
ISO/IEC 14478-2:1998(E)

ii

Contents

Foreword. v

Introduction . vi

1 Scope . 1

2 Normative references. 1

3 Definitions . 1
3.1 PREMO Part 1 definitions . 1
3.2 Additional definitions . 1

4 Symbols and abbreviations . 3

5 Conformance . 3

6 Foundation non-object types. 3

7 Foundation object types . 5
7.1 Introduction . 5
7.2 PREMO objects and fundamental object behaviour 5

7.2.1 Creation and destruction of objects. 5
7.2.2 Inquiries on types . 5

7.3 Simple PREMO objects . 6
7.3.1 Structures . 6

7.4 Callback objects . 6
7.5 Enhanced PREMO Objects . 7

7.5.1 Object properties . 7

© ISO/IEC ISO/IEC 14478-2:1998(E)

iii

7.6 Controller objects . 8
7.7 Event handler objects . 10

7.7.1 Basic Event Handler objects . 10
7.7.2 Synchronization Points . 11

7.8 Time objects . 12
7.8.1 Clock object . 12
7.8.2 System clock object . 12
7.8.3 Timer object . 12

7.9 Synchronization. 12
7.9.1 Event Synchronizable objects . 12
7.9.2 Time synchronizable objects . 16
7.9.3 Time slave objects . 17
7.9.4 Time line objects. 18

8 Enhanced property management and factories. 19
8.1 Enhanced Property management. 19

8.1.1 Motivation. 19
8.1.2 Capabilities and native property values: the PropertyInquiry type 20
8.1.3 Property constraint and selection: the PropertyConstraint type. 21

8.2 Creating PREMO objects . 25
8.2.1 Generic Factory objects . 25

9 Functional specification . 27
9.1 Introduction . 27
9.2 Common non–object data types . 27
9.3 Exceptions . 29
9.4 PREMOObject and fundamental object behaviour 30
9.5 Simple PREMO object and structures. 31

9.5.1 SimplePREMOObject . 31
9.5.2 Event structure . 31
9.5.3 Constraint structure. 31
9.5.4 Action Element . 32
9.5.5 Synchronization Element . 32

9.6 Callback objects . 33
9.7 Enhanced PREMO object . 34
9.8 Controller object . 37
9.9 EventHandler objects . 40

9.9.1 Basic event handler objects . 40
9.9.2 SynchronizationPoint object . 41
9.9.3 ANDSynchronizationPoint object . 43

9.10 Timing objects. 45
9.10.1 Clock object . 45
9.10.2 SysClock object . 45
9.10.3 Timer object . 46

9.11 Synchronization objects . 47
9.11.1 Synchronizable object . 47
9.11.2 TimeSynchronizable object . 53
9.11.3 TimeLine object . 57
9.11.4 TimeSlave object . 58

9.12 Enhanced Property management. 59
9.12.1 PropertyInquiry object . 59
9.12.2 PropertyConstraint object . 60

9.13 Creating PREMO objects . 63
9.13.1 GenericFactory object . 63
9.13.2 FactoryFinder object . 64

10 Component specification . 65

A Overview of PREMO Foundation Object Types. 66

ISO/IEC 14478-2:1998(E) © ISO/IEC

iv

B Extensibility for PREMO objects . 70

C An example for event–based synchronization. 71

© ISO/IEC ISO/IEC 14478-2:1998(E)

v

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardi-
zation. National bodies that are members of ISO or IEC participate in the development
of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
government and non–governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical
committee ISO/IEC JTC1. Draft International Standards adopted by the joint technical
committees are circulated to the national bodies for voting. Publication as an Interna-
tional Standard requires approval by at least 75% of the national bodies casting a vote.

ISO/IEC 14478–2 was prepared by Technical Committee ISO/IEC JTC1, Information
technology, Subcommittee SC24, Computer graphics and image processing.

ISO/IEC 14478 consists of the following four parts under the general title Information
technology — Computer graphics and image processing — Presentation environ-
ments for multimedia objects (PREMO):

— Part 1: Fundamentals of PREMO

— Part 2: Foundation Component

— Part 4: Multimedia Systems Services

— Part 3: Modelling, Rendering, and Interaction Component

Annexes A and B form an integral part of this part of ISO/IEC 14478. Annex C is for
information only.

ISO/IEC 14478-2:1998(E) © ISO/IEC

vi

Introduction

This part of ISO/IEC 14478 defines those object types and non–object types which be-
long to the Foundation Component. Any conforming PREMO implementation shall
support these object types. The description of object types categories are given first
and then the foundation object types in each category are described.

1

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 14478-2:1998(E)

Information technology — Computer graphics and image
processing — Presentation Environment for Multimedia Objects
(PREMO) —
Part 2: Foundation Component

1 Scope

This part of ISO/IEC 14478 lists an initial set of object types and non–object types useful for the construction of, presentation of,
and interaction with multimedia information. This part is dependent on the PREMO object model defined in clause 8 of ISO/IEC
14478-1. The foundation component does not depend on any other components.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO/IEC
14478. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agree-
ments based on this part of this international standard are encouraged to investigate the possibility of applying the most recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 14478-1:1998, Information technology — Computer graphics and image processing — Presentation Environment for
Multimedia Objects (PREMO) — Part 1: Fundamentals of PREMO.

ISO/IEC 10744:1992, Information technology — Coding of Moving Pictures and Associated Audio for Digital Storage up to
about 1.5 Mbit/s (MPEG).

3 Definitions

3.1 PREMO Part 1 definitions

This part of ISO/IEC 14478 makes use of all terms defined in ISO/IEC 14478-1 (Fundamentals of PREMO).

3.2 Additional definitions

For the purposes of this part of ISO/IEC 14478, the following definitions apply.

3.2.1 basic data type: Non-object data type which cannot be expressed via other data types. Examples are integers, float-
ing point numbers.

3.2.2 constructed data type: As opposed to basic data type; non-object data type which is constructed with the help of
permitted type constructors using basic data types.

3.2.3 time: A non–object data type which is appropriate for the representation of real time in the execution environment.
It is typically realized through either float numbers or large (64 bit) integers.

ISO/IEC 14478-2:1998(E) © ISO/IEC

2

3.2.4 extended coordinates: An extension of real, integer, or time coordinates with the symbols and , and the nat-
ural comparison operators. It gives a succinct way of describing unlimited intervals on these coordinate systems.

3.2.5 key–value pair: A constructed data type, consisting of a key (described as a string) and a corresponding value.

3.2.6 foundation object type: Object types defined in the foundation component of PREMO.

3.2.7 structure: A category of object types in PREMO; these objects are characterized through attributes only.

3.2.7.1 structure tag: A synonym for an attribute for a structure.

3.2.8 property: Key with associated value or sequence of values, which can be attached to any PREMO object, and which
can be inquired, possibly created and deleted through operations defined on the object.

3.2.8.1 read–only property: A property whose value or values cannot be set by operations of the object.

3.2.9 fundamental object behaviour: Operations defined on the PREMOObject type; this type is the supertype of all
PREMO object types.

3.2.10 finite state machine: Implementation of an abstract finite state automaton.

3.2.11 constraint: A constructed data type, consisting of a key-value pair and an associated constraint operation; this latter
is used to compare the values, in case the keys are identical.

3.2.12 event: A constructed data type, serving as a basic building block for the PREMO Event Model.

3.2.12.1 event source: Object (instance) which creates events. This is a structure tag of an event.

3.2.12.2 event client: Object (instance) which consumes events.

3.2.12.3 event name: A means to denote and/or to refer to a specific event. This name is also referred to as event type.
This is a structure tag of an event.

3.2.12.4 event data: List of non-object types in the form of key–value pairs attached to an event. This is a structure tag
of an event.

3.2.13 event handler: An object which provides event processing services to other objects.

3.2.14 era: The base date for all PREMO systems to measure the amount of elapsed time. This value is set to 00:00am, 1st
January 1970, UTC.

3.2.15 reference point: A point in the internal coordinate system of a synchronizable objects, to which a synchronization
element is attached.

3.2.16 synchronization element: Synchronization information for a synchronizable object; it contains information on an-
other object and its operation which shall be invoked if synchronization is set up.

3.3.17 capability: Description of the property values an object type can take for a specific key.

3.3.18 native property value: Description of the property value an object instance can take for a specific key.

3.3.19 private properties: Properties of the object which are not defined as part of the functional specification of the object.

The following alphabetical list gives the sub-clause of each definition.

basic data type 3.2.1
capability 3.3.17
constraint 3.2.11
constructed data type 3.2.2
event 3.2.12
event client 3.2.12.2
event data 3.2.12.4
event handler 3.2.13

∞– ∞

© ISO/IEC ISO/IEC 14478-2:1998(E)

3

4 Symbols and abbreviations

AIFF: Audio Interchange File Format.

FSM: Finite State Machine.

IEC: International Electrotechnical Commission.

IS: International Standard.

ISO: International Organization for Standardization.

MPEG: Moving Picture Experts Group.

PREMO: Presentation Environments for Multimedia Objects.

2D: Two-dimensional.

3D: Three-dimensional.

5 Conformance

A conforming implementation of the PREMO Foundation Component shall comply with the general conformance rules defined
in clause 5 of ISO/IEC 14478-1 and the component specification in clause 10.

6 Foundation non-object types

The foundation non–object types in PREMO are defined in two categories: basic data types, and data types directly defined from
these basic data types in terms of the notations described in clause A.2 of ISO/IEC 14478-1.

The basic data types are (with their type names):

a) N: non-negative integer.

event name 3.2.12.3
event source 3.2.12.1
event type 3.2.12.3
era 3.2.14
extended coordinates 3.2.4
finite state machine 3.2.10
foundation object type 3.2.6
fundamental object behaviour 3.2.9
key–value pair 3.2.5
native property value 3.3.18
private properties 3.3.19
property 3.2.8
read–only property 3.2.8.1
reference point 3.2.15
structure 3.2.7
structure tag 3.2.7.1
synchronization element 3.2.16
time 3.2.3

ISO/IEC 14478-2:1998(E) © ISO/IEC

4

b) Z: integer.

c) R: real number.

d) ObjectType: a data type uniquely identifying an object type.

e) EventId: a data type uniquely identifying an event registration for a PREMO event handler.

f) Time: a data type to measure progression of real world time. This type is either a real number or a (possibly large) inte-
ger. The choice among these is implementation dependent.

g) As described in 8.5 of ISO/IEC 14478-1, for each object of type T an object reference type, which is a non–object type,
referring to object instances of type T, automatically exists in PREMO. As a notational convention, RefT denotes the non–
object type of object reference referring to object instances of type T.

The environment shall provide comparison facilities for each basic data type which unambiguously decide whether two data val-
ues are identical or not. In the case of object references the environment shall also include a facility to test whether two references
refer to the same object instance or not, or whether the value of the object reference is NULLObject. How these facilities are re-
alized depends on the programming language and the execution environment in which PREMO is implemented.

Coordinate spaces can be “extended” to include positive and negative “infinity”. Although the underlying implementation may
not have a direct representation of these types, the obvious extension of the notion of “greater than”, “smaller than”, etc., on these
types allows the behaviour of objects to be defined more succinctly. The following extended coordinate space definitions are
used:

h) Extended real numbers:

i) Extended integers:

j) Extended time:

The foundation object types, described in this part, make also use of a number of (constructed) non–object types, defined formally
in 9.2 (page 27). Some of these non–object types play a key role in the behavioural description of several object types; they are
therefore also listed here, to make the semantic description in clause 7 easier to follow.

— Boolean:

— Character String:

— Constraint specification for key–value pairs (used, for example, by property management, event handlers, and aggregate
object types):

R∞ R ∞– ∞{ , }∪==

Z∞ Z ∞– ∞{ , }∪==

Time∞ Time ∞– ∞{ , }∪==

Boolean TRUE FALSE::=

String Charseq ::=

© ISO/IEC ISO/IEC 14478-2:1998(E)

5

Values in an operation request are constrained to values which satisfy these type constraints and the constructions defined in
clause A.2 of ISO/IEC 14478-1 (see also 8.6 of ISO/IEC 14478-1). No particular representation for these values is mandated by
the PREMO functional specification, although bindings of PREMO to programming languages or to distributed programming
paradigms may specify such formats.

7 Foundation object types

7.1 Introduction

Foundation objects types are those which support a fundamental set of services suitable for use by a wide variety of higher level
components. PREMO conformance rules require that, whenever a PREMO implementation includes these objects, they be in-
cluded in the manner specified in this clause. This is the basis for interoperability. The following criteria are used to identify foun-
dation objects:

a) they are used by a majority of higher level components;

b) together they provide an adequate minimal functional set;

c) they are needed to support output on widely available presentation resources;

d) algorithms exist for decomposing more complex functionality into the foundation object types.

In this clause, foundation object types are identified. By means of subtyping the application developer or component supplier
may create objects and object types for their own specific needs. Clause 9 of this part gives the detailed definitions of each of
these object types; clause A gives an pictorial overview of all object types defined in this clause.

7.2 PREMO objects and fundamental object behaviour

All PREMO objects are assumed to be subtyped from a type called PREMOObject. PREMOObject is an abstract type, i.e., it is
not instantiable.

Operations on PREMOObject type fall into two categories described below.

7.2.1 Creation and destruction of objects

These operations are used by the object and object reference life cycle facilities when object instances are created and destroyed
(see 8.11 of ISO/IEC 14478-1 for a detailed description of these facilities). The initialize, initializeOnCopy, and destruct opera-
tions are defined to be protected, i.e., no other PREMO object can re–initialize a PREMO object or directly call the destruct op-
eration, only through the facilities provided by the environment.

7.2.2 Inquiries on types

These operations return information on the object type, the sequence of supertypes, or the complete type graph of the object. Us-
ing the information returned by these operations, complex negotiations are possible to optimize the behaviour of various other
PREMO objects.

ConstraintOp Equal NotEqual::=

GreaterThan GreaterThanOrEqual LessThan LessThanOrEqual
Prefix Suffix NotPrefix NotSuffix
Includes Excludes

ISO/IEC 14478-2:1998(E) © ISO/IEC

6

7.3 Simple PREMO objects

SimplePREMOObject is an abstract subtype of PREMOObject. SimplePREMOObject does not extend the behaviour of PRE-
MOObject, but serves as a common supertype for a family of PREMO objects, called structures. Using such a supertype allows
operation specifications to impose type constraints on their arguments.

7.3.1 Structures

The term “structure” does not denote a specific object type in PREMO but, instead, a category of types. These object types are
characterized by:

a) they are the subtypes of SimplePREMOObject but are not subtypes of EnhancedPREMOObject;

b) they are not abstract types, although they may be generic types;

c) their behaviour in PREMO is expressed in terms of attributes rather than explicit operations (apart from the operations
inherited from the supertype PREMOObject).

