
ISO/IEC 14478-4:1998(E)

ii

Contents

Foreword. .vii

Introduction . viii

1 Scope . 9

2 Normative references. 9

3 Definitions . 10

3.1 PREMO Part 1 definitions . 10

3.2 PREMO Part 2 definitions . 10

3.3 PREMO Part 3 definitions . 10

3.4 Additional Definitions . 10

4 Symbols and abbreviations . 12

5 Conformance . 12

6 Overview of the Modelling, Rendering and Interaction Component. 12

6.1 Introduction . 12

6.2 Overview . 12

6.3 Devices for Modelling, Rendering, and Interaction 16

6.4 Primitives and Coordinates. 17
6.4.1 Introduction. 17

© ISO/IEC ISO/IEC 14478-4:1998(E)

iii

6.4.2 Coordinates . 17

6.4.3 The Primitive Hierarchy in PREMO . 17
6.4.3.1 Overview . 17
6.4.3.2 Captured Primitives. 18
6.4.3.3 Form Primitives. 18
6.4.3.4 Modifier Primitives . 18
6.4.3.5 Reference Primitives . 19
6.4.3.6 Structured Primitives. 19
6.4.3.7 Tracer Primitives . 19
6.4.3.8 Wrapper Primitives . 19

6.4.4 Primitives and MRI Devices. 19

6.5 Scene . 20

6.6 Interaction . 21

6.7 Coordinators . 21

6.8 Dependencies on other Parts . 23

6.9 Subtyping Diagram . 23

7 Coordinates . 23

7.1 General Coordinates . 23

7.2 Colour . 24

7.3 TimeLocation . 25

8 Primitives. 25

8.1 Introduction . 25

8.2 Captured Primitives. 27

8.3 Form Primitives. 27
8.3.1 Introduction. 27

8.3.2 Audio Primitives . 27

8.3.3 Geometric Primitives . 28

8.3.4 Tactile Primitives . 28

8.3.5 Text Primitives . 28

8.4 Modifier Primitives . 28
8.4.1 Introduction. 28

8.4.2 Acoustic Modifiers . 29

8.4.3 Structural Modifiers . 29

8.4.4 TimeFrame Modifiers . 29

8.4.5 Visual Modifiers . 30

8.5 Reference Primitives . 30
8.5.1 References. 30

8.5.2 The Name Object Type. 30

8.6 Structured Primitives. 31
8.6.1 Introduction. 31

8.6.2 Aggregate . 31

8.6.3 TimeComposite. 32

8.7 Tracer Primitives . 35

8.8 Wrapper Primitives . 36

9 Modelling, Rendering and Interaction Device . 36

9.1 Introduction . 36

ISO/IEC 14478-4:1998(E) © ISO/IEC

iv

9.2 MRI_Format . 36

9.3 Efficiency . 36

9.4 Behaviour . 37

10 Modeller . 37

11 Renderer . 38

12 MediaEngine. 38

13 Scene . 39

14 Interaction . 42

14.1 Introduction . 42

14.2 Input Device . 42

14.3 Router . 43

15 Coordinator . 43

16 Functional Specification . 45

16.1 Introduction . 45

16.2 Non-object data types . 45

16.3 Exceptions . 46

16.4 Objects for coordinate spaces . 47
16.4.1 Coordinate object . 47

16.4.2 Colour object. 48

16.4.3 TimeLocation object . 48

16.5 Name object . 49

16.6 Objects for media primitives . 49
16.6.1 Primitive object . 49

16.6.2 Captured object . 50

16.6.3 Objects describing primitives with spatial and/or temporal form. 50
16.6.3.1 Form object . 50
16.6.3.2 Objects describing form primitives for audio media data 50
16.6.3.3 Objects describing form primitives for geometric media data 51

16.6.4 Objects describing primitives for the modification of media data 52
16.6.4.1 Modifier object . 52
16.6.4.2 Objects describing modifier primitives for audio media data 52
16.6.4.3 Objects describing modifier primitives for structural aspects of media data 53
16.6.4.4 TimeFrame object . 54
16.6.4.5 Objects describing modifier primitives for visual aspects of media data. 54

