag does not have any content or valid
properties), this tag cannot be used until further definitions are available.

However, if aninternal DTD is used, such asin the following example:

1 <?xm version="1.0"7?>

2 <! DOCTYPE GraphXM. SYSTEM “fil e: GraphXM.. dtd" [
3 <IENTITY % admi ssi bl eProperties "

4 attri buteA (val uel| val ue2) # MPLI ED

5 attri but eB CDATA #| MPLI ED

6 ">

7 1>

8 <G aphXM.>

9

1

0 </ Gr aphXMm.>

then the entity adni ssi bl eProperti es definesthe attributesat t ri but eAand at t ri but eB, which can be used
within the GraphXML fileitself. Thisis an easy way of adding propertiesto all tagsin a GraphXML file.

7.10.2 Adding new tags

The GraphXML DTD aso defines hooks for extending admissible tags for the root level, for nodes, edges, graphs,
and edit tags. These hooks are also based on the use of entities and enable the addition of properties.

Using the <node> tag as an example, the “real” specification of thistag in the GraphXML DTD is:

<IENTI TY % nodeExt ensi ons"" >
<! ELEMENT node (%common-el enents; %modeExt ensi ons; | position|size|transform*>

in contrast to the specification given in Section 7.5. Because the initial value for nodeExt ensi on is empty, this
entity initially has no effect on <node>. However, if the entity receives an initial value in an internal DTD, such as
in the example in Section 5, then new tags can be used and the GraphXML file remains valid. Similar mechanisms
are defined using the entitiesr oot Ext ensi ons, edgeExt ensi ons, gr aphExt ensi ons, and edi t Ext ensi ons.

Note that the XLink namespace is added to the DTD on the GraphXML level. This means that all new tags that
are defined by the user can use all the x1 i nk: xxx attributes as well.

8 TRANSFORMING GRAPHXML FILES

The primary goa of GraphXML is to describe graphs which are to be visualized by specialized applications.
However, one can use the XSLT mechanism[3,13] to dynamically transform a GraphXML file into, for example, an
HTML file, resulting in some pretty printing format of a graph specification. To include an XSLT reference in the
graph file, the following processing instruction should be used:

1 <?xm -styl esheet href="YourCSSFile.xsl" title="You styles" type="text/xsl"?> \

With the evolution of Web standards, this transformation mechanism can also be used for more powerful ends. For
example, if XML vocabularies to describe graphics become available, it will be possible to interpret the geometric
attributes directly and give a visual representation of the graphs through a web browser.

18

9 HOWTOHIDEINTERNAL DTD’S

The user extension mechanism of GraphXML is based on the use of internal DTD’s, which do not have a very
friendly syntax. However, XML entities can be used to hide them. For example, this is how the WebVi sual -
i zer. dtd file, referred to in Section 5, might appear:

<IENTITY % G aphXM_DTD SYSTEM " Gr aphXM.. dt d" >
<IENTITY % nodeExtensions ", m ne*">
<I ELEMENT m me EMPTY>
<I ATTLI ST m e
type CDATA #REQUI RED
appl i cati on CDATA #| MPLI ED
>

%G aphXM_DTD;

O~NOUAWN P

The trick is to refer to the “real” DTD as an external entity, which is included in the file only at line 8 (when the
specification for the <mi me> tag is already parsed). Similarly, company—-wide style files can be created. By storing
the <st yl e> nodes and processing instructions in a separate file called, for example, “CW St yl e. xml ”, a separate,
“pseudo” DTD file can be defined as:

1 <IENTITY % G aphXM.DTD SYSTEM " G aphXM.. dtd" >
2 %> aphXM_DTD;
3 <IENTITY CWStyl e SYSTEM "CW Styl e. xm ">

By calling thisfile, for example, G aphXM.W t hSt yI e. dt d, the GraphXML file would appear as follows:

1 <?xm version="1.0"7?>

2 <! DOCTYPE GraphXM. SYSTEM "fil e: G aphXM.Wt hStyl e. dtd" >
3 <G aphXM.>

4 <gr aph>

5 &CW St yl e;

6 <node name="first"/>

7 <node nanme="second" cl ass="special"/>
8

9 <node nanme="nth" cl ass="special "/>

10

11 <edge source="first" target="second"/>
12

13 </ graph>

14 </ GraphXM.>

Where the entity referencein line 5 includes the <st yl e> content or the processing instructions. Using this mecha-
nism, the file CW St yl e. xnl playsthe role of ageneral property file for a specific application.