The attributes of a structure are also referred to as “structure tags”.

NOTE — Implementations, or further components, may define subtypes of structures by adding operations to the type specification. Item c
above does not preclude this. However, as a use of terminology, such types are not labelled as “structures” any more.

Structures can be used as tools to encapsulate various non–object data into the object hierarchy. As an example, the following
object type is used to describe constraints on key–value pairs:

(This structure, formally defined in 9.5, plays an important role in the behavioural description of various objects in PREMO.)

NOTE — To increase the efficiency of the implementations, some programming languages may choose to implement structures as special
data types and not as objects.

One of the most important structures used in PREMO is the event structure. Events structures consist of the following structure
tags (see 9.5 for the precise specifications): an event name that provides a means to denote or refer to the event, also referred to
as event type, an event data which is a sequence of key–value pairs, and the event source, which is the reference to the object
instance which has created this event.

7.4 Callback objects

Very often object instances have to be notified by other objects on some status change, event occurrences, etc. This is done by
‘registering interest’ in some events. PREMO defines an abstract type, called Callback, to facilitate such mechanisms.

The Callback object type defines one single asynchronous operation, called callback. The signature of this operation consists of
one input argument, which is a reference to an Event structure (see 9.5.2 for a detailed specification of this structure). Various
PREMO objects, which may have to be notified under various circumstances, are defined to be subtypes of Callback, defining a
type–specific behaviour to the callback operation.

NOTE — A typical example for the usage of the callback mechanism is the PREMO Event Model, described in detail in 7.7.1.

Constraint

SimplePREMOObject

constraintOp: ConstraintOp
kv: Key × Value

Constraint

© ISO/IEC ISO/IEC 14478-2:1998(E)

7

Whereas, in simple cases, the semantics of the callback operation may be defined to affect the state of the object directly, it is
very often the case that this operation acts only as an entry point to call other operations on the object. To facilitate this second
case, PREMO also defines a subtype of Callback, called CallbackByName. The (inherited) asynchronous callback operation of
CallbackByName has the following behaviour: the eventName structure tag of the Event structure (appearing as the input argu-
ment of callback) is interpreted to be the name of a local operation which is then internally invoked by the callback operation.
By default, all other structure tags of the Event structure are disregarded by the callback operation; subtypes of CallbackByName
may add an additional behaviour to the operation which also takes these tags into consideration.

7.5 Enhanced PREMO Objects

EnhancedPREMOObject is an abstract type, i.e., is not instantiable. This type describes a set of behaviour, referred to as the en-
hanced object behaviour. The operations on EnhancedPREMOObject are related to object properties .

Enhanced PREMOObject represents the common, abstract supertype for PREMO objects with a more complex behaviour than,
for example, structures. An important restriction in PREMO, which also reflects this characterization, is that only subtypes of
EnhancedPREMOObject can appear in the provides service sub–schemas of profile specification (see clause 9 of ISO/IEC
14478-1).

7.5.1 Object properties

Properties are used to store values with an object that may be dynamically defined and are outside of the type system. Properties
are pairs of keys and a sequence of values1) which are conceptually stored within a PREMO object. Operations are introduced to
define, undefine, and inquire properties on PREMO object instances. Because, in general, the same key refers to a sequence of
possible values, operations are also defined to add and to delete values from a sequence associated with a key. Properties can be
used to implement various naming mechanisms, store information on the location of the object in a network, create annotations
on object instances, etc.

Properties may be defined as read only. This means that they cannot be defined through an operation on the object, nor can they,
or their associated values, be changed or deleted. Read only properties are typically set by the object when being initialized, and
are used to describe the various capabilities of the object.

Properties of an object can also be matched against another list of key–value pairs using the matchProperties operation. This op-
eration accepts a sequence of constraints, each defining a sequence of possible values for a specific property key, and returns the
sequence of satisfied and unsatisfied constraints. Satisfaction is based on the boolean operation defined by the non–object data
type ConstraintOp, see 9.2 (page 27), where the left operand of the operation is the value stored in the object, and the right op-
erand of the operation is the value appearing in the argument of matchProperties (if the operation does not make sense, the result
of the comparison is FALSE, i.e., it is the client’s responsibility to ensure that the arguments are comparable). This mechanism
may be used as part of complex negotiations.

NOTE — An example of using property matching is identifying the possible file formats of an audio service. The object providing the service
may define a (read–only) sequence of values for the key “AudioFormatK”, e.g., <“AIFF”, “IRCAM”>, describing the file formats it can use.
The matchProperties operation may be invoked with a pair consisting of a key and a value, e.g.,

[“AudioFormatK”, “AIFF”]

using the comparison operator “Equal”. The result will be:

satisfied: [“AudioFormatK”, <“AIFF”>]
unsatisfied: [“AudioFormatK”, <“IRCAM”>]

Another call, using:

[“AudioFormatK”, “IRCAM”]

1) A sequence may have only one element

ISO/IEC 14478-2:1998(E) © ISO/IEC

8

will result in:

satisfied: [“AudioFormatK”, <>]
unsatisfied: [“AudioFormatK”, <“AIFF”, “IRCAM”>]

Based on this information the client may choose the AIFF file format which can be managed both by itself and the audio service. By using
more than one key in the invocation of the matchProperties operation (e.g., also include sampling size), powerful negotiations may be
implemented.

As a notational convenience if, in the case of a type hierarchy, it is necessary to stress that a certain property key is defined on a
specific type, the notation Type::key will be used.

NOTE — For example, the notation PREMOObject::InternetLocationK may refer to a property key defined on the type PREMOObject; on the
other hand, AudioDevice::InputEncoding refers to a property which is defined on the type AudioDevice, but not (necessarily) on its
supertypes.

By default, if a property value is defined for a key which already exists for the object instance, the old value is overwritten. How-
ever, the client has the possibility to add the reference of a Callback object, with a corresponding event name, to a property key.
The callback is activated whenever a new value is defined for the key; the event structure instance sent to the Callback object
contains the key–value pair corresponding to the new setting.

The detailed functional specification of PREMO objects may contain property specifications, too. This means that the corre-
sponding property keys are automatically defined for these objects at object creation time, together with the values the functional
specification may also contain. These keys are therefore always available for an object instance. This property initialization
mechanism is conceptually part of the object’s behaviour, and is inherited by all its subtypes.

7.6 Controller objects

A PREMO object may want to communicate with other objects by operation requests. Some of these request may be related to
events generated by event sources such as input devices, synchronization requests, etc. An event may require actions by several
different objects. The Controller object type provides facilities to coordinate this cooperation among the different objects.

An instance of the Controller object type is a programmable finite state machine (FSM), i.e., an abstract automaton with a finite
number of internal states and a set of state transition rules. Transitions among states are produced when other objects invoke the
handleEvent operation, which receives a reference to an Event structure as input argument. Subtypes of Controller define the
exact set of states and the corresponding state transition rules; implementations may also choose to defer the definition of states
and transition rules for a specific subtype of Controller to the final application and offer means to the end–user to program these
states and rules. (The set of all possible states for a specific Controller instance is defined as a retrieve only attribute of the object,
i.e., a client can always find out what states the object may take.) Typically, a controller object registers itself with an event han-
dler or another controller. This event handler can cause a transition of states within the controller object. Actions taken by the
FSM may include invoking operations of other objects, including other controller objects. Thus, a hierarchy of controller objects
can be built.

NOTE — Controller objects can be used for different purposes. An example for their use is to implement complex interactions such as
dragging graphical objects. In this interaction, a mouse-down event puts the interaction in a different mode that causes an object to be dragged
on the screen using the mouse, until a mouse-up event is received. This can be viewed as an example of an FSM going through different states,
where the user events trigger the transitions.

State transitions in controllers may be subject to constraints and are monitorable. Constraining state transitions mean dynamic
control over whether a state transition should really occur or not, and this decision may also depend on the data associated to the
event appearing as the input argument of handleEvent. Monitoring state transitions means that callbacks and local operations can
be associated to the various steps of a state transition, i.e., the targets of the callback operations can be notified if a state transition
occurs.

© ISO/IEC ISO/IEC 14478-2:1998(E)

9

The detailed specification of a controller is as follows (see also Figure 1):

— Each state in a Controller is identified by a symbolic name, i.e., a string.

— A special structure type, called ActionElement, is defined (see also 9.5.4), containing an event name and a reference to a
callback object. Operations are defined on the Controller object type to add or remove such ActionElement structures to each
state. Each state may have two such associated structures, labelled respectively ‘Enter’ and ‘Leave’. Also, and independently
of the structures associated to the states themselves, such structures may be associated to pairs of states.

— The following protected operations are defined on Controller: checkTransition, handleUnknownEvent, onLeave, and
onEnter. Although a default behaviour is defined for each of these operations, the intention is that subtypes of Controller
redefine these operations to suit the subtype’s behaviour. A retrieve only attribute, denoting the current state, is also defined
for Controller.

— With these definitions, the basic steps for a state transition of a Controller are as follows:

1) A state transition is requested by a client through the invocation of the operation handleEvent. The event name is
interpreted to be the state name to which the Controller object should transit. For the sake of this discussion, State1 is the
name of the current state of the object, and State2 is the name of the requested state.

2) The controller object invokes the local, protected operation checkTransition, forwarding the argument of han-
dleEvent. This operation returns a boolean value indicating whether the transition is allowed.

3) If the transition is not allowed, the local, protected operation handleUnknownEvent is invoked, forwarding the argu-
ment of handleEvent, and handleEvent finishes.

4) If the transition is allowed, the following steps are executed:

i) The local, protected operation onLeave is invoked. This operation receives as arguments the event structure
appearing as the argument of handleEvent, as well as (the strings) State1 and State2. The operation returns data suita-
ble for an event data tag in an event structure.

ii) If there is no ActionElement structure associated to State1 labelled as ‘Leave’, this step is ignored. Otherwise, an
event instance is created, using the event name in the ActionElement structure associated to State1 labelled as ‘Leave’,
and the event data returned by onLeave. A callback is executed with the newly created event instance as argument.

iii) The value of the attribute denoting the current state is set to State2.

Figure 1 — Controller objects

State1

State2

1. check validity of State1
to State2 transition

2. call local operation
‘onLeave’

3. perform callback for
‘Leave’

5. call local operation
‘onEnter’

6. perform callback for
‘Enter’

handleEvent
4. perform callback for

(State1,State2)

ISO/IEC 14478-2:1998(E) © ISO/IEC

10

iv) If an ActionElement is associated to the tuple State1 × State2, a new event instance is created using the event name
in the ActionElement and the tuple State1 × State2 as event data with the key “Transition”. The callback operation on
the Callback object referenced by the ActionElement is then invoked using this new event instance.

v) The local, protected operation onEnter is invoked. This operation receives as arguments the event structure
appearing as the argument of handleEvent, as well as (the strings) State1 and State2. The operation returns data suita-
ble as an event data tag in an event structure.

vi) If there is no ActionElement structure associated to State2 labelled as ‘Enter’, this step is ignored. Otherwise, an
event instance is created, using the event name in the ActionElement structure associated to State2 labelled as ‘Enter’,
and the event data returned by onEnter. A callback is executed with the newly created event instance as argument.

NOTE — The onEnter and onLeave operation may be used, for example, to control the prompt and/or the echo of an elementary step in an
interaction.

Controller objects are themselves defined to be subtypes of Callback, where the callback operation, inherited from Callback, is
identified with the operation handleEvent. Consequently, controller objects may also be chained to form more complex interac-
tion patterns.

7.7 Event handler objects

7.7.1 Basic Event Handler objects

Events form a special category of PREMO structure types and are the basic building block for the PREMO Event Model. This
model is based on a small number of basic concepts: events, event registration, and event handling. An event can model any action
that occurs at a definite time. Events are created by event sources, and are consumed by event clients, which are both object in-
stances. A basic characteristic of an event is its name, which is one of the features that an event client uses to identify the events
in which it is interested.

When using normal operation requests among objects the caller specifies the recipient of each request. When using event handler
objects, as shown in Figure 2, events are not addressed to specific recipients. It is the recipient that determines which event types
it wishes to receive. Event recipients are operations defined on the recipient object.

EventHandler objects provide the necessary event management services to other objects. This object type provides the following
operations (see also Figure 2):

a) register interest in events (the register operation),

b) unregister interest in events (the unregister operation), and

c) dispatch an event (the asynchronous dispatchEvent operation).

The operation to dispatch an event is usually invoked on the EventHandler object by the event source. The EventHandler will
then forward the event to all recipients which have expressed their interest in this specific event.

The choice of the recipients for the event to be handled is determined by the way the recipients have registered their interest in
specific event types. This choice is based primarily on the name of the event (i.e., its type), but may also be associated with a
constraint list, i.e., a sequence of key–value pairs with constraint operations. This constraint list gives a finer control on whether
the event client is notified of the arrival of an event or not. The semantics of the constraint matching is as follows: the key–value
pairs of the constraint list are compared to the event data of the incoming event instance. If there is a match in the keys, the com-
parison operation of the constraint is applied to compare the values. Comparison is based on the boolean operation defined within
the structure ConstraintOp, (see 9.5), where the left operand of the operation is the value stored in the event handler, and the right
operand of the operation is the value appearing in the incoming event instance (if the operation is undefined on these operands,
e.g., the types are different, the result of the comparison is FALSE). During registration, the prospective event client can control
whether the result of the full constraint matching is the logical conjunction or the disjunction of the individual constraint matches.
If this result is TRUE, the event client is notified; if it is FALSE, it is not.

© ISO/IEC ISO/IEC 14478-2:1998(E)

11

Objects, which can be registered within an event handler, shall be subtypes of Callback (see 7.4). The event handler calls the
operation callback on these objects to achieve dispatching.

The registration of an event recipient within an event handler is identified through a non–object data type EventId; a value of this
type is returned when an event is registered. This value shall be used when, subsequently, the object is no longer interested in this
event, and the event is unregistered. Event registration using the EventId type is unique across different event handler instances,
i.e., two distinct event handler objects shall not share a common EventId value. Event registration is also unique for one event
handler instance, i.e., an event handler instance shall not reuse an EventId value, even if the corresponding event registration has
been unregistered.

The EventHandler object type is defined as a subtype of Callback, where the callback operation, inherited from Callback, is iden-
tified with the operation dispatchEvent. Consequently, event handler objects may also be chained to form more complex event
handling and filtering.

7.7.2 Synchronization Points

A synchronization point is a subtype of EventHandler. Its instances are particularly useful in conjunction with synchronizable
objects (see 7.9.1 for more details on the synchronization model in PREMO). Whereas general event handler objects do not im-
pose any general constraint on the dispatched events, synchronization points also maintain an internal set of registered events;
events are dispatched if and only if they have been previously registered in this set. Because the event structure also contains a
reference to the event source (see 9.2) this restriction also means that only registered object instances may dispatch events through
a synchronization point.