16.6.5 Reference object . 55

16.6.6 Objects for organising primitives into structures . 56
16.6.6.1 Structured object . 56
16.6.6.2 Aggregate object. 56
16.6.6.3 Objects for organising media data within time . 57

16.6.7 Tracer object . 58

16.6.8 Wrapper object . 59

16.7 Objects for describing properties of devices . 59
16.7.1 MRI_Format object . 59

16.7.2 EfficiencyMeasure object . 60

16.8 Processing devices for media data . 60
16.8.1 MRI_Device object . 60

© ISO/IEC ISO/IEC 14478-4:1998(E)

v

16.8.2 Modeller object . 60

16.8.3 Renderer object. 61

16.8.4 MediaEngine object . 61

16.9 Scene object. 63

16.10 Objects for supporting interaction. 65
16.10.1 InputDevice object . 65

16.10.2 Router object. 66

16.11 Coordinator object . 67

17 Component Specification . 69

A Overview of PREMO Modelling, Rendering and Interaction Object Types .
70

B Diagrammatic Conventions . 73
 B.1 Introduction . 73
 B.2 General Graphical Signatures . 73
 B.3 Conventions for Devices and Communication . 74

C Relationship between Part 4 and the CGRM . 75
 C.1 Introduction . 75
 C.2 Architectural Links . 75
 C.3 Processing Links . 76
 C.4 Input and Output Primitives . 76
 C.5 Storage. 76

D A typical example scenario of MRI usage . 77

ISO/IEC 14478-4:1998(E) © ISO/IEC

vi

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardi-
zation. National bodies that are members of ISO or IEC participate in the development
of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
government and non–governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical
committee: ISO/IEC JTC1. Draft International Standards adopted by the joint techni-
cal committees are circulated to the national bodies for voting. Publication as an Inter-
national Standard requires approval by at least 75% of the national bodies casting a
vote.

ISO/IEC 14478–4 was prepared by Joint Technical Committee ISO/IEC JTC1, Infor-
mation technology, Subcommittee SC24, Computer graphics and image processing.

ISO/IEC 14478 consists of the following parts under the general title Information
technology — Computer graphics and image processing — Presentation Environment
for Multimedia Objects (PREMO):

— Part 1: Fundamentals of PREMO

— Part 2: Foundation component

— Part 3: Multimedia systems services

— Part 4: Modelling, rendering, and interaction component

Annex A forms an integral part of this part of ISO/IEC 14478. Annexes B to D are for
information only.

© ISO/IEC ISO/IEC 14478-4:1998(E)

vii

Introduction

The Modelling, Rendering and Interaction component of PREMO describes facilities
for the modelling and presentation of, and interaction with, multidimensional data that
utilises multiple media in an integrated way. That is, the data may be composed of en-
tities that can be rendered using graphics, sound, video or other media, and which may
be interrelated through both spatial coordinates and time.

The objective of this component is to provide developers and users of modelling and
rendering applications with a framework for supporting the definition and use of inter-
operable devices within a distributed setting. It achieves this by:

a) providing an extensible framework of primitives for use in modelling, render-
ing and interaction which encompass multiple media, and which can be organized
into larger structures and embedded into scenes.

b) extending the resource and device hierarchies of the PREMO Part 3 (Multi-
media Systems Services) Component to allow modelling, rendering and interac-
tion to be uniformally integrated into a network of objects for managing the
production and utilization of multimedia data.

c) utilizing the property and capability management services of PREMO Part 3
to characterize the behaviour of modelling, rendering and interaction devices,
allowing an application to be configured from such devices such that constraints
on performance and functionality are satisfied.

d) building on the object model and foundation objects of PREMO Part 1 and
Part 2 to allow subsequent components to realize and extend specific modelling,
rendering and interaction functionality.