10 USING NON-VALIDATING PARSERS

All examples listed so far include a reference to the GraphXML DTD. If the parser used by the application is a
“validating” parser, this is necessary. However, there might be applications that are not so strict and restrict them-
selves to aweaker form of checking, called “well-formedness’ in the XML jargon (the term “non-validating parser”
is also used in this context). What this means is that the parser would check for the syntax rules (are all opening ele-
ments closed, etc.), but not for the stricter rules such as not alowing a <subgr aph- st yl e> element to appear as a
child of <edge>. Using a non-validating parser has a number of advantages. For example, the extension mecha-
nisms, described in Section 7.10, become much simpler: any new elements and attributes can be added to the graph.
If the application “understands’ those extensions, they can be used without any trouble. Another problem might oc-
cur if the DTD file itself is not accessible to the user (because, for example, the Internet location is not accessible).
On the other hand, using a non—validating parser has obvious disadvantages, too. No checks are done on the ele-
ments and attributes, which could lead to the misinterpretation of the data due to spelling mistakes.

19

11 PUBLICAVAILABILITY

This document along with the GraphXML.dtd file, some examples, and the public domain parser for GraphXML can
be retrieved at the following URL: http://www.cwi.nl/InfoVisu/GraphXML.

The parser itself isa collection of Java 1.2 classes. The current implementation version relies on Version 3 of the
XMLA4J parser, which is freely downloadable from the IBM: http://www.al phaworks.ibm.com/tech/xml4j, the previ-
ous (Version 2) version of the XML4J parser, which users may still have, or Version 1.0 of the JAXP parser, whichis
freely downloadable from SUN: http://www.sun.com/xml. Version 3 of XML4J is identical to the 1.0.3 version of
the Apache XML parser, codenamed Xerces, and is also available from http://xml.apache.org/xerces-j/index.html.
All these parsers are 100% Java parsers, and are easy to install on any platform where Java 1.2 is available. Depend-
ing on a system property XMLG aph_Val i dat e, the parser can be used either in validating or non—validating mode:
if the value of the property is set to No, no, Fal se, or f al se, the parser is non—validating, and is validating other-
wise. The latter is the default.

The GraphXML parser checks syntax as well as some general semantics. Different applications can be bound to
the parser by providing an implementation of the G- aphSemant i cs. j ava interface. A simple example for an im-
plementation is available in the debug package of the distribution.

REFERENCES

1. “Extensible Markup Language (XML) 1.0", World Wide Web Consortium, (eds. T. Bray, J. Paoli, C.M. Sper-
berg—M cQueen), Recommendation February 1998, http://www.w3.0rg/ TR/REC-xm.

2. N. Bradley, The XML Companion,. Harlow: Addison Wesley Longman, 1998.
3. W.J Pardi, XML in Action,. Redmond: Microsoft Press, 1999.

4, M. Himsolt, GML — Graph Modeling Language, University of Passau, http://infosun.fmi.uni-
passau.de/Graphlet/GML/, 1997.

5. S C. Northy DOT abstract graph description format, http://www.research.att.com/~north/cgi-
bin/webdot.cgi/dot.txt.

6. “Document Object Model (DOM) Level 1 Specification”, World Wide Web Consortium, (eds. V. Apparao et
al.), Recommendation October 1998, http://www.w3.org/ TR/REC-DOM-Level-1/.

7. “XML Linking Language (XLink)”, World Wide Web Consortium, (eds. S. DeRose, D. Orchard, B. Trafford),
Working Draft July 1999, http://www.w3.org/TR/WD-xlink.

8. P Eades and Q.-W. Feng, “Multilevel Visualization of Clustered Graphs’, in Proceedings of Symposium on
Graph Drawing GD '96, Berlin, 1997.

9. D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and M. Roseman, “Navigating Hierarchically
Clustered Networks through Fisheye and Full-zoom Methods’, ACM Transactions on Computer—Human In-
teraction, vol. 3, pp. 162-188, 1996.

