
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Circular Drawings of Rooted Trees

G. Melanc con and I. Herman

Information Systems (INS)

INS-R9817 December 1998

Report INS-R9817
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Circular Drawings of Rooted Trees

G. Melan�con and I. Herman

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

fGuy.Melancon, Ivan.Hermang@cwi.nl

ABSTRACT

We describe an algorithm producing circular layouts for trees, that is drawings, where

subtrees of a node lie within circles, and these circles are themselves placed on the cir-

cumference of a circle. The complexity and methodology of our algorithm compares to

Reingold and Tilford's algorithm for trees [11]. Moreover, the algorithm naturally admits

distortion transformations of the layout. This, added to its low complexity, makes it very

well suited to be used in an interactive environment.

1991 Computing Reviews Classi�cation System: D.2.2, E.1, G.2.1, G.2.2

Keywords and Phrases: Rooted trees, graph drawing, information visualization

Note: At CWI, the work was carried under the project INS3.2 \Information Visualization".

1. INTRODUCTION

Rooted trees are at the center of many problems and applications in computer science.
Information systems, multimedia documents databases, or virtual reality scene descriptions
are only a few examples in which they are used. Their widespread use is most probably the
result of the fact that they capture and reflect the way humans often organize information.
A visual representation of these structures is often a major tool to help the user finding
his/her way in exploring data; hence the importance of graph drawing and exploration in
information visualization.

Methods for drawing trees has received a significant attention for a long time and it still
reappears as an intermediate task in many applications. The classic algorithm by Reingold
and Tilford [11], improved later in [14], gives a very effective solution to produce a clas-
sical, top–down drawing of rooted trees. Eades [4] also described an alternative, so called
radial display of a tree, based on earlier results described, for instance, in [2]. However,
the need for suitable tree representations for large amounts of data still simulates work in
finding alternative layouts. For example, there has been an increased interest recently in
using non–euclidean geometries [6, 8, 1, 9, 10], or 3D representations [12, 7].

The classical, top–down drawing of trees has the advantage of being well–known and
widely used in many applications. Its use for displaying hierarchies benefits from its nat-
ural interpretation. In some cases, however, one might need to deal with representations
where the hierarchical organization of data is much less relevant. As an example, we en-
countered situations (e.g., in exploring keyword and thesauri data) where the hierarchy was
not natural, although the underlying data structure was indeed a tree. Eades [4] cites some
other examples for what he calls “free trees”. Data in all these applications can of course
be described through rooted trees, but only artificially; in fact, exploration in these appli-
cations consist in “changing” a root. In our case, our users felt that the classical top–down
drawing strongly suggested a hierarchy, and this view interfered with mental model of the
relevant data exploration.

Our search for an alternative tree representation originated from this user demand. The
algorithm we present here yields a circular view of trees. The drawings are very intu-

2. Basic positioning algorithm 2

Figure 1: Circular positioning of a tree

itive: every node is placed at the center of a circle, and the subtrees attached to a node,
themselves drawn into circles of smaller radii, are then placed on the circumference of the
large circle. This process is repeated recursively. Although the idea is simple, we have
found no description of similar algorithms in the literature. The drawings look familiar,
though; indeed, we have observed circular displays of simple trees in some demonstration
applications, but none mentioned the use of any general algorithms, capable of dealing
with arbitrary trees. Another advantage of our algorithm is that it makes it easy to apply
distortion on the drawing, offering a natural alternative to the well–known fish–eye view
of graphs [13]. Indeed, each node stores a scaling factor to apply on its own radius; by
changing this value interactively one may control a distortion on the subtree.

The rest of the paper is organized as follows. The first section describes the main lines of
our algorithm. For the sake of clarity, the description ignores certain details and postpones
their discussion to later sections. The examples presented at first serve both for comparison
with a classical top–down display of a tree, as well as a basis for the improvements we
introduce in section 3. The drawings are computed in linear time; this, and some other
issues in comparing our algorithm to the classical Reingold and Tilford’s algorithm [11],
are discussed in remark 2.4. A section describing the distortion effect obtained by changing
a node’s scaling factor concludes the paper.

2. BASIC POSITIONING ALGORITHM

The drawings generated by our algorithm are very intuitive. Every node is placed at the
center of a circle and the subtrees of the node, themselves drawn into circles of smaller
radius, are placed on the circumference. Figure 1 shows a typical circular display for a
simple tree.