A further specialization is offered by the ANDSynchronizationPoint object type (defined as a subtype of SynchronizationPoint),
which redefines the behaviour of event dispatching. In an ANDSynchronizationPoint object events are not automatically forward-
ed to event recipients; instead, the arrival of the event is recorded using a boolean flag associated with each element of the set of
registered events. If all events, having the same eventName and eventData values, have this flag set to TRUE, the original
behaviour of the dispatchEvent operation applies, i.e., the event recipients are notified, and the corresponding flags are set back
to FALSE.

Figure 2 — PREMO event model

EventHandler

dispatchEvent
register

…

EventClient1

callback
…

EventClient2

callback
…

EventSource

register

dispatchEvent

re
gi

st
er

ed
 c

al
lb

ac
k

ob
je

ct
s

ISO/IEC 14478-2:1998(E) © ISO/IEC

12

7.8 Time objects

7.8.1 Clock object

The Clock object type is an abstract type which provides PREMO with an interface to any notion of time supported by its envi-
ronment. The clock object type assumes the existence of two non–object types: Time, to measure elapsed ticks (realized, for ex-
ample, as a 64 bit integer), and TimeUnit, which (as an enumerated type) defines the unit represented by each clock tick, for
example an hour or a micro–second. Specifically, the clock object type supports an operation, inquireTick, to measure the time
elapsed since a specific moment. Subtypes of the clock object shall attach a more precise semantic to what kind of value this
operation returns.

The accuracy in various units with which particular PREMO implementations can describe the elapsed duration will vary, and
for this reason the clock object type defines a retrieve–only attribute to determine the performance of the clock object. This ac-
curacy can be measured in a different unit than the elapsed time. Suppose that the output of inquireTick is T, and the value of the
attribute accuracy is A (both values are of type Time). If the moment used by inquireTick as a starting point in time is E then,
mathematically, the actual time , when inquireTick is called, follows the relation:

where is the function which converts the accuracy value from its own unit to the units of T. I.e., an accuracy value with
represents the most accurate timing possible, and increasing values represent a loss in precision.

7.8.2 System clock object

SysClock is a subtype of Clock, and provides real–time information (modulo the accuracy of the clock) to PREMO systems. Sy-
sClock does not add any new operation to Clock, but attaches a final semantics to the operation inquireTick. SysClock.inquireTick
is defined to return the number of ticks that have occurred since the start of era. This start of era is defined for all PREMO systems
to be 00:00am, 1st January 1970, UTC.

7.8.3 Timer object

Timer is a subtype of Clock, and provides facilities modelled after a stop–watch. Timer is defined as a finite state machine, with
the state transition diagram in Figure 3 (see 7.8.3 for a more detailed specification of all possible state transitions).

The Timer object contains an internal time register, set to zero either when leaving the TSTOPPED state or by an explicit reset
operation. Timer.inquireTick is defined to return the elapsed time the object spent in TSTARTED state since the register has been
reset to zero (i.e., the time spent in TPAUSED is not counted).

7.9 Synchronization

7.9.1 Event Synchronizable objects

Synchronization in PREMO is based on the use of events and possibly event handlers to achieve complex synchronization pat-
terns. Synchronization events are generated by special PREMO objects, called Synchronizable objects.

Synchronizable objects are autonomous objects which have an internal progression along an internal one dimensional coordinate
space. The specification of the objects makes use of the notion of generic types; the formal type symbol C is used to denote this
internal coordinate space. This space can be:

a) extended real (R∞),

b) extended integer (Z∞), or

c) extended time (Time∞).

Tr

E T f A()
2

----------–+ Tr E T f A()
2

----------+ +≤ ≤

f A()
f A() 0=

© ISO/IEC ISO/IEC 14478-2:1998(E)

13

See clause 6 (page 3) for the specification of these extended spaces. Subtypes of synchronizable objects may add a semantic
meaning to this coordinate space, e.g., media objects (audio, video, etc.) may represent time, or video frame numbers. Attributes
of this progression (e.g., the span, i.e., the relevant interval on this coordinate space) can be set through appropriate operations.
This coordinate space will also be referred to as the (native) progression space of the Synchronizable object.

Reference points are points on the progression space of synchronizable objects where synchronization elements can be attached.
Synchronization elements contain information on an event instance, a reference to a Callback object (this object is typically an
event handler, a controller, or another synchronizable object), and a boolean “wait” flag. When a reference point is reached, the
synchronizable object uses the Callback object reference in the synchronization element to dispatch the event by calling the call-
back operation, and possibly suspends itself if the “wait” flag is set to TRUE. Through this mechanism the synchronizable object
can stop other objects, restart them, suspend them, etc. The use of the subtypes of event handlers oriented toward synchronization
(see 7.7.2, 9.9.3, and 9.9.3 of this part) gives the possibility to create more complex synchronization patterns.

Operations are defined to set and retrieve synchronization elements, either individually, or in a sequence, using a base reference
point and a sequence of offsets from that base. Similar operations are defined to delete a reference point; there is also an operation
to delete all reference points in one step.

In more precise terms, a Synchronizable object is defined to be a finite state machine. The different states are described in more
detail in 7.9.1.1 below. The possible states, important state transitions, and the operations resulting in state transitions, are in
Figure 4 on page 14. The figure does not include all state transitions; some of the trivial ones (i.e., transition from STOPPED
state to STOPPED state) are not depicted. See 9.11 for a detailed specification for all possible state transition operations. Note
that no operation is defined to transit into state WAITING; the only way a Synchronizable object can go into WAITING state is
through its internal processing cycle (see 7.9.1.1.1 below). The initial state is STOPPED.

The behaviour of the object is described using the following non–object values, stored as part of the object’s state:

currentDirection: Direction (can be either Forward or Backward)

startPosition: C

endPosition: C

currentPosition: C

repeatFlag: Boolean

nloop: N

loopCounter: N

start

TSTOPPED

TSTARTED

TPAUSED

pause

stop

resume

stop

Figure 3 — State transitions in a Timer object

ISO/IEC 14478-2:1998(E) © ISO/IEC

14

7.9.1.1 Semantic specification of states

7.9.1.1.1 State STARTED

If the object’s state is STARTED, the object carries on its internal processing in a loop of processing stages. Each stage consists
of the following steps:

a) The value of the current position is advanced using the (protected) operation progressPosition (defined as part of the
object’s specification), which returns the required next position.

b) This required position is compared with the current position and the end position, and the following actions are per-
formed if the value of currentDirection is Forward:

1) If there are reference points lying between the current position and the required position (including a possible refer-
ence point on the required position itself), then all associated synchronization actions are performed (in the order in
which they are defined on C) in a loop. This means:

- Call the (protected) processData operation (defined as part of the object’s specification) to perform data presenta-
tion. Arguments for this call are the current position or the previous reference point and the next reference point or the
end point; data represented by this interval will be presented by processData.

- Invoke the callback operation on the Callback object, whose description is stored in the reference point, using the
stored event as an argument (if the object reference is NULLObject, no operation invocation takes place at this point).

- If the wait flag stored in the synchronization element belonging to the reference point is set to TRUE, the current
position is set to the reference point, and the object’s state is changed to WAITING. If the state of the object is set
back, eventually, to STARTED, the processing stage continues at this point.

2) If there are no reference points between the current position and the required position, perform data presentation for
any data identified by the points on the progression space between the current position and the required position.

STOPPED

STARTED

PAUSED

start

pause

stop

resume

stop

WAITING

resume

stop

pause

Figure 4 — State transition diagram for a Synchronizable object

© ISO/IEC ISO/IEC 14478-2:1998(E)

15

3) If the required position is smaller than the end position, then this becomes the local position and the processing stage
is finished.

4) If the required position is greater or equal to the end position, the current position is set to the start position, and the
following occur:

- if the repeatFlag is TRUE the processing stage is finished (i.e., the processing continues at step “a” above);

- if the repeatFlag is FALSE, but the loop counter value is greater than 1, the loop counter value is decremented,
and the processing stage is finished (i.e., the loop counter value represents the number of times the object has to play
the defined span);

- otherwise, the complete loop of processing stages is finished, and the object’s state is changed to STOPPED.

If the value of currentDirection is Backward, the difference in behaviour is that, in 4, the role of the start and end position is
reversed and, if the start position is reached, the current position is automatically set to the end position instead. Also, in 1, the
direction of synchronization actions and data presentation is reversed. The specification of progressPosition is such that decre-
menting values are generated if the value of currentDirection is Backward.

Each processing stage, as described above, is “atomic”, meaning that no operation requests are accepted by the object while in
STARTED state and performing any of the steps of the stage. In other words, servicing all other requests will be delayed (and the
issuer of the request suspended), and serviced only when a full stage is finished, and before the next is started, i.e., before the next
invocation of progressPosition.

Note that two aspects of this specification are left unspecified in the definition of Synchronizable:

— what “data presentation” exactly means (i.e., the detailed semantics of processData), and

— what “progression” exactly means, (i.e., the detailed semantics of progressPosition).

Both these aspects shall be specified in the appropriate subtypes of Synchronizable.

7.9.1.1.2 States PAUSED and WAITING

If the object state is in PAUSED or WAITING, only a limited subset of operation requests are accepted by the object. These in-
clude:

— retrieve operation for the attributes defined for the Synchronizable object; see 9.11 (page 47) for the detailed specifica-
tion of these attributes;

— resume and stop, resulting in state transitions.

Event Instance

Callback reference

Synchronizable Object

Reference Point

Synchronization Element

Wait Flag

stop, start,
pause, resume

Figure 5 — Synchronizable object

ISO/IEC 14478-2:1998(E) © ISO/IEC

16

Some attributes as well as the synchronization elements may also be set; see 9.11 (page 47) for the detailed specification of these
operations.

If the state of the object is changed from PAUSED to STARTED, a new processing stage (described in 7.9.1.1.1) is started. If the
state of the object is changed from WAITING to STARTED, the processing stage continues where it was interrupted (see item 1
in 7.9.1.1.1 above), i.e., no new invocation of the operation progressPosition occurs in this case.

7.9.1.1.3 State STOPPED

If the object state is in STOPPED, only a limited subset of operation requests are accepted by the object. These are:

— retrieve operation for the attributes defined for the Synchronizable object; see 9.11 (page 47) for the detailed specifica-
tion of these attributes;

— start and pause, resulting in state transitions.

Some attributes as well as synchronization elements may also be set when in STOPPED state; see 9.11 (page 47) for the detailed
specification of the operations.

Any transition to STOPPED means resetting all the attributes to their default values (i.e., start and end positions are set to their
default values, as defined in the subtypes of Synchronizable, the current position is set to the start position, the repeat flag is set
to FALSE, and both the values of nloop and of loopCounter are set to 1. If the state of the object is changed from STOPPED to
STARTED, a new infinite loop of processing stages (described in 7.9.1.1.1) is started.

7.9.1.2 Monitoring state transitions

External clients of a synchronizable object may also require to be notified when a state transition occurs. To achieve this, action
element structures (see 9.5.4) can be associated with each pair of valid states. Whenever a state transition of the Synchronizable
object occurs, and an action element is associated with the relevant pair of states, a new event instance is constructed by the Syn-
chronizable object using the event name tag of the action element, and the pair of states as event data with the key “Transition”.
The callback, appearing within the action element, is invoked with this newly created event instance as input argument before
the state transition effectively occurs.

7.9.2 Time synchronizable objects

A TimeSynchronizable object type is a Synchronizable object type enriched with a Timer interface (see 7.8.3) through multiple
subtyping (see also Figure 6 on page 17).

Multiple subtyping means that the behaviour of Timer and Synchronizable objects are merged. This merge has several aspects,
and introduces some new attributes and operations on TimeSynchronizable. These aspects are as follows.

a) Both the Timer and the Synchronizable object type are defined in terms of finite state machines. In TimeSynchronizable,
these finite state machines are merged, using the following state identifications:

- TSTARTED is merged with STARTED;

- TSTOPPED is merged with STOPPED;

- TPAUSED is merged with PAUSED.

Merging means that the finite state machines governing TimeSynchronizable has the same states as Synchronizable, but the
semantics of each of these states includes the semantics of both the Timer and the Synchronizable. The state transition oper-
ations defined both in Timer and in Synchronizable are inherited by the TimeSynchronizable object and result in the appro-
priate state transitions.

b) An attribute is defined, called speed, which relates progress through the progression space, inherited from Synchroniza-
ble, with time as measured by the Timer. The value of speed defines the number of units (e.g., number of frames) that the

© ISO/IEC ISO/IEC 14478-2:1998(E)

17

object will progress through in one tick. By default, this value may be set by the application, which can therefore control,
e.g., the playback speed. Subtypes of TimeSynchronizable objects may restrict the behaviour so that the speed becomes
retrieve–only.

c) Synchronizable has a number of attributes and operations to set/retrieve reference points, set/retrieve minimum and max-
imum positions, etc. which are expressed in terms of the native progression space. When using TimeSynchronizable the cli-
ent may want to use the abstraction offered by the notion of relative time, i.e., the time returned by the inquireTick operation.
For that purpose, the reset operation (inherited from Timer) is redefined in TimeSynchronizable to, conceptually, put a
marker against the current position on the native progression space as well as to reset the time register. This marked position
on the progression space will serve as zero point for relative positioning expressed with the time values. This marker,
together with speed, defines a linear transformation between the progression space and time. TimeSynchronizable includes
two operations, timeToSpace and spaceToTime, which transform the two coordinate spaces.

d) The operations and attributes defined for Synchronizable to set, retrieve, inspect, etc., reference points have also an alter-
native version in TimeSynchronizable which take relative time as input argument rather than values on the progression
space. Using the current linear transformation between the two spaces, reference points defined in time are also considered
by the main processing loop of TimeSynchronizable (see page 14). Note, however, that reference points defined in terms of
time are, conceptually, also stored in terms of time. This means that if the linear transformation changes (through the invoca-
tion of the reset operation or by changing the speed), all reference points defined in terms of time are re–transformed. This
may result in some of these reference points being used again or, conversely, never being used.

Different TimeSynchronizable objects may have different accuracy attribute values; this value may become larger (i.e., the accu-
racy of timing may become worse) than for other TimeSynchronizable or Timer objects if the implementation of the TimeSyn-
chronizable object is not able to perform in its execution environment at a higher precision.

7.9.3 Time slave objects

A TimeSlave object is a subtype of TimeSynchronizable which permits synchronization over multiple TimeSynchronizable object
instances. A master can be attached to a TimeSlave object, and the latter will attempt to synchronize its progression with its mas-
ter. This means the following (see also Figure 7):

a) The speed value of the TimeSlave object (relating the progress through progression space with time ticks) is measured in
terms of the ticks as returned by the master. This also means that if the client changes the way the master Timer operates (i.e,
changing the ticks) this will influence all TimeSlave objects attached to the same master.