10. I. Herman, S. Marshall, and G Melangon, “Graph Visualisation and Navigation in Information Visualisation: a
Survey”, To be published in: IEEE Transactions on Visualization and Computer Graphics, vol. 6, 2000. An ear-
lier version is also available in: Proceedings of Eurographics '99 State—of-the-Art Reports, Milano, Italy,
1999, http://mwww.cwi.nl/InfoVisu/Survey/StarGraphVisul nlnfoVis.pdf.

11. “XML Pointer language (XPointer)”, World Wide Web Consortium, (eds. S. DeRose and R. Daniel Jr.), Work-
ing Draft July 1999, http://www.w3.org/ TR/WD-xptr.

12. J. D. Foley, A. v. Dam, and S. K. Feiner, Computer Graphics: Principles and practice,. Reading: Addison—
Wesley, 1990.

20

13.

“XSL Transformations’, World Wide Web Consortium, (ed. J. Clark), Recommendation November, 1999,
http://mww.w3.0rg/ TR/xslt.

Appendix1 THE GRAPHXML DTD

21

<IENTITY % common- el ements "I abel | dat a| dat ar ef | properti es">

<! ENTITY % r oot Ext ensi ons "">
<! ENTITY % nodeExt ensi ons "">
<IENTI TY % edgeExtensi ons "">
<IENTI TY % gr aphExt ensi ons "">
<IENTITY % edit Ext ensi ons "">

<IENTITY % adni ssi bl eProperties "">

<l-- -->
<l-- >

<! ELEMENT G aphXM

((%¢ommon- el enent s; % oot Ext ensi ons; | styl e) *, graph*, (edi t|edit-bundle)*)>
<! ATTLI ST G aphXM

xm ns: xlink CDATA #FIXED "http://ww. w3. org/ XM/ XLi nk/ 0. 9"

>
<l-- >
<l-- o>

<! ELEMENT gr aph
((%¢omon- el enent s; %gr aphExt ensi ons; | styl e| i con| si ze) *, (node| edge) *) >
<! ATTLI ST graph

i sDirected (true|false) "true"

i sPl anar (true|false) "fal se"

i sAcyclic (true|false) "fal se"

i sFor est (true|false) "fal se"
pref erredLayout CDATA #1 MPLI ED
vendor CDATA #1 MPLI ED
ver si on CDATA #1 MPLI ED
id I D #1 MPLI ED
cl ass CDATA #1 MPLI ED

>

<! ELEMENT i con EMPTY>
<! ATTLI ST i con

xlink: type CDATA #FI XED "si npl e"

xlink:role CDATA #FI XED "lcon inmage for the full graph”
xlink:title CDATA #| MPLI ED

xli nk: show (new parsed| repl ace) #FIXED "parsed"

x|l i nk: actuate (user| aut 0) #FI XED "aut 0"

x| i nk: href CDATA #REQUI RED

>

<I ELEMENT edit ((%onmon-el ements; %edit Ext ensi ons;)*, (node| edge) *) >
<! ATTLI ST edit

action (repl ace| renove) #REQUI RED

xlink: type CDATA #FI XED "sinpl e"

xlink:role CDATA #FI XED "Reference to graph”
xlink:title CDATA #1 MPLI ED

xli nk: show (new parsed|repl ace) #FI XED "new'

xlink:actuate (user | aut 0) #FI XED "user"

xl i nk: hr ef CDATA #1 MPLI ED

cl ass CDATA #1 MPLI ED

22

<! ELEMENT edit-bundle (edit*)>

<! ATTLI ST edit-bundl e
cl ass CDATA #| MPLI ED

>

<! ELEMENT node
(%common- el enent s; ¥%modeExt ensi ons; | styl e| subgraph-styl e| position|size|transfornm*>
<! ATTLI ST node

nane CDATA #REQUI RED
i sMet anode (true|fal se) "fal se"
xlink:type CDATA #FI XED "sinpl e"
xlink:role CDATA #FI XED "Reference to graph”
xlink:title CDATA #| MPLI ED
xl'i nk: show (new| parsed| repl ace) #FIXED "new'
x| i nk: act uat e (user| aut 0) #FI XED "user"
xIl i nk: hr ef CDATA #1 MPLI ED
cl ass CDATA #1 MPLI ED
>
<! ELEMENT edge (%common-el enents; ¥%edgeExt ensi ons; | styl e| pat h) *>
<! ATTLI ST edge
nane CDATA #1 MPLI ED
source CDATA #REQUI RED
target CDATA #REQUI RED
cl ass CDATA #1 MPLI ED
>