As said before, there is no explicit mention for such layout algorithm in the literature,
although the idea of such a display seems very natural. The reason is probably that the su-
perficial description of the algorithm is very simple and, consequently, one might think that
the implementation is not much more complicated either. This is misleading, though; in re-
ality, the implementation of the algorithm becomes quite complex. Undoubtedly, attempts
have been made to develop similar layout methods; we have observed circular displays of
trees in various demo applications1. However, the usual examples show very well balanced
trees for which the display is optimal. Some other examples use interaction to stick to

1See, for example,http://www.merzcom.com and

2. Basic positioning algorithm 3

balanced trees, and/or they restrict the visible portion of the tree to a given depth.
Our algorithm uses recursive traversal of the tree to compute the position of a node;

it proceeds in two steps. The first step is bottom–up and computes position of a node
relative to its ancestor, along with scaling factors to be applied during the second pass. The
second, top–down traversal cumulates these scaling factors and computes the absolutex-y
coordinates of the nodes.

Let us first describe the parameters driving the behaviour of the algorithm.

Notation. Letn be a node. Denote byk1, : : : , kp the subtrees attached to the children
nodes ofn. Suppose, by induction, that each subtreekj needs to be drawn in a circleCj of
radiusrj . The distance betweenn and the center of the circleCj will be referred to as the
distance fromn to a circleCj (i.e., the subtreekj). Incidentally, we shall identify the node
kj with the subtree it induces, as well as with the circleCj containing it.

. . .

.

.
.

C

C

C

C

1

2

3

p

n

Figure 2: Positioning of children’s circles along the circumference

The scheme we adopt is the following. Each circleCj is drawn at a distanced + rj
from n, whered = dn is constant for allk1, : : : , kp (see Figure 2). The value ford has
to be decided based on some heuristics: our experimentation has shown thatd = maxfr1,
: : : , rpg suits well. Other choices ford give different displays; section 3 discusses a more
dynamic choice for the value ofd.

α

n

Ck

Figure 3: Halfsector� associated with a children nodek

Definition 2.1 Let us define thesectorof a subtreeCj to be the angle formed by two rays
originating atn and tangent to two diametrically opposed point onCj (cf figure 4). That
is, consider the angle�j = arctan(

rj
d+rj

). Then, the sector associated withCj is 2�j . We
shall refer to the angle�j as thehalfsectorofCj . Obviously, the sector (and halfsector) is
uniquely defined.

Hence, three values are associated with each noden:

2. Basic positioning algorithm 4

1. a (constant) distanced used to position each child’s circle;

2. the radiusr of the circle containing the full subtree induced byn (i.e., all the recursive
circles); and

3. an angle�, which is equal to the halfsector formed by the circlen, relative to its
ancestor node.

If the halfsector value for each child is already calculated, one may compute the total
sum of these halfsectors, i.e.,

P
j �j , to evaluate whether allCj circles fit within the2�

angle which is at disposal forn. There are obviously, two cases:

�
P

j �j � � and

�
P

j �j > �

(Note that we use halfsectors, hence the comparison with� instead of2�.) In the first
case, we may decide to distribute the free space left between each circles evenly; this is
the simple case. The second case necessitates some more work, because each circle has
to be scaled down in order to fit them into the available space. I.e., we must compute a
scaling factor for each circleCj , to readjust the total

P
j �j to �. This can be acheived

by computing a common scaling factorc = cn; choosingc = �=(
P

j �j), and taking
�0j = c � �j for each halfsector will fulfill the conditions. The new radii for the circles will
be:

r0j = d �
tan(�0j)

1� tan(�0j)
(2.1)

With these formulae at hand, the first (simple) version of the positioning algorithm is as
follows (for sake of simplicity, we shall refer to the values associated to the noden using
the dot notation as:n:d, n:� andn:r). The algorithm itself consist of two distinct steps:

algorithm circularDisplay(node n) f
firstWalk(n)
secondWalk(n, : : :)

g

(The meaning of the empty arguments “: : : ” will become clear as the discussion
evolves.) The first step proceeds bottom up, computes a value ford = dn, possibly cal-
culates a scaling factor for the children of a node in function of the value of

P
j �j , and

concludes by computing the radius of the circleCn so as to contain the full subtree atn:

method firstWalk(node n) f
n:d = 0

loop over children k of n f
firstWalk(k)
n:d = max(n:d; k:r)

g
adjustChildren(n)
setRadius(n)

g

Note that the valued need not be computed for leaves and that its zero value shall not
affect the positioning of the nodes.