Event Instance

Callback reference

Synchronizable Object

Reference Point

Synchronization Element

Wait Flag

stop, start,
pause, resume

Time

speed

Figure 6 — TimeSynchronizable object

ISO/IEC 14478-2:1998(E) © ISO/IEC

18

b) The TimeSlave object measures the alignment between its own Timer values and the one of the master. A client of the
TimeSlave object may inquire the alignment, and may attach Callback-s to various thresholds values. The TimeSlave object
will raise specific events if the alignment between the master and the slave time values exceeds the threshold.

In order to calculate the possible alignment between the master and the slave time values, the reset operation of TimeSlave also
stores all necessary information on the master clock (current value of tick, accuracy, units of measurement). Alignment values
are always referred to in the units of TimeSlave. Using these terms, the alignment value is:

where g() is a function which transforms the ticks of the master into the units of the slave, and takes into account the tick value
of the master when the reset operation has been invoked on TimeSlave.

The events, raised by TimeSlave objects when thresholds are exceeded, have the following structure tags: event name is “OutOf-
Sync”, event data contains one key–value pair, using “Discrepancy” as key and the actual alignment as a (float) value. By default,
no events are raised, i.e., the client has to set the threshold values and the corresponding callback references through an explicit
setSyncEventHandlers operation request.

7.9.4 Time line objects

The TimeLine object is a subtype of TimeSynchronizable, where the progression space is defined to be Time∞ and the value of
speed is set to be of constant value 1. This object can be used to send events at predefined moments in time, or periodically, to
dedicated PREMO objects, and may thereby serve as a basic tool for time–based synchronization patterns.

TimeSynchronizable

TimeSlave

speed

speed

Figure 7 — TimeSlave object

Tickslave g Tickmaster()–

© ISO/IEC ISO/IEC 14478-2:1998(E)

19

8 Enhanced property management and factories

This clause contains the specification of various object types which form an extension of the fundamental objects as described in
clause 7. Because not all components or PREMO applications may need the additional complexity of these extensions, objects
in this clause form an extended profile of the foundation component of PREMO (see clause 10 for the detailed component and
profile specification of the Foundation Component of PREMO). Objects in this clause fall into two categories:

a) enhanced property management;

b) object factories and factory finders, which give a finer control over the life cycle of PREMO objects.

8.1 Enhanced Property management

8.1.1 Motivation

All objects in this clause are subtypes of EnhancedPREMOObject. As such, they also inherit the property operations defined in
7.5.1 (see also 9.7). These properties refine the definition of the objects and their behaviour beyond that defined by their type
(i.e., the operations in their interfaces). Some properties are common to many PREMO objects, and others are particular to the
object type to which the object belongs.

Properties, and the various property management operations described in this clause, are the basic building blocks for various
configuration and negotiation mechanisms in PREMO. Such negotiations may be necessary to have, e.g., an optimal control over
media flow, to control the quality of service of various multimedia devices, to ensure proper coding and decoding of media data
when necessary, etc. As a general principle, the parameters governing the behaviour of objects are described in terms of proper-
ties, rather than attributes, if they may be subject to dynamic negotiations.

As a notational convenience, most property names defined as part of the functional specification of objects in this clause end with
the character “K”. Also as a notational convenience, the informal term “property space” will also be used to refer to the various
properties available for an object (property keys playing the role of naming the “coordinate axes” in this “space”, and values play-
ing the role of points on these axes).

Various other PREMO components rely on a further refinement of the usage of properties, embodied by the type PropertyInquiry
and its subtype PropertyConstraint. These types will be defined in details in 8.1.2 and 8.1.3 below; this clause gives only an over-
view and a motivation for the further refinement of property management.

Figure 8 on page 20 gives a schematic view of the notions involved. The figure represents the range of values belonging to one
property key. The capability associated with this key describes the possible range of values which may belong to this key. This
is a read–only information which belongs to a specific type. An instance of this type may have a native property value for this
key, which describes the possible range of values this instance can associate to this key. Obviously, the native property value
represents a subset of the capability. Capabilities and native property values give a dynamically accessible information on the
possible behaviour of an object instance, which can be used in negotiations procedures. A PropertyInquiry type stipulates that it
is always possible to retrieve the native property values for a property key for all properties explicitly defined as part of the func-
tional specification of the object within PREMO. In other words, although the actual values of the property may be changed
through the invocation of the various property management operations, it is always possible to access the native property values,
too.

PropertyConstraint offers additional facilities to constrain the actual values associated to a key within the range of the native
property values of the object. The constrain operation, defined for this type, allows a client to set the values associated to a key,
automatically checking whether the values represent a subset of the native property values of the object. Finally, these objects
have a select operation, which determines an optimal range of values for a given key within the range of the (possibly constrained)
current values. Note that the select operation involves an internal, semantic knowledge of the object, and specific subtypes are
supposed to provide an implementation for this operation which reflect the specific features of the object type.

NOTE — For example, an audio object type may be defined in terms of the sample rate it can process. The possible values for the audio
sample rates are characterized by its capability, e.g., <8KHz, 11.3KHz, 22.05KHZ, 44.1KHz>. When instantiating such an object, the object
may find out that on the hardware environment it is running it cannot honour, say, the 44.1KHz range. Consequently, the corresponding native
property value for this instance and this key will be <8KHz, 11.3KHz, 22.05KHz>. As a next step, a client may constrain the acceptable range

ISO/IEC 14478-2:1998(E) © ISO/IEC

20

of sample rates for this instance by requesting that the sample rate should be either 11.3KHz or 22.05KHz; i.e., the current property value for
the key becomes <11.3KHz, 22.05KHz>. Finally, as a result of a subsequent select operation invocation, the audio object may decide to
choose 22.05KHz as a sample rate to increase the quality of the output. Note that the <8KHz, 11.3KHz, 22.05KHz> range (i.e., the native
property value) can always be inquired by a client.

8.1.2 Capabilities and native property values: the PropertyInquiry type

A capability of an object is a special type of read only property that describes the value or values another property of that object
type may take on. Capabilities are defined as part of the type specification of the object, i.e., the information they provide is the
same for all instances of that type. Capabilities, like other properties, are specified as key/value pairs, where the key identifies
the characteristic of interest, and the value is of the general data type Value, as defined in 9.2 (note that a Value may also refer to
a sequence of other values). As a notational convenience, the symbolic name for a type property ends with a “CK” and the re-
mainder of the name is the same as that of the corresponding property.

NOTE — For example, the InputEncodingCK property has a set of values that represent the range of possible values that the InputEncodingK
property can assume for the specific type.

A PropertyInquiry is an object type for which a number of capabilities are also defined. Furthermore, such an object also stores
its native property values for all keys which are explicitly defined as part of the object specification; the native property value is
defined to be the range of values (associated to a key) that object instance may take on. An operation, called inquireNativeProp-
ertyValue, is defined for the PropertyInquiry object type, which always returns the native property value, regardless of the current
values associated to the key. This operation returns a sequence of values (e.g., if the type of the corresponding property is defined
as a String), or a minimum–maximum range (if the value is a numerical type). The specification of the property shall define the
return type of the result of operation invocation if this is not the case.

The type of the value that can be associated with a particular property is specified along with the key definition, as part of the
object’s specification. When querying the capabilities of a property of an object, the value associated with a key may be a single
datum, a sequence, or a range.

Figure 8 — Type properties, capabilities, constraining properties

Possible values for a type

Possible values for an instance

Constrained values

Preferred Values

© ISO/IEC ISO/IEC 14478-2:1998(E)

21

NOTE — For example, an audio capture device might report a variety of properties (e.g., through the getAllProperties operation defined for
EnhancedPREMOObject type), some of which are limited to only a single value, and some of which might take a range or sequence of values.
After initialization, the values associated to the various keys may be as follows:

Here the location of the device instance is a single value (where it is wanted to be), although the object might have been instantiated on a range
of possible machines, whereas the encoding that can be used at the input can take on several values.

The client can discover an object's type properties and its capabilities, as well as the current settings of its properties, using the
operation

If the client is interested only in the value or values a particular property takes, the following operation can be used:

Both of these operations are defined for all EnhancedPREMOObject types (see 7.5.1).

The detailed functional specification of PREMO objects may contain capability specifications, too. This means that the corre-
sponding property keys are automatically defined for these objects at object creation time, together with the values the functional
specification contains. Subtypes may extend the possible values for a capability.

8.1.2.1 Required properties

PREMO requires all objects of type PropertyInquiry to provide three property values (i.e., these keys are defined for the object
type PropertyInquiry):

a) Network location (key “LocationK”)

b) Vendor tag (key “VendorTagK”)

c) Release (key “ReleaseK”)

All these properties have strings as possible values; the content and the interpretation of these values are implementation depend-
ent.

8.1.3 Property constraint and selection: the PropertyConstraint type

PropertyConstraint is a subtype of PropertyInquiry which offers two more operations to manipulate properties: constrain and
select.

The constrain operation receives a sequence of key–value pairs (each value may refer to a sequence of other values) as a param-
eter and tries to set the values for each of the keys involved. The new value for a specific key is as follows:

Key Value
AudioDevice::InternetLocationCK <“mymachine.com”,“yourmachine.com”,“theirmachine.edu”>

AudioDevice::InternetLocationK “mymachine.com”

AudioDevice::InputEncodingCK <“alaw”, “ulaw”, “linear”>

AudioDevice::InputEncodingK <“alaw”, “ulaw”, “linear”>

getPairs

pairsout: seq (Key × seq Value)

getProperty

keyin: Key
valueout: seq Value

ISO/IEC 14478-2:1998(E) © ISO/IEC

22

— if no native property value is defined for the key, then:

- if no value is associated to the key yet, the new value is the value appearing in the input parameter; else

- the new value is the intersection of the values appearing in the argument with the current values associated to the key.

— if a native property value is defined for the key, then:

- if no value is associated to the key yet, the new value is the sequence of values appearing in the input parameter,
intersected with the native property values; else

- the new value is the intersection of the sequence of values appearing in the argument, the current values associated to
the key, and the native property values.

The operation returns the new set of values set for each key.

The client can always return to the native property values. Indeed, the client can inquire the native property values, clear the as-
sociated values with an empty sequence, and use the native property values to restore the current value for the property key.

The select operation is used to determine the best–fit values based upon the intersection of a sequence of key–value pairs appear-
ing as input parameter and the current values assigned to the key. To the extent that multiple values are feasible, the Property-
Constraint object selects values for the client. The selected key–value pairs are returned as the operation’s output.

Figure 9 gives an overview of the state transitions related to the properties associated to one key. The initial state is the native
property values known to the object (if defined). The values can be inquired by the various inquiry and the matchProperties op-
eration (see 7.5.1) but these operations do not change the property values. Note that the constrain operation can be issued at all
states.

8.1.3.1 Properties and object behaviour

The behaviour of the PropertyConstraint object may depend on the properties associated with the object. This sub–clause defines
these relationships.

select

Figure 9 — PropertyConstraint state transition diagram

selected

constrained

native

constrain

constrain

select

select

constrain

constrain

© ISO/IEC ISO/IEC 14478-2:1998(E)

23

8.1.3.1.1 Private properties

The PropertyConstraint object is a subtype of EnhancedPREMOObject, hence it also allows clients to add properties beyond
those which are defined as part of the object’s functional specification, i.e., the client can extend the property space with private
properties (e.g., for annotations). The client can annotate the space with private properties.

The semantics of the constraint and select operations are such that they ignore these private properties.

8.1.3.1.2 Interactions among properties

Considering the properties of an object one at a time, an object may appear to have the possibility to assume all possible combi-
nations of properties. When the properties are considered in combination, only certain combinations may be possible.

NOTE — To illustrate this, consider a fictitious audio value space. Two properties — one with the key SampleSize and the other with the key
SampleRate — describe the object. The sample size can be 8bit or 16bit, while sample rate can be 8KHz or 40KHz. If all combinations of
properties are possible, then the possible options are shown in Table 1:

The complication is that, in practice, media objects abstract real media devices. These media devices often allow only restricted combinations
of property values. The audio device, for example, could support the specific values in Table 1 only.

For this purpose, an additional property is defined that allows the precise values of such combinations to be expressed. The Prop-
ertyConstraint type provides a ValueSpaceNameK property for this purpose. If the value of the property is empty, then all com-
binations are allowed. If the value is not empty, then it is a sequence of key–value sequences which describe the allowable
combinations.

NOTE — Following the example above, the value for the ValueSpaceNameK for the fictitious audio object may then include the following
two sequences:

<<“SampleSize”,8>,<“SampleRate”,8>>,<<“SampleSize”,16>,<“SampleRate”,40>>

Sr=8KHz Sr=40KHz
Ss=8bit Sz=8bit,Sr=8KHz Sz=8bit,Sr=40KHz

Ss=16bit Ss=16bit,Sr=8KHz Ss=16bit,Sr=40KHz

Table 1 — All combinations of sample rate and sample size

Sr=8KHz Sr=40KHz
Ss=8bit Sz=8bit,Sr=8KHz

Ss=16bit Ss=16bit,Sr=40KHz

Table 2 — Restricted combinations of sample rate and sample size

ISO/IEC 14478-2:1998(E) © ISO/IEC

24

The operation bind (see also 8.1.3.1.3 below) checks the consistency of the properties against the values stored in ValueSpa-
ceNameK. If the value in ValueSpaceNameK for a specific key is a sequence and the corresponding property value is not, then
the value is checked against the elements of the sequence (i.e., the ValueSpaceNameK property describes all allowable values in
a combination); otherwise equality is used. Also, if a key does not appear in a specific sequence, than all values are permissible.
An exception is raised if the values are incorrectly set.

NOTE — For example, if the value for the ValueSpaceNameK is:

<<“Key1”,<“A”,”B”,”C”>>,<“Key2”,”P”>>, <<“Key1”,<“X”,”Y”,”Z”>>>

then, for example, the following key–value combination is accepted by bind:

<“Key1”,“A”>,<“Key2”,”P”>

because, by virtue of the first rule cited above, the first constraint pair of ValueSpaceNameK is used to check a subset; the combination

<“Key1”,“X”>,<“Key2”,”W”>

is also accepted because, by virtue of the second rule, the second constraint pair of ValueSpaceNameK allows for an unconstrained setting of
the value for Key2, provided that the value for Key1 is one of X, Y, or Z.