This component follows PREMO Part3 in describing the external interface of object
types and other entities involved in modelling, presentation and interaction, but not the
internal structures needed to implement these. That is, it is not the purpose of this com-
ponent to provide a set of building blocks that can be assembled into a modeller or a
renderer. Rather, the component provides facilities to enable devices, built with vari-
ous applications or performance trade-offs in mind, to interoperate in a heterogenous
presentation environment.

ISO/IEC 14478-4:1998(E) © ISO/IEC

viii

9

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 14478-4:1998(E)

Information technology — Computer graphics and image
processing — Presentation Environment for Multimedia Objects
(PREMO) —
Part 4: Modelling, Rendering, and Interaction Component

1 Scope

This part of ISO/IEC 14478 describes a set of object types and non-object types to provide the construction of, presentation of,
and the interaction with Multimedia information. The multimedia information can be graphics, video, audio, or other types of
presentable media. This information can be enhanced by time aspects. Throughout this document this part of ISO/IEC 14478 will
also be referred to as “Modelling, Rendering and Interaction”, and abbreviated as MRI.

The Modelling, Rendering and Interaction Component constitutes a framework of ‘Middleware’, system software components
lying between the generic operating system and computing environment, and a specific application operating as a client of the
services and type definitions provided by this component. It provides a framework over the foundation objects and multimedia
systems services defined in other Parts of the international standard for the development of a distributed and heterogeneous net-
work of devices for creating multimedia models, rendering these models, and interacting with this process.

The Modelling, Rendering and Interaction Component encompasses the following characteristics:

a) provision of a hierarchy of multimedia primitives as an abstract framework for describing the capabilities of modelling
and rendering devices, and for enabling their interoperation;

b) within the primitive hierarchy, specific provision for describing the temporal structure of multimedia data through the
stepwise construction of structured primitives from component data;

c) provision of abstract types for modellers, renderers and other supporting devices, enabling the integration of such devices
or any future subtypes representing real software or hardware, into a processing network of such devices;

d) provision of an object type to map synchronization requirements expressed within multimedia primitives into control of
the stream and synchronization mechanisms provided by ISO/IEC 14478-2 and ISO/IEC 14478-3.

The Modelling, Rendering and Interaction Component relies on the object types and services defined in PREMO Part 2: Foun-
dation Components (ISO/IEC 14478-2), and PREMO Part 3: Multimedia Systems Services (ISO/IEC 14478-3).

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO/IEC
14478. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agree-
ments based on this part of ISO/IEC 14478 are encouraged to investigate the possibility of applying the most recent editions of
the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 11072:1992, Information technology — Computer graphics — Computer Graphics Reference Model (CGRM).

ISO/IEC 7942–1:1994, Information technology — Computer graphics and image processing — Graphical Kernal System (GKS)
— Part 1: Functional description.

ISO/IEC 9592:1997, Information technology — Computer graphics and image processing — Programmer’s Hierarchical Inter-
active Graphics System (PHIGS).

ISO/IEC 14478-4:1998(E) © ISO/IEC

10

ISO/IEC 14478–1:1998, Information technology — Computer graphics and image processing — Presentation Environment for
Multimedia Objects (PREMO) — Part 1: Fundamentals of PREMO

ISO/IEC 14478–2:1998, Information technology — Computer graphics and image processing — Presentation Environment for
Multimedia Objects (PREMO) — Part 2: Foundation component

ISO/IEC 14478–3:1998, Information technology — Computer graphics and image processing — Presentation Environment for
Multimedia Objects (PREMO) — Part 3: Multimedia systems services

3 Definitions

3.1 PREMO Part 1 definitions

This part of ISO/IEC 14478 makes use of all terms defined in ISO/IEC 14478-1 (Fundamentals of PREMO).

3.2 PREMO Part 2 definitions

This part of ISO/IEC 14478 makes use of all terms defined in ISO/IEC 14478-2 (Foundation component).