The work carried out byadjustChildren is the one described before, depending
on the comparison of

P
j �j and�. It results in the scaling factorn:c, which is to ap-

plied to every children’s radius, and a valuen:f measuring the free angle to be eventually
distributed among all children.

2. Basic positioning algorithm 5

method adjustChildren(node n) f
compute s =

P
j �j

if (s > �) f
set n:c = �=s and n:f = 0

g
else f

set n:c = 1 and n:f = � � s

g
g

The factorn:c will be used in the second pass to adjust the radii and the halfsectors of
the descendents’ circles. Finally, the valuen:f will be used when computing the absolute
x–y coordinates of the node.

This scheme makes thesetRadius prodedure rather simple. Indeed, the node’s radius
is three times the maximum value of the children’s radii, except when a node is a leaf in
which case we must assign it a minimum radiusm. This maximum value has already been
computed infirstWalk , i.e.:

method setRadius(node n) f
n:r = max(n:d;m) + 2n:d

g

(Actually, we may want to slightly augment this value in order to show neighbour circles
apart by a minimal distance.)

The methodsecondWalk computes the absolutex–y coordinates for each node. This
method is invoked with a number of parameters, which are defined as follows. Because we
want to place the root of the tree at the origin, the convention is that the noden is assigned
its (x; y) coordinates by the caller, i.e., whensecondWalk is invoked. The node should
also receive a scaling factor� which it must apply to its radius; this is achieved by applying
it to n:d and, recursively, to all its descendents. Finally, remember that data calculated
during firstWalk are all relative to localx-y axis; the node must receive an angle�
which is its angle with the absolutex–axis. All points lying inside its circle must be rotated
accordingly. Hence, the methodsecondWalk has the prototype:

secondWalk(node n, double x, double y, double c, double �)

The call tosecondWalk on the root of a tree uses the valuesx = y = 0, c = 1, and
� = 0, i.e., is positioned at the origin and its children are placed counterclockwise starting
from the positivex–axis. Remember that the scaling factorn:c must be applied to every
children’s halfsectors, their radii must be adjusted accordingly, and that the free anglen:f

has to be evenly distributed among all children nodes.

2. Basic positioning algorithm 6

method secondWalk(node n, double x, double y, double �, double �) f
store x and y for node n, i.e. n:x = x, n:y = y

set d0 to � � n:d

set ' = � + �

set freespace = n:f / (number of kids +1)

set previous = 0

loop over all children k f
set �0 to c � k:�

set r0 to d � tan(�0)

1�tan(�0)
(cf Eq. (2.1))

' = '+ previous + k:�+ freespace
k:x = (� � r0 + d0) � cos(')
k:y = (� � r0 + d0) � sin(')
previous = k:�

secondWalk(k, k:x+ n:x, k:y + n:y, � � r0

k:r
, ')

g
g

Figure 4: Circular positioning of a more complex tree

Figure 4 shows another example of a circular display for a more complex tree.

2.1 Discussions on the simple algorithm
The algorithm, as described above, calls for a certain number of remarks.

Remark 2.2 There are several points in the algorithm where somewhat arbitrary choices
have been made. For example, a slightly more elaborate way of solving thes =

P
j �j <

� case could have been chosen, by using values proportional to the children’s sizes; the

3. Tidier circular positioning 7

choice of the distance between a node and its child’s circle could be slightly different,
etc. Although these are all possible variants of the algorithm, their overall effect is not
significant, and it is not of a real interest to go into all these kinds of details here.

Remark 2.3 The edge length decreases exponentially when going deeper into the tree.
This can already be observed in Figures 1 and 4. As a consequence, a deeply hidden
subtree will look as a dense set of points and will not clearly show its structure. This
phenomenon had to be expected since the area of a circle only offers linear space (with
respect to the circle’s radius) where a (potentially) exponential number of informations
must be placed. This problem also arises when drawing in non–euclidean geometries using
the Poincar´e model, for example2. An alternative, when dealing with deeper subtrees, could
be to show only its points without drawing the edges. This has already been implemented
elsewhere [15] in a different context, where it seems to give satifying results. Section 4
proposes another technique to overcome this problem by interacting with the algorithm
directly.