8.1.3.1.3 Dynamic changes to properties

During the lifetime of a PropertyConstraint, some of the properties may become static or changeable. For an example where the
properties become static, consider the example in the previous sub–clause: the sample size and the sample rate should not change
while the media stream flows, i.e., neither the client nor the object itself should change these values in this period. Changeable
properties may again fall into two categories: mutable or dynamic. Mutable properties are such that no client should be able to
change these values when the media stream flows, although the object itself may change them. Such values might, for example,
change as a result of decoding a protocol found within the media stream which defines the mutable a property value (e.g., the
quantization matrix of an MPEG flow). Finally, there may be properties which may be changed at any time; these are referred to
as dynamic properties.

The PropertyConstraint type anticipates these situations. On the one hand, two operations are defined on the PropertyConstraint
object type, namely bind and unbind, which determine the interval in the life cycle of the object when the values associated to
certain keys cannot be changed. On the other hand, the type reserves some keys and capabilities which characterize the static or
changeable nature of other properties. These are as follows:

— The key MutablePropertyListK identifies the public properties which can be changed by the object itself at any time, but
the client may not change these values between a bind and an unbind call. The value for this property is a sequence of prop-
erty keys.

— The capability MutablePropertyListCK is defined for various subtypes to describe the values the property MutableProp-
ertyListK can take. Various instances may have a more restrictive native property value for MutablePropertyListK (see
8.1.2).

— The key DynamicPropertyListK identifies the public properties which can be changed at any time. The value for this
property is a sequence of property keys.

— The capability DynamicPropertyListCK is defined for various subtypes to describe the values the property Dynamic-
PropertyListK can take. Various instances may have a more restrictive native property value for DynamicPropertyListK (see
8.1.2).

All properties, whose keys are not listed in either MutablePropertyListK or DynamicPropertyListK, are defined to be static, i.e.,
their values can be changed neither by a client nor by the object itself between a bind and an unbind call.

© ISO/IEC ISO/IEC 14478-2:1998(E)

25

8.2 Creating PREMO objects

The general object and object reference life cycle facilities of a PREMO environment are defined in 8.11 of ISO/IEC 14478-1.
These facilities allow clients to create and destroy the objects required to perform the media functions and services required. This
sub–clause defines some other objects which allow clients to create objects subject to certain constraints, expressed in terms of
key–value pairs.

8.2.1 Generic Factory objects

The purpose of the generic factory object is to provide a wrapper around the object creation facilities, but taking a list of properties
into consideration, too, when creating an object. These properties describe the required characteristics of the object to be created.

The factory object has only one operation, createObject , which takes an object type name and a list of key–value pairs as input
arguments, and returns an object reference if an object can be created or found, or raises an exception, if the requirements cannot
be met. The constraint imposed by the factory object is that the native property value of the returned object, corresponding to a
key in the list, should be a superset of the values in the argument list . The signature of the operation is:

Note that the return value is of type RefPropertyInquiry ; this reference has to be cast to a reference to the desired type, using the
cast facility (see 8.11 of ISO/IEC 14478-1). Also, the properties of the returned object are not set by the factory; this is to be
done by the client (using, for example, a subsequent invocation of the constrain operation). Because the factory uses the notion
of native property values, the type of the object to be created shall be a subtype of PropertyInquiry . The factory object is itself
defined to be a subtype of PropertyInquiry , too. This means that factory objects may also have properties and these properties
can be inquired and/or set (e.g., using the operations described in 8.1.3 of this part), and that factories may also create other fac-
tories.

The specification of the generic factory does not require that a new instance of the object, corresponding to the type and the con-
straints, shall be created. In some cases, the factory may just return a new object reference to an already existing object (although
subtypes of the factory object may impose additional restrictions in this respect). In the case a new object is created, the value of
initArgin is used as an argument of the new object’s initialize operation (see also 7.2)

8.2.1.1 Finding factories

The purpose of the factory finder object is to locate factory objects, using an object type and a set of capabilities to restrict the
set of possible choices. The object provides one operation, whose signature is:

createObject

typein: ObjectType
constraintsin: seq (Key × seq Value)
initArgin: Value
objectRefout: RefPropertyInquiry
exceptions: {InvalidCapabilities, CannotMeetCapabilities, InvalidType}

findFactories

typein: ObjectType
objectConstraintsin: seq (Key × seq Value)
factoryConstraints in: seq (Key × seq Value)
factoriesout: seq RefGenericFactory
exceptions: {NoFactory, InvalidCapabilities, CannotMeetCapabilities}

ISO/IEC 14478-2:1998(E) © ISO/IEC

26

This operation returns a sequence of references to GenericFactory objects, all capable of creating an object of type typein, and
matching the constraints described in objectConstraintsin. The objectConstraintsin input argument is a sequence of key–value
pairs, describing what sort of factory is sought in terms of the properties of the objects it is capable of creating. An additional
sequence of constraints, factoryConstraintsin, refers to the generic factory objects themselves (as opposed to the constraints re-
ferring to the object which can be created).

NOTE — For example, the factory finder object may be used to locate factory objects which can create video objects capable of processing
MHEG files (the objectConstraints in can be used to describe this fact) and which are on a restricted internet location (a constraint on the
location of the factories themselves can be expressed by the factoryConstraints in).

Figure 10 gives an overview of the life cycle of a PREMO object when using factories and factory finders.

8.2.1.2 Persistency of factories and factory finders

Because factories are used to create objects in which the caller is interested, some of them may be persistent objects. Also, at least
one factory finder object shall be persistent. This means that PREMO makes the assumption that some factory finder objects, as
well as some factory objects, are automatically created by the PREMO environment when a PREMO system is started and their
object references are known. Details of how this is done is implementation and environment dependent.

8.2.1.3 Implementation of Factories

PREMO does not dictate how factories are implemented. A number of different implementations are possible. These include:

a) A single factory for all of PREMO: A single executable could provide all the client services including the object and
object reference life cycle facilities, the factory, all the virtual devices and connections, etc.

b) A single factory per node in a network: Each node in a network could have a single factory that is responsible for the
management of the virtual devices and connections on that machine. The factory could implement the virtual devices and
connections in its own address space or spawn processes for that purpose.

c) A factory per object type: There could be a factory for each type of device and connection that can be created. These
could be network wide, or per machine.

There are other possibilities and combinations. All of the implementation choices are compliant if they adhere to the type defini-
tions.

Figure 10 — PREMO Object life cycle with factories

Client

Factory
Finder

Factory

Object

1. Client requests a reference to a factory
capable of satisfying a capability list
passed as parameter.

2. Factory Finder returns a Factory refer-
ence

3. Client requests the creation of an object
from the Factory, with a constraint list on
the object to be created.

4. Factory possibly creates the object…
5. … and returns the reference to its client.
6. Later, the client destroys the reference,

which eventually leads to the destruction
of the object.

1

2

3

46

5

© ISO/IEC ISO/IEC 14478-2:1998(E)

27

9 Functional specification

9.1 Introduction

This clause provides the detailed functional specification of the non–object types, structures, and other PREMO object types that
together define the PREMO Foundation Component. The notation used in this clause follows the rules detailed in clause A of
ISO/IEC 14478-1.

Additionally to the object type definition, each PREMO type may have predefined set of properties and/or capabilities. These are
defined in separate tables following the type specification schema. These tables include the name of the key, the type of the value,
a flag whether the property is read only (R.O.) or not (R/W), and possibly a short description of the property. Capabilities are
defined in a separate table.

9.2 Common non–object data types

This sub–clause defines all data types used by structure tags and operations defined on PREMO foundation object types.

Boolean values:

Used to describe type graphs and/or sequence of immediate supertypes:

Keys for key–value pairs, and key–value sequence pairs:

Action types in controllers:

Types for event identifications:

Enumerations controlling comparisons in key-value pairs, used, e.g., by the property operations or the event handler:

Units of time, used by clock objects.

Boolean TRUE FALSE::=

TypeGraph ObjectTypeseq ==

Key String==

ActionType Enter Leave::=

EventName String==

AndOr And Or::=

ConstraintOp Equal NotEqual::=

GreaterThan GreaterThanOrEqual LessThan LessThanOrEqual
Prefix Suffix NotPrefix NotSuffix
Includes Excludes

TimeUnit Picoseconds Nanoseconds Micro ondssec Mili ondssec ::=

Second Minute Hour Day Month Year

ISO/IEC 14478-2:1998(E) © ISO/IEC

28

Type synonym for the description of states:

Constants identifying the states of a Timer object:

Data types and state constants used for synchronizable objects:

The following discriminated union is used, e.g., when the argument type of an operation is not fully specified (the full specifica-
tion being part of the semantics of the type), or as part of properties and key–value pairs:

State N==

TSTOPPED State TSTOPPED: 0=

TSTARTED State TSTARTED: 1=

TPAUSED State TPAUSED: 2=

Direction Forward Backward::=

STOPPED State STOPPED: 0=

STARTED State STARTED: 1=

PAUSED State PAUSED: 2=

WAITING State WAITING: 3=

int Z« »
real R« »
objectType ObjectType« »
actionType ActionType« »
eventId EventId« »
time Time« »
premoObject RefPREMOObject« »
simplePremoObject RefSimplePREMOObject« »
callbackPremoObject RefCallback« »
enhancedPremoObject RefEnhancedPREMOObject« »
extendedReal R∞« »

extendedInteger Z∞« »

extendedTime Time∞« »

boolean Boolean« »
stringValue String« »
andOr AndOr« »
constraintOp ConstraintOp« »
timeUnit TimeUnit« »
direction Direction« »
valueSequence Valueseq « »
valuesTuple Value Value×« »

© ISO/IEC ISO/IEC 14478-2:1998(E)

29

Note that

— The definition of Value is recursive in the sense that it also contains tags to a sequence or a tuple of Value;

— Three object references are part of Value, which allow for operations to refer either to any PREMO object, or to restrict
to either simple or enhanced PREMO objects.

9.3 Exceptions

Exceptions are defined in PREMO as a data tuple:

As a convention, the first tag of the exception is referred to as the name of the exception. Operations may or may not assign data
to the second tag of the exception when raising it. Details of how exceptions are raised is not defined in PREMO (see also 8.12
of ISO/IEC 14478-1).

The PREMO foundation component defines a number of exceptions, and further components may add their own exceptions. As
a convention, exceptions in PREMO are defined to have their data type name used as the exception name. For example, the ex-
ception IncorrectInit , defined below, has the first tag set to the string “IncorrectInit”.

The list of the exceptions raised by operations defined on PREMO foundation object types are as follows.

CannotMeetCapabilities== Exception

IncorrectInit == Exception

InvalidCapabilities == Exception

InvalidElementId == Exception

InvalidKey == Exception

InvalidType == Exception

InvalidValue == Exception

InvalidReference == Exception

NoKey == Exception

NotInTypeGraph == Exception

OperationNotDefined == Exception

ReadOnlyProperty == Exception

RepeatedEvent == Exception

UnknownEvent == Exception

UnknownType == Exception

WrongState == Exception

WrongValue == Exception

Exception String Valueseq ×==

ISO/IEC 14478-2:1998(E) © ISO/IEC

30

9.4 PREMOObject and fundamental object behaviour

PREMOObject is an abstract type. It is a supertype for all object types defined in PREMO.

PREMOObjectabstract

Ξinitialize

initValuein: Value
exceptions: {IncorrectInit}

This operation is invoked by the create facility of the PREMO environment when an object instance is created
(8.11 of ISO/IEC 14478-1). This operation is usually overloaded by specific implementations on various sub-
types. In subtypes, this initialization operation may also invoke the initialize operations of its supertypes.

Exceptions raised:

IncorrectInit The parameters for initialization are incorrect.

ΞinitializeOnCopy

This operation is invoked by the copy facility of the PREMO environment when an object instance is copied
(8.11 of ISO/IEC 14478-1). This operation is usually overloaded by specific implementations on various sub-
types. In subtypes, this initialization operation may also invoke the initializeOnCopy operations of its super-
types.

Exceptions raised: None.

Ξdestruct

This operation is invoked by the PREMO environment when an object instance is destroyed. This operation is
usually overloaded by specific implementations on various subtypes. In subtypes, this destruction operation may
also invoke the destruct operations of its supertypes.

Exceptions raised: None.

inquireType

typeout: ObjectType

This operation returns the immediate type of the object.

Exceptions raised: None.

inquireTypeGraph

typeGraphout: TypeGraph

This operation returns the type graph of the immediate type of the object.

Exceptions raised: None.

© ISO/IEC ISO/IEC 14478-2:1998(E)

31

9.5 Simple PREMO object and structures

9.5.1 SimplePREMOObject

This object is a common, abstract supertype for all other object types appearing in this clause.

9.5.2 Event structure

9.5.3 Constraint structure

inquireImmediateSupertypes

immediateSupertypesout: TypeGraph

This operation returns the set of the immediate supertypes of the object.

Exceptions raised: None.

PREMOObject

SimplePREMOObjectabstract

PREMOObject

SimplePREMOObject

Event

SimplePREMOObject

eventName: String
eventData: seq (Key × Value)
eventSource: RefEnhancedPREMOObject

The value of eventSource is usually set to the reference of the object which has created the structure instance.

Event

Constraint

SimplePREMOObject

constraintOp: ConstraintOp
keyValue: Key × Value

Constraint

ISO/IEC 14478-2:1998(E) © ISO/IEC

32

9.5.4 Action Element

9.5.5 Synchronization Element

ActionElement

SimplePREMOObject

eventHandler: RefCallback
eventName: EventName

ActionElement

SyncElement

SimplePREMOObject

eventHandler: RefCallback
syncEvent: RefEvent
waitFlag: Boolean

SyncElement

© ISO/IEC ISO/IEC 14478-2:1998(E)

33

9.6 Callback objects

Callbackabstract

PREMOObject

callbacka

callbackValuein: RefEvent [Shallow Copy]

Subtypes of Callback should redefine this operation to give a more precise behaviour. Note that this operation
is asynchronous.

Exceptions raised: None

Callback

CallbackByNameabstract

Callback redef (callback)

callbacka

callbackValuein: RefEvent [Shallow Copy]
exceptions: {OperationNotDefined}

The local operation, referred to by the eventName tag in callbackValuein, is invoked. All other structure tags
are disregarded. Note that this operation is asynchronous.

Exceptions raised:

OperationNotDefined The operation, referred to by eventName, is not defined on the
object.

CallbackByName

ISO/IEC 14478-2:1998(E) © ISO/IEC

34

9.7 Enhanced PREMO object

This object type adds the property management operations to PREMOObject.

EnhancedPREMOObjectabstract

PREMOObject

defineProperty

keyin: Key
valuein: seq Value
exceptions: {ReadOnlyProperty}

This operation adds a new property to the object. If the key identifies a property already defined for the object,
the new value is assigned to the property replacing the previous value(s), unless keyin refers to a read only prop-
erty. Otherwise, a new property is created with keyin and valuein.

Exceptions raised:

ReadOnlyProperty keyin refers to a read only property of the object.

undefineProperty

keyin: Key
exceptions: {ReadOnlyProperty, NoKey}

This operation removes the property identified by keyin, unless the property is read only.