3.3 PREMO Part 3 definitions

This part of ISO/IEC 14478 makes use of all terms defined in ISO/IEC 14478-3 (Multimedia systems services component).

3.4 Additional Definitions

For the purposes of this part of ISO/IEC 14478, the following definitions apply.

3.2.1 modeller: a virtual device that produces primitives on at least one output port.

3.2.2 renderer: a device that accepts primitives on at least one of its input ports.

3.2.3 media engine: a virtual device that accepts primitives from at least one of its input ports, and produces primitives on
at least one of its output ports.

3.2.4 presentation: a collection of primitives that can be perceived by the operator.

3.2.5 coordinate: a primitive used to define a location in an nD space.

3.2.6 primitive: a structure describing information to be rendered, or information received through interaction.

3.2.6.1 form primitive: a primitive whose presentation has to be constructed by a renderer from an explicit description
in terms of aspects or properties that characterize a class of perceivable representations.

3.2.6.1.1 geometric primitive: a form primitive used to define a shape or extent within nD space.

3.2.6.2 captured primitive: a primitive for which some or all of the perceivable aspects of the primitive have been en-
coded in some format defined externally to the PREMO standard.

3.2.6.3 structured primitive: a primitive that contains a collection of other primitives.

3.2.6.4 modifier primitive: a primitive that describes a change to the presentation of another primitive.

3.2.6.4.1 acoustic modifier: a modifier that changes properties of the sound generated by other primitives.

3.2.6.4.2 structural modifier: a modifier that affects the spatial and/or temporal aspects of another primitive.

3.2.6.4.3 visual modifier: a modifier that affects the (non structural) visual appearance of a primitive.

© ISO/IEC ISO/IEC 14478-4:1998(E)

11

3.2.6.5 wrapper primitive: a primitive that carries a value drawn from some PREMO non-object data type.

3.2.6.6 tracer primitive: a primitive that carries an event for use in monitoring and coordinating the transfer of media
data across a network.

3.2.7 input device: a device used to obtain data from the operator.

3.2.8 graphics: the construction, manipulation, analysis and presentation of pictorial representations.

3.2.9 scene: a device for storing and controlling access to a collection of primitive structures.

3.2.10 primitive structure: a collection of primitives organized into a structure that represents some or all of the data that
describes a multimedia presentation.

3.2.11 coordinator: a MRI device that can manipulate the streams connecting its components.

3.2.12 router: a device for controlling the flow of data between streams connected to its ports.

3.2.13 temporal extent: the duration in time allocated or used for the presentation of some primitive.

3.2.14 operator: the external object that sends or receives information through a virtual device interface.

3.2.15 application: the external object or client that uses a PREMO system by creating objects, invoking operations on ob-
jects, and using types defined by PREMO. Applications are not modelled in the PREMO system, but their interactions with
a PREMO system are modelled.

The following alphabetical list gives the sub-clause of each definition.

acoustic modifier 3.2.6.4.1
application 3.2.15
captured primitive 3.2.6.2
coordinate 3.2.5
coordinator 3.2.11
form primitive 3.2.6.1
geometric primitive 3.2.6.1.1
graphics 3.2.8
input device 3.2.7
media engine 3.2.3
modeller 3.2.1
modifier primitive 3.2.6.4
operator 3.2.14
presentation 3.2.4
primitive 3.2.6
primitive structure 3.2.10
renderer 3.2.2
router 3.2.12
scene 3.2.9
structural modifier 3.2.6.4.2
structured primitive 3.2.6.3
temporal extent 3.2.13
tracer primitive 3.2.6.6
visual modifier 3.2.6.4.3
wrapper primitive 3.2.6.5

ISO/IEC 14478-4:1998(E) © ISO/IEC

12

4 Symbols and abbreviations

CGRM: Computer Graphics Reference Model.

CSG: Constructive Solid Geometry

GKS: Graphical Kernel System.

IEC: International Electrotechnical Commission.

ISO: International Organization for Standardization.