Remark 2.4 The complexity of the algorithm is linear in the number of nodes of the tree,
just like the classical, hierarchical placement algorithms. There is, however, a closer par-
allel to be drawn between this circular layout and Reingold and Tilford’s (R&T) algo-
rithm [11]; the structure of both methods are indeed quite similar.

As in our case, R&T computes the positions of the nodes in two passes. In the first,
bottom-up pass, our algorithm calculates and stores the fieldsn:c andn:f ; these values are
used in the second, top–down traversal, as a planar transformation on the subtree, resulting
in the absolutex–y coordinates of the nodes. In the case of R&T, the positioning of a node
boils down to the computation of itsx value, since they ordinate is given by the node’s
depth. On the first traversal, R&T computes the relative position of a node (as the root of a
subtree) starting from the leaves. On its way up, the algorithm might deduce that a child’s
subtree will have to be translated horizontally. It does not perform this translation at that
moment since it might well have to be composed with translations still to be discovered;
the value is stored in a field and used during the second traversal of the tree. This ”lazy
transformation” is precisely what is done by our algorithm, too: a childk might have to
adjust its radius if the

P
j �j > � occurs. However, instead of performing the transfor-

mation, the scaling factor is stored, and is combined later with its parent’s scaling factor
�.

The main difference with the R&T algorithm is the following. In R&T, the range of
x values for nodes has no constraint except for a minimumx distance between nodes.
Our case is conditionned by the fact that the sum must satisfy

P
j �j � �. This would

be equivalent in R&T to ask thex values to lie within a given interval. The algorithm
would then have to adjust the width of subtrees to make sure the whole tree fits in the given
interval.

3. TIDIER CIRCULAR POSITIONING

This section discusses an improvement of the algorithm described in the preceding section;
the goal is to make a more optimal use of the available space, while still keeping the com-
plexity within linear bounds (staying within linear complexity was a critical aspect since
we use the circular layout within an interactive application).

To understand the problem, let us first go back to the original algorithm. A noden is
positioned along a ray stemming from its father. Its first child,k1, is placed tangentially to
this line. This first child generates another ray, defining the sector rooted atn and tangent
to C1. The second child,k2, is then placed tangent to that ray associated withk1, and so
on (see Figure 5). This observation might have escaped the reader’s attention, since one
would naturally expect to place a child next to its left brother, letting it “slide” until both

2See, for example, the hyperbolic tree visualizer at http://www.inxight.com/

3. Tidier circular positioning 8

circumferences touch at a single tangent point. This isnot what happens in our case, since
a sector’s ray might well keep two neighbour circles from touching.

n

C2

C1

Figure 5: Neighbour circles rest on halfsector rays

Obviously, the use of rays to order and separate neighbouring circles does not optimize
the use of space. The optimal algorithm would be to let a circle “slide” in the direction
of the circles which are already positioned, until it “bumps” into another circle, or into
the ray connecting a circle to its father. Observe that the circle being bumped into would
not necessarily be the immediate left brother: it would be possible to have any number of
circles “hidden” below two circles with larger radii (Figure 6). Furthermore, the search
for optimums should not only consider the option of effectively placing circles as close as
possible to one another, but should also allow the distance between a node and its children
to vary. Indeed, one could, for example, expect leaves to be closer to their father.

n

Cj

Cj+3

Figure 6: When sliding, smaller circles can be hidden by larger ones

Our analysis and experiments lead us to the conclusion that any optimal solution along
these lines would be too complex for our purposes. Even naive attempts to compute a
less than optimal positioning turn into optimization problems dealing with huge sets of
constraints. A solution could be to use a force–based method built on top of a properly
defined physical model. The solution could then be an equilibrium point, reached by a set
of circles “fighting” against one another. Similar, optimization based algorithms for graph
layout do exist (see, e.g., the overview of di Battista et al. [3]), but they are rarely used
for trees; their complexities clearly go beyond linearity. However, there is a possibility to
improve the simple algorithm, while still remaining within the linear complexity domain;
this will be presented in the rest of this section.

3. Tidier circular positioning 9

The solution described in the simple version of the algorithm is very conservative. When
the children’s circles have been positioned, it places the noden at the center of its circle
and the radius is set to a large enough value so that the circle would contain all the circles
associated to the children. (This is achieved by defining the radius to be three times that
of the children’s maximal radius, cf p. 5.) Observe however that, for example, when a
node has a single child, this step produces a circle that is about twice as big as necessary:
a circle containing both then and its child could well be centered at their midpoint (see
Figure 7). This will have a cumulative effect on the tree layout as a whole, because the size
of the circles around the leaves will influence, recursively, the circular arrangement of all
subtrees.