<! ELEMENT properties EMPTY>
<! ATTLI ST properties

cl ass CDATA #l MPLI ED
%adm ssi bl eProperties;

>

<! ELEMENT | abel (#PCDATA) >

<! ATTLI ST | abel
cl ass CDATA #| MPLI ED

>

<! ELEMENT data (#PCDATA) >

<! ATTLI ST data
cl ass CDATA #| MPLI ED

>

<! ELEMENT dat aref (ref*)>

<! ATTLI ST dat ar ef
xlink:type CDATA #FI XED "extended"
xlink:role CDATA #FI XED "Reference to external application data"
xlink:title CDATA #1 MPLI ED
x| i nk: show (new parsed|repl ace) #FI XED "new'
x| i nk:actuate (user| aut 0) #FI XED "user"
cl ass CDATA #| MPLI ED

>

<! ELEMENT ref EMPTY>

<l ATTLI ST ref
xlink:type CDATA #FI XED "l ocator"
xl'ink:role CDATA #1 MPLI ED
xlink:title CDATA #1 MPLI ED
x| i nk: show (new parsed|repl ace) #FI XED "new'
xlink:actuate (user| aut 0) #FI XED "user"
xli nk: href CDATA #REQUI RED
cl ass CDATA #| MPLI ED

23

| <ELEMENT position EMPTY>
<I ATTLI ST position

X CDATA "0.0"
y CDATA "0.0"
2 CDATA "0.0"
cl ass CDATA #1 MPLI ED

>
<! ELEMENT si ze EMPTY>
<! ATTLI ST si ze

width CDATA #REQUI RED
hei ght CDATA #REQUI RED
depth CDATA "0.0"
class CDATA #| MPLI ED

>

<! ELEMENT path (position)*>
<I ATTLI ST path
type (polyline|spline|arc) "pol yline"
cl ass CDATA #1 MPLI ED
>

<! ELEMENT transform EMPTY>

<! ATTLI ST transform
matrix CDATA "1.0 0.0 0.0 0.0 0.01.00.00.0
cl ass CDATA #| MPLI ED

>
<! ELEMENT styl e (line|fill]inplenmentation)*>
<! ELEMENT subgraph-style (line|[fill]inplenentation)*>

<! ELEMENT | i ne EMPTY>
<I ATTLI ST | i ne

tag (edge| node) "edge”
cl ass CDATA #1 MPLI ED
color_start CDATA #1 MPLI ED
col or _end CDATA #1 MPLI ED
col our _start CDATA #1 MPLI ED
col our _end CDATA #| MPLI ED
col or CDATA #| MPLI ED
col our CDATA #1 MPLI ED
linestyle CDATA #1 MPLI ED
I'i newi dt h CDATA #1 MPLI ED

>

<l ELEMENT fill EMPTY>

< ATTLI ST fill
tag (edge| node) "node"
cl ass CDATA #| MPLI ED
col or CDATA #| MPLI ED
col our CDATA #1 MPLI ED
fillstyle (sol i d| none| background) #l MPLI ED
xlink: type CDATA #FI XED
xlink:role CDATA #FI XED
xlink:title CDATA #| MPLI ED
xli nk: show (new parsed| repl ace) #FI XED
xlink:actuate (user | aut 0) #F| XED
xl i nk: hr ef CDATA #1 MPLI ED
i magefill (resize|duplicate| none) #l MPLIED

0.0 0.01.00.0"

"sinmpl e"
"Fill image or pattern"

"par sed"
"user"

24

<! ELEMENT i npl emrent ati on EMPTY>

<I ATTLI ST i npl ement ati on
tag (edge| node) #REQUI RED
cl ass CDATA #1 MPLI ED
scri ptname CDATA #1 MPLI ED