MPEG: Moving Picture Experts Group.

MRI: Modelling, Rendering and Interaction

MSS: Multimedia Systems Services

PHIGS: Programmers Hierarchical Interactive Graphics System.

PREMO: Presentation Environment for Multimedia Objects.

VRML: Virtual Reality Modeling Language.

nD: Multi-dimensional.

2D: Two-dimensional.

3D: Three-dimensional.

5 Conformance

A conforming implementation of the PREMO Modelling, Rendering and Interaction Component shall comply with the general
conformance rules defined in clause 5 of ISO/IEC 14478-1 and the component specification in clause 16.

6 Overview of the Modelling, Rendering and Interaction Component.

6.1 Introduction

This clause presents an overview of the modelling, rendering, and interaction component (Part 4) of PREMO. It summarises the
concepts defined in the document, and explains how these concepts contribute to the goals set out in the Introduction. More de-
tailed descriptions of the concepts used in the overview are given in subsequent clauses. This part of ISO/IEC 14478 also makes
extensive use of facilities provided by PREMO parts 1-3, in particular the device and stream concepts introduced in ISO/IEC
14478-3. A summary of these dependencies is included in this clause.

6.2 Overview

The model underlying this part of ISO/IEC 14478 is that a multimedia system consists of modellers, renderers, and other devices
(some media specific) linked together via streams that carry data of a particular format. These concepts of stream and device are
those defined in ISO/IEC 14478-3. A device consists of a processing facility, together with a number of ports through which it
can accept input and produce output, using a format defined by the port. Figure 1 shows a high-level view of a (simplified) ex-
ample system in which a graphical user interface is used to control parameters of an audio-visual presentation system. Rectangles
on the sides of devices represent ports, and the thick lines between such ports represent media flow via streams. Thin lines rep-
resent other forms of interaction, for example operation invocation. See also Annex B for a table defining the symbols used in
the figure. The system in Figure 1 consists of:

© ISO/IEC ISO/IEC 14478-4:1998(E)

13

— two modellers, one for audio data and one for graphical data, that might be used to construct and edit primitives via an
interface to the application specific to the needs of each modeller;

— a video engine, accepting a stream of video data from the application and constructing a stream of information in some
video format;

— a scene, which encapsulates primitives produced by the two modellers and which mediates access to the collection of
primitives by both the modellers and the associated renderers;

— an audio engine, that takes primitives from the scene and converts into a data format that can be used to drive an audio-
specific device;

— a graphics engine (acting as a mixer or composition tool) uses the video output from the video renderer and primitives
from the scene to construct a further stream of primitives, integrating the two sets of source data within some appropriate
visual representation. The primitives produced by the engine may be some subset suitable for input to a specific renderer;

— two renderers, one for audio and one for graphics, that convert a stream of primitives into a form that can be processed in
the context beyond the MRI network (in this case, presented to the end user of the application).

The figure shows just one way in which such a system might be implemented. A different implementation may collapse the three
engines into a single device, if it has access to a media engine that can take both graphical and audio primitives as input and that
can generate the corresponding output streams. Another implementation may decompose the graphics engine into, for example,
a number of components that manage specific functionalities such as viewing or clipping. Finally, a high-performance implemen-
tation might collapse all components into a single device.

Key components of this part are derived from the object types defined in ISO/IEC 14478-3, in particular the property inquiry and
constraint facilities. These types and facilities may be used by the factory mechanism described in ISO/IEC 14478-2 to produce
objects that meet certain requirements, and by the negotiation and QoS mechanisms for establishing and maintaining a network
of objects that satisfies specific properties. As a result, many of the object types defined in this part have an associated list of
properties for use in creation and negotiation. For example, modellers and renderers are derived (indirectly) from the VirtualDe-
vice type of ISO/IEC 14478-3, and thus inherit the Property Inquiry services. Each renderer and modeller has a collection of prop-
erties that characterise its capabilities in terms of its inputs, outputs and quality of service. An application using the facilities of
this part can request creation of a renderer from a renderer factory by invoking the ‘create_object’ operation using the type 'ren-
derer' as the name of the object type and passing a structure containing the required capabilities. Alternatively, an application that
is aware that the rendering interface it requires is defined by a specific subtype of the renderer can request the factory to produce
a renderer of that specific type.