In general, space can be saved by a modification of the original algorithm, placing a
subtree into a circle centered at thebarycenterof all children of noden. The radius of this
circle can then be computed so that it contains noden as well as all circles associated to its
children nodes.

The barycenter of pointsPq = (x1, y1), : : : , Pq = (xq , yq) isB = (
P

j xj=q;
P

yj=q).
The methodsetRadius should be modified as follows:

method setRadius(node n) f
compute local x- y coordinates for all children

(ignoring scaling factor n:c

but taking freespace n:f into account)
compute the barycenter B = (bx; by) of those points
store the node’s relative coordinates with origin placed at B

i.e. n:relx = �bx, n:rely = �by
set radius to maxj d(B; kj) + rj

g

n

C1

n

C1

B

Figure 7: Containing circles: basic algorithm (left); tidier algorithm (right)

The coordinates of the barycenterB are computed with the noden being placed at the
origin of the co–ordinate system. However, to have a more natural look, it is the barycenter
which should be placed into the origin, and notn. This is achieved by computing the
coordinates ofn relative toB before leaving the method.

In the basic version of the algorithm, there was also a rotation step aroundn. This was
taken care of by a simple instruction (insecondWalk), namely:

set ' = � + �

In this new version of the algorithm, however, the rotation should be performed around
the barycenter, rather than aroundn. This means that the children’s positions, computed
relative ton, should be translated before applying a rotation aroundB (this also applies to
the noden). This leads to a modification ofsecondWalk , too. The input arguments of
the modified version should receive the barycenter’s absolutex–y coordinates; the relative

4. Interacting with the algorithm 10

coordinatesn:relx andn:rely (computed in the modified version ofsetRadious), as
well as the angle�, must then be used to compute the absolutex–y values. Here is the new
version of the methodsecondWalk :

method secondWalk(node n, double bx, double by, double �, double �) f
store x and y for node n, i.e.

n:x = bx + � � (n:relx cos(�)� n:rely sin(�)),
n:y = by + � � (n:relx sin(�) + n:rely cos(�))

set ' = �

set freespace = n:f / (number of kids +1)

set previous = 0

loop over all children k f
set �0 to c � k:�

and r0 to d � tan(�0)

1�tan(�0)

' = '+ previous + k:�+ freespace
compute coordinates for k relative to n

k:x = (� � r0 + d0) � cos(')
k:y = (� � r0 + d0) � sin(')

translate to B�
k:x

k:y

�
=

�
k:x

k:y

�
+

�
n:rel:x

n:rel:y

�

and then rotate by ��
k:x

k:y

�
=

�
cos(�) � sin(�)

sin(�) cos(�)

� �
k:x

k:y

�

previous = k:�

secondWalk(k, k:x+ bx, k:y + by, � � r0

k:r
, ')

g
g

Obviously, the modified version of the algorithm is still linear; the added complexity,
caused by the calculation of the barycenter, and the translations, are negligible. Figure 7
shows the same tree as in Figure 4, but positioned by the modified, tidier version of our
algorithm.

4. INTERACTING WITH THE ALGORITHM

When dealing with a large number of nodes, any layout algorithm will need to be com-
plemented by navigation techniques to help the user in understanding and/or exploring the
data set. One basic technique that has been successfully used is the fish–eye transforma-
tion [5], originally introduced in [13]. The idea is to give a more detailed view of a small
part of a graph while maintaining the entire data set in sight, too (as opposed, for exam-
ple, to a zooming effect which displays a part of the graph only). The more general term
“focus+context” has also been used in the literature to describe these techniques [8].

Though being very useful, fish–eye views have also their drawbacks. The essence of a
fish–eye view is to distort the position of each node, using a concave function applied on the
distance between a local point and the node’s position. If the distortion were to be applied
faithfully, the edges connecting the nodes should be distorted, too. This would result, in
general, in a complicated curve, whose display on the screen might be prohibitively slow if
a large number of nodes are involved. Consequently, implementers are forced to transform
the nodes’ positions only, and connect these transformed nodes with line segments again.

4. Interacting with the algorithm 11

Figure 8: Modified circular positioning of the same tree as in Figure 4

The problem is that this may result in intersecting edges, thereby reducing the quality of
display of the tree.