Exceptions raised:

ReadOnlyProperty keyin refers to a read only property of the object.

NoKey No property has been defined with keyin.

addValue

keyin: Key
valuein: Value
exceptions: {ReadOnlyProperty}

If the key identifies a property already defined for the object, and the property is not read only, the new value is
added as the last element of the sequence of properties identified by keyin. If the key has not yet been defined for
the object, a new property is created with the value of keyin, referring to sequence of length one and containing
valuein.

Exceptions raised:

ReadOnlyProperty keyin refers to a read only property of the object.

© ISO/IEC ISO/IEC 14478-2:1998(E)

35

removeValue

keyin: Key
valuein: Value
exceptions: {ReadOnlyProperty, NoKey, InvalidValue}

If the key identifies a property already defined for the object, and the property is not read only, and valuein is ele-
ment of the sequence associated with keyin, the value is removed from the sequence of properties identified with
keyin.

Exceptions raised:

ReadOnlyProperty keyin refers to a read only property of the object.

NoKey No property has been defined with keyin.

InvalidValue valuein does not refer to a value associated with keyin.

inquireProperties

keysout: seq (Key × Boolean)

This operation returns information on the properties defined for the object. The information includes the key and
a boolean flag notifying whether the property is read–only or not. The order within the sequence is implementa-
tion dependent, and does not necessarily reflect the order in which properties have been defined.

Exceptions raised: None.

getProperty

keyin: Key
valueout: seq Value
exception: {NoKey}

This operation returns the value associated with the property identified by keyin.

Exceptions raised:

NoKey No property has been defined with keyin.

getPairs

pairsout: seq (Key × seq Value)

This operation returns the sequence of all properties associated with the object. The order within the sequence is
implementation dependent, and does not necessarily reflect the order in which properties have been defined.
(Note that Value structure tag in pairsout may also refer to a sequence of values, see 9.2).

Exceptions raised: None.

ISO/IEC 14478-2:1998(E) © ISO/IEC

36

matchProperties

constraintListin: seq RefConstraint [Shallow Copy]
satisfiedout: seq (Key × seq Value)
unsatisfiedout: seq (Key × seq Value)

The properties defined for the object are matched against the property sequences in constraintListin. For each
key appearing in constraintListin the value is compared against the value or values stored with an identical key in
the object. Comparison is based on the boolean operation defined by the non–object data type ConstraintOp, see
9.2 (page 27), and appearing in the corresponding structure tag of constraintListin. The left operand of the opera-
tion is the property stored in the object, and the right operand of the operation is the value appearing in the con-
straintListin structure (if the operation does not make sense, e.g., the operands are of incompatible types, the
result of the comparison is FALSE).
The structure satisfiedout contains those keys with associated values for which the comparison has resulted in
TRUE. The structure unsatisfiedout contains those keys with associated values for which the comparison has
resulted in FALSE.

Exceptions raised: None.

setPropertyCallback

keyin: Key
callbackin: RefCallback
eventNamein: String
exception: {NoKey}

The eventNamein and callbackin pair is stored, associated to keyin. If a new value is set for the property keyin, and
the associated callbackin is not NULLObject, the operation callbackin.callback is invoked. The event structure of
the argument will be constructed with eventNamein, with a copy of the newly set key–value pair as the eventData
structure tag.

Exceptions raised:

NoKey No property has been defined with keyin.

EnhancedPREMOObject

© ISO/IEC ISO/IEC 14478-2:1998(E)

37

9.8 Controller object

For a detailed description of the behaviour of controller objects, see 7.6 (page 8).

Controllerabstract

EnhancedPREMOObject
Callback redef (callback)

currentState: String [Retrieve Only]
possibleStates: seq String [Retrieve Only]

handleEventa

newEventin: RefEvent [Shallow Copy]

Initiate state transition. See 7.4 (page 6) for a detailed specification of this operation. Note that the operation is
asynchronous.

Exceptions raised: None.

callback == handleEvent

ΞcheckTransition

eventin: RefEvent
checkResultout: Boolean

This operation checks whether the state transition, as requested by eventin, is possible. By default, this operation
only checks whether the new state is part of the possibleStates sequence, in which case it returns TRUE; FALSE
otherwise. Subtypes of Controller may add more complex checks.

Exceptions raised: None.

ΞonLeave

eventin: RefEvent
oldStatein: EventName
newStatein: EventName
eventDataout: seq (Key × Value)

This operation is invoked before a state transition occurs from oldStatein to newStatein. eventin is the event struc-
ture which resulted in this state transition. By default, eventDateout is a copy of the event data in eventin; see 7.4
(page 6) for a detailed specification of how this data is used by the Controller object.

Exceptions raised: None.

ISO/IEC 14478-2:1998(E) © ISO/IEC

38

ΞonEnter

eventin: RefEvent
oldStatein: EventName
newStatein: EventName
eventDataout: seq (Key × Value)

This operation is invoked after a state transition occurs from oldStatein to newStatein. eventin is the event struc-
ture which resulted in this state transition. By default, eventDateout is a copy of the event data in eventin; see 7.4
(page 6) for a detailed specification of how this data is used by the Controller object.

Exceptions raised: None.

ΞhandleUnknownEvent

eventin: RefEvent

This operation handles the case when the Controller object type receives an event that can not be handled in its
current state. The default effect of this operation is to do nothing; subtypes of Controller may assign a more spe-
cific implementation to this operation.

Exceptions raised: None.

setAction

statein: EventName
actionin: RefActionElement
actionModein: ActionType
exceptions: {WrongState}

An action is associated to the state statein; see 7.4 (page 6) for a detailed specification of how this action is used
by the Controller object.

Exceptions raised:

WrongState statein does not identify a valid state for this object instance.

removeAction

statein: EventName
actionModein: ActionType
exceptions: {WrongState}

If an action has been previously set by a setAction operation, it is removed.

Exceptions raised:

WrongState statein does not identify a valid state for this object instance.

© ISO/IEC ISO/IEC 14478-2:1998(E)

39

setActionOnPair

stateOldin: EventName
stateNewin: EventName
actionin: RefActionElement
exceptions: {WrongState}

An action is associated to the tuple stateOldin × stateNewin; see 7.4 (page 6) for a detailed specification of how
this action is used by the Controller object.

Exceptions raised:

WrongState One of the states stateOldin or stateNewin does not identify a valid
state for this object instance. The exception data contains the
invalid state name(s).

removeActionOnPair

stateOldin: EventName
stateNewin: EventName
exceptions: {WrongState}

If an action has been previously set by a setActionPair operation to stateOldin × stateNewin, it, is removed.

Exceptions raised:

WrongState One of the states stateOldin or stateNewin does not identify a valid
state for this object instance. The exception data contains the
invalid state name(s).

Controller

ISO/IEC 14478-2:1998(E) © ISO/IEC

40

9.9 EventHandler objects

9.9.1 Basic event handler objects

EventHandler

EnhancedPREMOObject
Callback redef (callback)

register

eventTypein: EventName
constraintsin: seq RefConstraint [Deep Copy]
fullConstraintMatchModein: AndOr
objectRefin: RefCallback
idout: EventId

This operation registers interest in an event. The name of the event, a constraint list that specifies which event
data values are of interest, and an object reference (to a Callback object) are supplied. An identification of the
event registration is supplied as an output value to uniquely identify this registration.
If the sequence constraintsin is empty, no constraint comparison occurs, and the event is always dispatched. Oth-
erwise, see 7.7 (page 10) for a detailed description on how the constraint list is interpreted for an event instance
to be dispatched.

Exceptions raised: None

unregister

idin: EventId
exceptions: {InvalidEventId}

This operation reverses the effects of register. The single parameter is an EventId obtained from a previous regis-
ter call.

Exceptions raised:

InvalidEventId The idin value is not valid for the event handler instance.

dispatchEventa

newEventin: RefEvent [Shallow Copy]

When an object (i.e., the event source) wishes to generate an event it calls this operation. The event (containing
the event name, the event data, and the event source) is provided as parameter. The operation is asynchronous.

Exceptions raised: None.

callback == dispatchEvent

EventHandler

© ISO/IEC ISO/IEC 14478-2:1998(E)

41

9.9.2 SynchronizationPoint object

SynchronizationPoint object is a subtype of EventHandler objects; it adds constraint on the behaviour of the dispatchEvent op-
eration.

SynchronizationPoint

EventHandler redef (initialize, register, unregister, dispatchEvent)

Ξinitialize

initValuein: Value

The internal array of synchronization events is initialized.

Exceptions raised: None.

register

eventTypein: EventName
constraintsin: seq RefConstraint [Deep Copy]
fullConstraintMatchModein: AndOr
objectRefin: RefCallback
idout: EventId
exceptions: {InvalidEventId}

This operation overloads the operation EventHandler.register. The only difference in behaviour is that the opera-
tion raises an exception if eventTypein does not refer to an event which has been previously added to the internal
set of synchronization events through addSyncEvent.

Exceptions raised:

InvalidEventId The eventTypein refers to an event which is not present in the internal set
of synchronization events.

unregister

idin: EventId
exceptions: {InvalidEventId}

This operation reverses the effects of register. The single parameter is an EventId obtained from a previous regis-
ter call. The operation leaves the internal set of synchronization events unchanged.

Exceptions raised:

InvalidEventId The idin value is not valid for the event handler instance.

ISO/IEC 14478-2:1998(E) © ISO/IEC

42

addSyncEvent

syncEventin: RefEvent [Shallow Copy]
exceptions: {RepeatedEvent}

The event is registered in the internal set of synchronization events. The same event cannot be registered twice.

Exceptions raised:

RepeatedEvent The event syncEventin is already registered.

deleteSyncEvent

syncEventin: RefEvent [Shallow Copy]
exceptions: {UnknownEvent}

The event is deleted from the internal set of synchronization events.

Exceptions raised:

UnknownEvent syncEventin has not been registered in the internal set.

dispatchEventa

newEventin: RefEvent [Shallow Copy]
exceptions: {UnknownEvent}

The original behaviour of dispatchEvent, as defined for the object type EventHandler, is modified by filtering the
incoming event: newEventin is dispatched if and only if it has been registered in the internal set. If not, the event is
ignored, and an exception is raised.

Exceptions raised:

UnknownEvent newEventin has not been registered in the internal set.

SynchronizationPoint

© ISO/IEC ISO/IEC 14478-2:1998(E)

43

9.9.3 ANDSynchronizationPoint object

As a subtype of SynchronizationPoint, ANDSynchronizationPoint objects attach an additional boolean flag to each event stored
in the internal event set of the object; settings of these flags may also influence dispatching of incoming events. Essentially, a
logical “and” on the incoming event sequences is performed.

ANDSynchronizationPoint

SynchronizationPoint redef (initialize, initializeOnCopy, addSyncEvent, deleteSyncEvent, dispatchEvent)

Ξinitialize

initValuein: Value

The internal array of synchronization events is initialized; all internal flags, attached to the elements of this set,
are set to FALSE.

Exceptions raised: None.

ΞinitializeOnCopy

All internal flags, attached to the elements of this set, are set to FALSE.

Exceptions raised: None.

addSyncEvent

syncEventin: RefEvent [Shallow Copy]
exceptions: {RepeatedEvent}

The event is registered in the internal set of synchronization events. The same event cannot be registered twice.
The value of the associated flag is set to FALSE.

Exceptions raised:

RepeatedEvent The event syncEventin is already registered.

deleteSyncEvent

syncEventin: RefEvent [Shallow Copy]
exceptions: {UnknownEvent}

The event is deleted from the internal set of synchronization events. Also, all events, having the same event-
Name and eventData structure tag values as syncEventin, have their associated flag set to FALSE.

Exceptions raised:

UnknownEvent syncEventin has not been registered in the internal set.

ISO/IEC 14478-2:1998(E) © ISO/IEC

44

dispatchEventa

newEventin: Event
exceptions: {UnknownEvent}

The original behaviour of dispatchEvent, as defined for the object type SynchronizationPoint, is modified by
possibly delaying the notification of event reception. The incoming event is compared with the events stored in
the internal set of synchronization events; if a matching event is found (i.e., the event stored in the set is equal to
newEventin), the flag associated with this element is set to TRUE. If all events, having the same eventName and
eventData structure tag values, are flagged with a value TRUE, the original behaviour of dispatchEvent applies
(i.e., the event clients are notified) and all registered events, having the same eventName and eventData struc-
ture tag values, have their associated flag cleared to FALSE.

If newEventin is not registered in the internal set, the event is not dispatched, and an exception is raised.

Exceptions raised:

UnknownEvent syncEventin has not been registered in the internal set.

ANDSynchronizationPoint

© ISO/IEC ISO/IEC 14478-2:1998(E)

45

9.10 Timing objects

9.10.1 Clock object

9.10.2 SysClock object

Clockabstract

EnhancedPREMOObject

tickUnit: TimeUnit
accuracyUnit: TimeUnit
accuracy: Time [Retrieve Only]

Unit of ticks, of the accuracy measure, and the current accuracy value of the clock. See the description of the
object behaviour in 7.8.1 (page 12) for further details.

inquireTick

tickout: Time

Returns the number of ticks elapsed. Subtypes of Clock shall attach a precise semantics to this operation.

Exceptions raised: None.

Clock

SysClock

Clock redef (inquireTick)

inquireTick

tickout: Time

Returns the number of ticks elapsed since the start of the PREMO era, i.e., 00:00am, 1st January 1970, UTC.

Exceptions raised: None.

SysClock

ISO/IEC 14478-2:1998(E) © ISO/IEC

46

9.10.3 Timer object

The Timer object is described as a finite state machine; the state transition table is as follows:

TSTOPPED TSTARTED TPAUSED

TSTOPPED Y Y N

TSTARTED Y Y Y

TPAUSED Y Y Y

Timer

Clock redef (inquireTick)

timerCurrentState: State [Retrieve Only]

start == σ(TSTARTED, TSTOPPED | TSTARTED)
stop == σ(TSTOPPED)
pause == σ(TPAUSED)
resume == σ(TSTARTED, TPAUSED | TSTARTED)

reset

The internal time register is reset to value 0.

Exceptions raised: None

inquireTick

tickout: Time

The operation returns the elapsed time the object spent in TSTARTED state since it the internal time register has
been set to zero.

Exceptions raised: None.

Timer

To:From:

© ISO/IEC ISO/IEC 14478-2:1998(E)

47

9.11 Synchronization objects

9.11.1 Synchronizable object

The Synchronizable object is described as a finite state machine; the state transition table is as follows:

STOPPED STARTED PAUSED WAITING

STOPPED Y Y N N

STARTED Y Y Y I

PAUSED Y Y Y N

WAITING Y Y Y N

Synchronizable[C]

EnhancedPREMOObject redef (initialize, initializeOnCopy)
CallbackByName

currentState: State [Retrieve Only]
currentPosition: C [Retrieve Only]
minimumPosition: C [Retrieve Only]
maximumPosition: C [Retrieve Only]

Minimum position shall always be smaller than the maximum position.

startPosition: C
endPosition: C

End position of progression. The relation

shall always hold.

Exceptions raised (when setting the attributes):

WrongValue The new position does not abide to the required relation, or is not
allowed for the current object type.

WrongState The object state should have been STOPPED

To:From:

minimumPosition startPosition endPosition maximumPosition≤<≤

ISO/IEC 14478-2:1998(E) © ISO/IEC

48

currentDirection: Direction
loopCounter: N [Retrieve Only]
repeatFlag: Boolean
nloop: N

The direction flag, loop counter, the repeat flag, and the number of loop of progression.

Exceptions raised (when setting the attributes):

WrongState The object state should have been STOPPED.

Ξinitialize

initValuein: Value

The start and end positions are set to their default values (defined in the subtypes of Synchronizable), the current
position is set to the start position, the repeat flag is set to FALSE, and both the values of ‘nloop’ and the loop
counter is set to 1. The state of the object is set to STOP; initValuein is disregarded.

Exceptions raised: None.

ΞinitializeOnCopy

initValuein: Value

The start and end positions are set to their default values (defined in the subtypes of Synchronizable), the current
position is set to the start position, the repeat flag is set to FALSE, and both the values of ‘nloop’ and the loop
counter is set to 1. The state of the object is set to STOP. initValuein is disregarded.

Exceptions raised: None.

ΞprogressPosition

newPositionout: C

A new possible position, as used by the object in state STARTED, is calculated. The new value shall be greater
than the current position if the value of currentDirection is Forward, and smaller otherwise. The function shall
return a value between minimumPosition and maximumPosition, and shall not return the values of “∞” and “-∞”.
This operation is protected; specific subtypes of Synchronizable should redefine this operation to implement
progress on, e.g., various media.

Exceptions raised: None.

© ISO/IEC ISO/IEC 14478-2:1998(E)

49

ΞprocessData

intervalMinin: C
intervalMaxin: C

Data on the progression space between intervalMinin and intervalMaxin are “processed”, for example, presented
directly, or extracted for processing within some containing component such as a media device. If the value of
currentDirection is Forward, data should be processed from intervalMinin toward intervalMaxin, including the
datum at intervalMinin but not including intervalMaxin. Otherwise, data should be processed from intervalMaxin
toward intervalMinin, including the datum at intervalMaxin but not including intervalMinin.
This operation is protected; specific subtypes of Synchronizable should redefine this operation to implement data
processing on, e.g., various media.

Exceptions raised: None.

start == σ(STARTED, STOPPED | STARTED)
stop == σ(STOPPED)
pause == σ(STOPPED, STOPPED) ⊕ σ(PAUSED)
resume == σ(STARTED, PAUSED | WAITING | STARTED)

Exceptions raised:

WrongState The state transition operation cannot be issued in the current state.

resetLoopCounter

exceptions: {WrongState}

The value of the loop counter is set to the current value of nloop.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

jump

newPositionin: C
exceptions: {WrongState, WrongValue}

The current position of the object is changed. No synchronization actions are performed during this change, even
if the interval defined by the current position and newPositionin includes reference points. The object’s state
should be either PAUSED or STOPPED.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue The new position should be between the start and the end posi-
tions.

ISO/IEC 14478-2:1998(E) © ISO/IEC

50

setSyncElement

refPointin: C
syncDatain: RefSyncElement
exceptions: {WrongState, WrongValue}

The synchronization element syncDatain is stored at reference point refPointin,.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue The value of refPointin is not between the start and the end posi-
tion, or a synchronization element was already defined for that
position. The first tag in the exception data is set to the string
“WrongPosition” or “Overwrite”, respectively.

deleteSyncElement

refPointin: C
exceptions: {WrongState, WrongValue}

The synchronization element, stored at reference point refPointin is deleted.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue The value of refPointin is not between the start and the end posi-
tion, or no synchronization elements have been stored at refPoin-
tin. The first tag in the exception data is set to the string
“WrongPosition” or “NoSync”, respectively.

getSyncElements

refPoint1in: C
refPoint2in: C
syncDataout: seq (RefSyncElement × C) [Shallow Copy]
exceptions: {WrongValue}

All synchronization elements, together with the corresponding reference points defined between refPoint1in and
refPoint2in, are returned. The returned sequence includes the synchronization elements defined through the set-
PeriodicSyncElement operation, too.

Exceptions raised:

WrongValue The values are invalid; either refPoint1in > refPoint2in, or the val-
ues are not within the bounds of the object.

© ISO/IEC ISO/IEC 14478-2:1998(E)

51

setPeriodicSyncElement

startRefPointin: C
endRefPointin: C
periodicityin: C
syncDatain: RefSyncElement
exceptions: {WrongState, WrongValue}

The same synchronization element is defined for reference points at:
startRefPointin, startRefPointin+periodicityin, startRefPointin+2*periodicityin, … ,

etc., until the end position of the object is reached or the value of endRefPointin is exceeded. The reference points
may extend beyond the current span, but only those which are within the span are considered when the object is
in STARTED mode.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue startRefPointin or endRefPointin is not between the minimum and
maximum positions or their values are incorrect, the periodicityin
value is not positive, or a synchronization element would be over-
written. The first tag in the exception data is set to the string
“WrongPosition”, “WrongPeriodicity”, or “Overwrite”, respec-
tively. In the last case, the rest of the exception tags list the con-
flicting positions.

deletePeriodicSyncElement

startRefPointin: C
endRefPointin: C
periodicityin: C
exceptions: {WrongState, WrongValue}

The synchronization elements defined for reference points at:
startRefPointin, startRefPointin+periodicityin, startRefPointin+2*periodicityin, … ,

etc., until the end position of the object is reached, or the value of endRefPointin is exceeded, are deleted.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue Either startRefPointin or endRefPointin is not between the mini-
mum and maximum positions, the periodicityin value is not posi-
tive, or no synchronization elements have been stored at these
points. The first tag in the exception data is set to the string
“WrongPosition”, “WrongPeriodicity”, or “NoSync”, respec-
tively.

ISO/IEC 14478-2:1998(E) © ISO/IEC

52

setActionOnPair

stateOldin: State
stateNewin: State
actionin: RefActionElement
exceptions: {WrongState, WrongValue}

An action is associated to the tuple stateOldin × stateNewin; see 7.9.1.2 on how this action element is used by the
Synchronizable object. This operation replaces any action which has been previously defined on the same tuple.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue One of the states stateOldin or stateNewin does not identify a valid
state The exception data contains the invalid state name(s).

removeActionOnPair

stateOldin: State
stateNewin: State
exceptions: {WrongState, WrongValue}

If an action has been previously set by a setActionPair operation on the tuple stateOldin × stateNewin, it is
removed.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue One of the states stateOldin or stateNewin does not identify a valid
state. The exception data contains the invalid state name(s).

clearSyncElements

exceptions: {WrongState}

All synchronization and action elements are removed.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

Synchronizable

© ISO/IEC ISO/IEC 14478-2:1998(E)

53

9.11.2 TimeSynchronizable object

TimeSynchronizable[C]

Synchronizable[C] redef (start, stop, resume, pause)
Timer redef (start, stop, resume, pause, reset)

speed: R

Number of units on C for each tick in Time. The value depends on the current value of the attribute unit (inher-
ited from the Clock object). See 7.9.2 (page 16) for further details.

Exceptions raised (when setting the speed):

WrongState The object state should have been PAUSED or STOPPED.

currentPosition: Time [Retrieve Only]
minimumPosition: Time [Retrieve Only]
maximumPosition: Time [Retrieve Only]
startPosition: Time
endPosition: Time

These attributes have the same semantics as the attributes with similar names of Synchronizable, except that the
values are expressed in relative Time rather than progression space. See page 47 for further details.

start == Timer.start ; Synchronizable.start

resume == Timer.resume ; Synchronizable.resume

pause == Timer.pause ; Synchronizable.pause

The transition operations affect the merged finite state machine of the object. See 7.9.2 (page 16) for further
details.

stop

The Timer.stop ; Synchronizable.stop action is performed; furthermore, a marker is put against the default start
position in the progression space. This marker serves as a zero point for relative positioning expressed in time
values.

Exceptions raised: None

ISO/IEC 14478-2:1998(E) © ISO/IEC

54

reset

The internal time register is set back to zero (this behaviour is inherited from Timer), and a marker is put
against the current position in the progression space. This marker serves as a zero point for relative positioning
expressed in time values.

Exceptions raised: None

timeToSpace

positionTimein: Time
positionSpaceout: C

Returns the transformed value; takes into account the current value of speed, and the marker put by a previous
reset operation, or the value of startPosition (if no reset has not been invoked).

Exceptions raised: None.

spaceToTime

positionSpacein: C

positionTimeout: Time

Returns the transformed value; takes into account the current value of speed, and the marker put by a previous
reset operation, or the value of startPosition (if no reset has not been invoked).

Exceptions raised: None.

jump

newPositionin: Time

exceptions: {WrongState, WrongValue}

The value of newPositionin is transformed onto the progression space (using timeToSpace), and the resulting
value is used to invoke Synchronizable.jump.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue The new position, calculated by timeToSpace, should be between
the start and the end positions.

© ISO/IEC ISO/IEC 14478-2:1998(E)

55

setSyncElement

refTime in: Time
syncDatain: RefSyncElement
exceptions: {WrongState, WrongValue}

The synchronization element syncDatain is stored at the time value refTimein. Using the values of speed and the
time register, a corresponding reference point is also set on the progression space; however, if the speed and/or
the time register change, the reference point on the progression space must be re–set.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue A synchronization element is already defined at the time value
refTimein. The first tag in the exception data is set to the string
“Overwrite”.

deleteSyncElement

refTime in: Time
exceptions: {WrongState, WrongValue}

The synchronization element, stored at the time value refTime in is deleted.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue No synchronization elements have been stored at the time value
refPointin. The first tag in the exception data is set to the string
“NoSync”.

getSyncElements

refTime1in: Time
refTime2in: Time
syncDataout: seq (RefSyncElement × Time) [Shallow Copy]
exceptions: {WrongValue}

All synchronization elements, together with the corresponding reference points defined between refTime1in and
refTime2in, are returned. The returned sequence includes the synchronization elements defined through the set-
PeriodicSyncElement operation, too.

Exceptions raised:

WrongValue The values are invalid; i.e., refTime1in > refTime2in.

ISO/IEC 14478-2:1998(E) © ISO/IEC

56

setPeriodicSyncElement

startRefTimein: Time
endRefTimein: Time
periodicityin: Time
syncDatain: RefSyncElement
exceptions: {WrongState, WrongValue}

The same synchronization element is defined at the time values:
startRefTimein, startRefTimein+periodicityin, startRefTime in+2*periodicityin, … ,

etc., until the value of endRefTimein is exceeded. Using the values of speed and the time register, corresponding
reference points are also set on the progression space; however, if the speed and/or the time register change, the
reference points on the progression space must be redefined.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue startRefTime in or endRefTimein have incorrect values, the perio-
dicityin value is not positive, or a synchronization element would
be overwritten. The first tag in the exception data is set to the
string “WrongPosition”, “WrongPeriodicity”, or “Overwrite”,
respectively. In the last case, the rest of the exception tags list the
conflicting time values.

deletePeriodicSyncElement

startRefTimein: Time
endRefTimein: Time
periodicityin: Time
exceptions: {WrongState, WrongValue}

The synchronization elements defined at the time values:
startRefTimein, startRefTimein+periodicityin, startRefTime in+2*periodicityin, … ,

etc., until the value of endRefTimein is exceeded, are deleted.

Exceptions raised:

WrongState The object state should have been in PAUSED or STOPPED.

WrongValue The values of startRefTime in or endRefTimein are incorrect, the
periodicityin value is not positive, or no synchronization ele-
ments have been stored at these time values. The strings
“WrongPosition”, “WrongPeriodicity”, or “NoSync”, respec-
tively, are set as the first tag in the exception data.

TimeSynchronizable

© ISO/IEC ISO/IEC 14478-2:1998(E)

57

9.11.3 TimeLine object

TimeLine

TimeSynchronizable[Time]

speed: Time [Retrieve Only]

The value of this attribute (inherited from TimeSynchronizable) has the constant value 1.

TimeLine

ISO/IEC 14478-2:1998(E) © ISO/IEC

58

9.11.4 TimeSlave object

TimeSlave[C]

TimeSynchronizable[C] redef (speed)

master: RefTimeSynchronizable

The value may be set to NULLObject, in which case no synchronization with external master is done. This is
also the initial value.

Exceptions raised (when setting the master):

WrongState The object state should have been STOPPED.

speed: C

In the case the value of master is not NULLObject, this value is measured with the ticks of the master.

Exceptions raised (when setting the speed):

WrongState The object state should have been PAUSED or STOPPED.

inquireAlignment

positionSpaceout: Time

Returns the current alignment with the master.

Exceptions raised: None.

setSyncEventHandlers

syncEventHandlersin: seq (Time × RefCallback)
exceptions: {WrongValue}

Set a sequence of event handlers for an increasing sequence of threshold values. The object will raise an event
if the alignment exceeds the corresponding threshold. The events have the following structure tags: event name
is “OutOfSync”, event data contains one key–value pair, using “Discrepancy” as key and the actual alignment
as a (float) value.
An object reference may be NULLObject, in which case no event will be raised for the corresponding threshold.
An empty sequence will turn off all reporting of alignment discrepancies.

Exceptions raised:

WrongValue The values are invalid. The exception data lists the offending pairs.

TimeSlave

© ISO/IEC ISO/IEC 14478-2:1998(E)

59

9.12 Enhanced Property management

9.12.1 PropertyInquiry object

Properties defined:

Capabilities defined:

None.

PropertyInquiryabstract

EnhancedPREMOObject

inquireNativePropertyValue

keyin: Key
nativeValueout: seq Value
exceptions: {InvalidKey}

The operation returns the native property values for keyin. This native property value represents the value or
values the project instance can take on for keyin. A native property value is available for all properties which
are defined as part of the object’s functional specification.

The nativeValueout is typically a sequence of values (e.g., if the type of the corresponding property is defined
as a String), or a minimum–maximum range (if the value is a numerical type). The specification of the property
shall define the return type of the result of operation invocation if this is not the case.

Exceptions raised:

InvalidKey The key is invalid.

PropertyInquiry

Key Type of Value R.O or R/W Description

LocationK String R.O. Implementation and environment
dependent value; describes network
location

VendorTagK String R.O. Implementation and environment
dependent value.

ReleaseK String R.O. Implementation and environment
dependent value.