The advantage of our circular layout algorithm is that it offers a natural exploration view
without the drawbacks described above. Indeed, an obvious focus+context approach in a
circular layout is to simplyinflate the circle assigned to a node; this inflation can be done
under user control. Our algorithm is very well adapted for such control. By assigning a
scaling factor to each node, the radius for the circle can be trivially modified; the effect
of this modification will influence the rest of the layout automatically. It is easy to add
an interactive control to any application which would allow the user to change this scaling
factor (either by inflating or by deflating the corresponding circle); by simply re–running
the layout algorithm the new view can be generated easily. Furthermore, and in contrast to
the usual fish–eye approaches, it does not make it any more complicated to offer a multi–
focus exploration possibility, too: simply allow for the modification of the scaling factors
for more than one nodes. Figure 9 shows the effect of expanding a subtree (on the bottom
right) to get a more detailed view of it.

Another navigation technique we implemented, which was also part of our initial moti-
vations for the circular layout, is the re–root facility. This means that the user can inter-
actively select a node, the internal structure of the graph is re–arranged so that this node
becomes the new root, and the layout algorithm is re–run. The transition between the old
and the new “view” is performed through a smooth animation. As predicted, the usage of
a circular view gives a very natural setting for such re–root operation; the mental model
of the underlying data–set is well preserved. In our experience, the combinations of the
inflating/deflating actions on a subtree and the re–rooting facility offer a powerful tools to
explore large amount of data.

4. Interacting with the algorithm 12

Figure 9: Expanding a subtree (increasing its radius by a factor� = 2). Compare with
Figure 8.

13

References

1. Burchard P. and Munzner T. Visualizing the structure of the World Wide Web in 3D
Hyperbolic Space. InProceedings of the VRML’95 Symposium, ACM Siggraph. ACM
Press, 1995.

2. Read R. C. Methods for computer display and manipulation of graphs, and the corre-
sponding algorithms.Congressus Numerantium, 63:49 – 88, 1988.

3. Di Battista G., Eades P., Tamassia R., and Tollis I.G. Algorithms for Drawing Graphs:
an Annotated Bibliography.Computational Geometry, 4:235 – 282, 1994.

4. Eades P. Drawing Free Trees.Bulletin of the Institute for Combinatorics and its
Applications, 5:10 – 36, 1992.

5. Formella A. and Keller J. Generalized fisheye views. InGraph drawing ’95, volume
1027 ofLecture Notes on Computer Science, pages 243 – 253. Springer Verlag, 1995.

6. Gunn C.Computer Graphics and Mathematics, chapter Visualizing Hyperbolic Space.
Focus on Computer Graphics series. Springer-Verlag, Berlin, Heidelberg, New York,
1992.

7. Jeong C.-S. and Pang A. Reconfigurable disc trees for visualizing large hierarchical
information space. In G. Wills, editor,Proceedings of the IEEE Symposium on Infor-
mation Visualization (InfoVis’98). IEEE CS Press, 1998.

8. Lamping J., Rao R., and Pirolli P. A focus+context technique based on hyperbolic
geometry for viewing large hierarchies. InACM CHI’95. ACM Press, 1995.

9. Munzner T. H3: Laying out Large Directed Graphs in 3D Hyperbolic Space. InPro-
ceedings of the 1997 IEEE Symposium on Information Visualization. IEEE CS Press,
1997.

10. Munzner T. Exploring Large Graphs in 3D Hyperbolic Space.IEEE Computer Graph-
ics & Applications, pages 18 – 23, July/August 1998.

11. Reingold E.M. and Tilford J.S. Tidier Drawing of Trees.IEEE Transactions on Soft-
ware Engineering, 7(2):223 – 228, 1981.

12. Robertson G., Mackinlay J., and Card S. Cone Trees: Animated 3D Visualization of
Hierarchical Information. InProceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 189 – 194. ACM, April 1991.

13. Sarkar M and Brown M.H. Graphical fisheye views.Communication of the ACM,
37(12):73–84, 1994.

14. Walker J.Q. A Node-Positioning Algorithm for General Trees.Software: Practice and
Experience, 20(7):685 – 705, 1990.

15. Wills G. J. Nicheworks - interactive visualization of large graphs. InGraph drawing
’97, volume 1353 ofLecture Notes on Computer Science, pages 403 – 414. Springer
Verlag, 1997.