ISO/IEC 14478-2:1998(E) © ISO/IEC

60

9.12.2 PropertyConstraint object

PropertyConstraintabstract

PropertyInquiry redef (defineProperty, addValue)

defineProperty

keyin: Key
valuein: seq Value
exceptions: {ReadOnlyProperty, InvalidValue}

This operation is inherited from EnhancedPREMOObject. The only additional behaviour is that the value is
checked against the native property value of keyin, in case it exists. Refer to 9.7 (page 34) for further details.

Additional exceptions raised:

InvalidValue A native property value is defined for keyin, but valuein does not
abide to this restriction. The exception data returns the sequence of
invalid values.

addValue

keyin: Key
valuein: Value
exceptions: {ReadOnlyProperty, InvalidValue}

This operation is inherited from EnhancedPREMOObject. The only additional behaviour is that the value is
checked against the native property value of keyin, in case it exists. Refer to 9.7 (page 34) for further details.

Additional exceptions raised:

InvalidValue A native property value is defined for keyin, but valuein does not
abide to this restriction

bind

exceptions: {InvalidValue}

Properties, which are defined to be static (i.e., whose keys are not listed with the property DynamicPropertyL-
istK), and which have been defined as part of the object’s specification, cannot be changed any more. Any at-
tempt to change these values will lead to raising the ReadOnlyProperty exception.

The operation also checks whether the property values follow the restrictions expressed through the property
ValueSpaceNameK property (see 8.1.3.1.2, page 24, for further details). An exception is raised if this is not the
case and the values are not bound.

Exceptions raised:

InvalidValue Some values are not abiding to the restriction expressed by Val-
ueSpaceNameK. The exception data is a sequence of sequence of
key–value pairs; each included sequence lists the incompatible
keys with the corresponding incompatible values.

unbind

© ISO/IEC ISO/IEC 14478-2:1998(E)

61

Properties, which are defined to be static (i.e., whose keys are not listed with the property DynamicPropertyL-
istK) can be changed again.

Exceptions raised: None.

constrain

constraintsin: seq (Key × seq Value)
currentValuesout: seq (Key × seq Value)
exceptions: {InvalidKey, InvalidValue}

The operation receives a sequence of key–value pairs in constraintsin, and tries to set the values for each of the
keys involved. Keys cannot be private. See page 22 for a precise definition of how the new values are derived.
The operation returns the new set of values set for each keys.

Exceptions raised:

InvalidKey Invalid key. The exception data lists the invalid keys.

InvalidValue One of the values is of an inappropriate type for the corresponding
key. The exception data is a sequence of key–value pairs; the keys
are those which have invalid values, and the value is the sequence
of invalid data.

select

constraintsin: seq (Key × seq Value)
currentValuesout: seq (Key × seq Value)
exceptions: {InvalidKey, InvalidValue}

The operation is used to determine the best–fit values based upon the intersection of constraintsin and the cur-
rent values assigned to the key. Keys cannot be private. The selected key–value pairs are returned as the oper-
ation output and the current values for the key are set.

Exceptions raised:

InvalidKey Invalid key. The exception data lists the invalid keys.

InvalidValue One of the values is of an inappropriate type for the corresponding
key. The exception data is a sequence of key–value pairs; the keys
are those which have invalid values, and the value is the sequence
of invalid data.

PropertyConstraint

ISO/IEC 14478-2:1998(E) © ISO/IEC

62

Properties defined:

Capabilities defined:

Key Type of Value R.O or R/W Description

ValueSpaceNameK seq seq (Key × Value) R.O List of allowable property value combi-
nations (see page 23).

The type of the native property value is
analogous the type of the value.

MutablePropertyListK seq Key R.O. List of mutable properties (see
page 24).

The type of the native property value is
analogous the type of the value.

DynamicPropertyListK seq Key R.O. List of dynamic properties (see
page 24).

The type of the native property value is
analogous the type of the value.

Key Type of Value Values

ValueSpaceNameCK seq Key The default value is empty, i.e., all pos-
sible combinations of properties is
allowed. Subtypes may assign value to
this capability, which means that a set
of mutual dependency is defined.

In the case of multiple subtyping, the
values of the capability in the subtype
is the concatenation of the values in the
supertypes.

MutablePropertyListCK seq Key The default value is empty, i.e., no
mutable properties may be defined;
subtypes may assign a value to this
capability.

DynamicPropertyListCK seq Key The default value is empty, i.e., no
dynamic properties may be defined;
subtypes may assign a value to this
capability.

© ISO/IEC ISO/IEC 14478-2:1998(E)

63

9.13 Creating PREMO objects

9.13.1 GenericFactory object

Properties defined:

Capabilities defined:

None.

GenericFactory

PropertyInquiry

createObject

typein: ObjectType
constraintsin: seq (Key × seq Value)
initArgin: Value
objectRefout: RefPropertyInquiry
exceptions: {InvalidCapabilities, CannotMeetCapabilities, InvalidType, IncorrectInit}

An object reference is returned. The reference refers to an object of type typein, and whose native property val-
ues, corresponding to the keys in constraintin, are supersets of the values in constraintin. If the object, referred
to by objectRefout, has to be created, the value of initArgin is used as an argument for the initialize operation of
the object. If an appropriate object reference cannot be found, or the object cannot be created, an exception is
raised and the value of objectRefout is NULLObject.

Exceptions raised:

InvalidCapabilities One of the keys or one of the values in constraintin are invalid.

CannotMeetCapabilities No object, abiding to the constrained specified in constraintin, could
be created or accessed. The exception data lists the subset of con-
straintin which could not be satisfied.

InvalidType typein does not refer to a subtype of PropertyInquiry .

IncorrectInit The initArgin value leads to an incorrect initialization.

GenericFactory

Key Type of Value R.O or R/W Description

TypesK seq ObjectType R.O. List of types the GenericFactory
instance can create.

The type of the native property value is
analogous the type of the value.

ISO/IEC 14478-2:1998(E) © ISO/IEC

64

9.13.2 FactoryFinder object

FactoryFinder

EnhancedPREMOObject

findFactories

typein: ObjectType
objectConstraintsin: seq (Key × seq Value)
factoryConstraintsin: seq (Key × seq Value)
factoriesout: seq RefGenericFactory
exceptions: {InvalidCapabilities, CannotMeetCapabilities,InvalidType}

This operation returns a sequence of references to Factory objects, all potentially capable of creating an object
of type typein, and matching the constraints described in objectConstraints in (by a possible invocation of the
createObject operation). If the value of typein is NULLObject, this argument is disregarded. If the factoryCon-
straintsin is not empty, the native property values of all factory objects, returned by the operation, are supersets
of the values in factoryConstraintsin.

Exceptions raised:

InvalidCapabilities One of the keys or one of the values in constraintin are invalid.

CannotMeetCapabilities No factory, abiding to the constrains specified in objectConstraintsin,
and factoryConstraintsin could be created or accessed. The exception
data returns two sequences of key–value pairs, giving the subset of
objectConstraintsin and factoryConstraints in, respectively, which
could not be satisfied.

InvalidType typein does not refer to NULLObject or a subtype of PropertyInquiry.

FactoryFinder

© ISO/IEC ISO/IEC 14478-2:1998(E)

65

10 Component specification

The foundation component of PREMO defines two profiles: a basic and an extended one. The extended profile includes:

— the property inquiry and the property constrain mechanisms;

— object factories and factory finders, i.e., tools to give a finer control over the life cycle of PREMO objects.

FoundationComponent

Basic

provides service

EnhancedPREMOObject,
Controller,
EventHandler, SynchronizationPoint, ANDSynchronizationPoint,
SysClock, Timer, Timeline

provides type

PREMOObject, SimplePREMOObject, Callback, CallbackByName, EnhancedPREMOObject,
KeyValuePair, PropertyInfo,
Event,
Constraint,
ActionElement, SyncElement,
Controller,
EventHandler, SynchronizationPoint, ANDSynchronizationPoint,
Clock, SysClock, Timer,
Synchronizable, TimeSynchronizable, TimeSlave, Timeline

Extended

provides service

FactoryFinder, GenericFactory

provides type

PropertyInquiry, PropertyConstraint,
FactoryFinder, GenericFactory

requires type

Profile Basic

FoundationComponent

ISO/IEC 14478-2:1998(E) © ISO/IEC

66

Annex A
(normative)

Overview of PREMO Foundation Object Types

This annex gives an overview of all PREMO Object types defined in this part. This Annex does not add any new information,
and is here for easier reference only

PREMOObject

Ξinitialize
ΞinitializeOnCopy

Ξdestruct
inquireType

inquireTypeGraph
inquireImmediateSupertypes

SimplePREMOObject

Event

eventName
eventData

eventSource

Constraint

constraintOp
keyValue

SyncElement

eventHandler
syncEvent
waitFlag

Figure 11 — PREMO foundation object types (structures and callbacks)

Callback

callback

CallbackByName

callback

ActionElement

eventHandler
eventName

EnhancedPREMOObject

defineProperty
undefineProperty

addValue
removeValue

inquireProperties
getProperty

getPairs
matchProperties

setPropertyCallback

© ISO/IEC ISO/IEC 14478-2:1998(E)

67

.

Controller

handleEvent
ΞhandleUnknownEvent

ΞcheckTransition
ΞonLeave
ΞonEnter
setAction

removeAction
setActionOnPair

removeActionOnPair

Figure 12 — PREMO foundation object types, cont. (controller and event handler objects)

EnhancedPREMOObject

defineProperty
undefineProperty

addValue
removeValue

inquireProperties
getProperty

getPairs
matchProperties

setPropertyCallback

Callback

callback

currentState
possibleStates

EventHandler

register
unregister

dispatchEvent

SynchronizationPoint

addSyncEvent
deleteSyncEvent

ANDSynchronizationPoint

ISO/IEC 14478-2:1998(E) © ISO/IEC

68

Figure 13 — PREMO foundation object types, cont. (event handlers, time and synchronization objects)

Clock

inquireTick

tickUnit
accuracyUnit

accuracy

TimeLine

C / C

Time / C

SysClock Timer

start
stop

pause
resume

reset

timerCurrentState

TimeSlave[C]

inquireAlignment
setSyncEventHandlers

C / C

CallbackByName

callback

EnhancedPREMOObject

defineProperty
undefineProperty

addValue
removeValue

inquireProperties
getProperty

getPairs
matchProperties

setPropertyCallback

currentDirection
loopCounter
currentState

currentPosition
minimumPosition
maximumPosition

startPosition
endPosition
repeatFlag

nloop

resetLoopCounter
ΞprogressPosition

ΞprocessData
start
stop

pause
resume

jump
setSyncElement

deleteSyncElement
getSyncElements

setPeriodicSyncElement
deletePeriodicSyncElement

setActionOnPair
removeActionOnPair
clearSyncElements

Synchronizable[C]

TimeSynchronizable[C]

speed
currentPosition

minimumPosition
maximumPosition

startPosition
endPosition

timeToSpace
spaceToTime

jump
setSyncElement

deleteSyncElement
getSyncElements

setPeriodicSyncElement
deletePeriodicSyncElement

© ISO/IEC ISO/IEC 14478-2:1998(E)

69

Figure 14 — PREMO foundation object types, cont. (enhanced property services and factories)

PropertyInquiry

inquireNativePropertyValue

GenericFactory

CreateObject

FactoryFinder

findFactories

PropertyInquiry

bind
unbind

constrain
select

EnhancedPREMOObject

defineProperty
undefineProperty

addValue
removeValue

inquireProperties
getProperty

getPairs
matchProperties

setPropertyCallback

ISO/IEC 14478-2:1998(E) © ISO/IEC

70

Annex B
(normative)

Extensibility for PREMO objects

This annex does not add any new information, and is here for easier reference only.

Objects defined in a PREMO component can be extended in other components, by a specific implementation, or by an applica-
tion. Objects defined by PREMO can be extended through:

— subtyping; this may include:

- inclusion of new supertypes,

- semantic overloading of operations inherited from a supertype,

- addition of new operations or attributes;

— definition of new property keys;

— extension of capability and/or native property values for inherited keys.

The following characteristics of objects cannot be used for extensions:

— the type graph of the object cannot be made smaller, i.e., only new supertypes can be included, but existing supertypes
cannot be disregarded;

— the signature of inherited operations cannot be changed in a subtype;

— inherited protected operations cannot be declared to be un–protected in subtypes (although subtypes may add new pro-
tected operations);

— the operation request mode of an operation cannot be changed in a subtype;

— retrieve only attributes cannot be declared to be fully writeable in a subtype;

— property keys defined in the PREMO specification shall be available for all subtypes;

— capability and native property values of properties defined in the PREMO specification cannot be restricted to a subset.

To ensure portability, new components as well as PREMO implementations shall thoroughly document their extensions along all
these dimensions of extensibility.

© ISO/IEC ISO/IEC 14478-2:1998(E)

71

Annex C
(informative)

An example for event–based synchronization

The example on Figure 15 shows a very simple synchronization pattern synchronizing two objects based on internal reference
points. These objects may be, for example, two video objects where the requirement is to synchronize the playback through spe-
cific, application–dependent frames.

NOTE — As a specific example, the video sequences might contain a sequence of ultrasound heart images covering one full heartbeat, and
presented repeatedly; two video sequences are made of the heart under different circumstances. In many cases, it is useful to compare such
sequences recorded under different conditions or at different times. For instance, a stress test compares the movements of the heart wall after a
rest and just after the person has exercised, when the heart frequency is much higher. To be able to do the comparison, the heart movements
have to be synchronized by adjusting the playback speeds of the sequences individually, so that certain characteristic images, i.e., frames,
would appear on the screen side–by–side.

A simple approach is to implement these video sequences as subtypes of Synchronizable objects, capable of displaying the re-
quired images. Reference points are placed at the important frames of both objects. Corresponding points from both objects are
connected to an instance of an ANDSynchronizationPoint and have their wait flag set to TRUE; also, the resume operation of both
objects is registered as even recipients in the ANDSynchronizationPoint object. Each object progresses individually; when it
reaches a reference point, it notifies the synchronization point then goes into WAITING state, waiting to be resumed. This is done
by the synchronization point, which will invoke a resume operation on the objects when both have issued the events defined on
a pair of matching reference points.

Obviously, this is a simplified solution. In a more complex situation, a separate TimeLine object might be used to synchronize
with the video objects to ensure a more uniform playback. Also, the model above presupposes that all reference points have been
set up once and for all for the objects. This could also be done dynamically, i.e., the synchronization point can be connected to
another object, that would then set the next reference points and invoke the resume calls (instead of calling resume from the
ANDSynchronizationPoint object).

ANDSynchronizationPoint

dispatchEvent
register

…

dispatchEvent

dispatchEvent

resume

resume

Figure 15 — A simple synchronization example