Figure 1 — An audio/visual system

audio
engine

video
engine

audio

graphics
from

application

scene

graphics
engine

audio
modeller

graphics
modeller

renderer

renderer

ISO/IEC 14478-4:1998(E) © ISO/IEC

14

For simplicity, Figure 1 illustrates devices used in presentation only. The same approach of using specialised virtual devices con-
nected by data streams is employed for handling input and interaction. Figure 2 extends the example with a simple framework
for input handling. This introduces two new devices, and a new information flow between two renderers, shown in the outlined
regions of the figure.

— The mouse is an example of an InputDevice that can provide primitives for processing elsewhere in the network, either
via a stream (as shown) or through a procedural interface or callback mechanism.

— A Router can be incorporated to allow a data stream to be sent to specific devices depending on some internal state. The
Router device achieves this by also subtyping from the Controller object defined in ISO/IEC 14478-2.

— Although Engine objects primarily operate on streams of primitives intended for presentation, as the example shows, an
engine may also have ports that are used to receive (and in the case of the graphics engine, to transmit) primitives used to
carry data about input.

Figure 1 and Figure 2 focus on the main streams and virtual devices involved in a simple MRI network. In addition to these, ISO/
IEC 14478-3 provides object types for establishing and controlling a collection of streams and devices. These types are called
VirtualConnection and Group, respectively.

An instance of VirtualConnection is an object that represents an abstract view of media transport between devices, allows control
over aspects of the connection, and is responsible for negotiating the connection in terms of formats and quality of service con-
siderations etc. Several kinds of virtual connections are possible, depending on whether the devices have compatible ports, and
on whether a particular connection is local or networked. General examples of these are given in Annex D of ISO/IEC 14478-3.
If the ports of two devices are not compatible, or the devices are in different parts of a distributed environment, connection adap-
tors will be employed. These adapters are an implementation concept, not visible to the application, and are not defined as an
object type in the profile of ISO/IEC 14478-3.

Independent from issues of distribution and the existence of virtual connections, the Group object type provides applications with
the ability to manage a collection of objects that are instances of VirtualResource or its subtypes (e.g., devices and connections)
as a single resource. As Group is subtyped from VirtualResource, this arrangement can be hierarchical. Groups provides facilities
to acquire the resources needed to establish a number of connections, to monitor the end-to-end quality of service, and to provide
an application with a single access point for monitoring and controlling the flow of data across the resources that make up the
group.

router

Figure 2 — MRI network including interaction handling

mouse

audio
engine

video
engine

audio

graphics
from

application

scene

graphics
engine

audio
modeller

graphics
modeller

renderer

renderer

© ISO/IEC ISO/IEC 14478-4:1998(E)

15

Figure 3 shows one arrangement of groups could be used to implement the audio-visual rendering example. It also illustrates, for
completeness, where connection adaptors may be required. In considering distribution, it has been assumed that the following
sets of components are each located at separate nodes of a distributed system:

a) the modellers, the video engine, and the scene;

b) the audio engine and renderer;

c) the graphics engine, renderer, mouse, and router.

With respect to groups, there are a number of possible arrangements for the network. One such arrangement, consisting of four
groups (labelled A-D) has been shown in the figure. In more detail,

— group A is the outer(most), and contains the other three groups, the mouse and router, and the connections and adaptors
used to link devices in Groups B, C and D;

— group B contains the modellers, the video engine, and the scene, plus the virtual connections needed to link devices
within the group;

Figure 3 — Groups and connections in audio/visual system

audio
engine

video
engine

scene

graphics
engine

router

connection adaptorvirtual connection

A

B

C

D

audio

graphics

mouse

audio
modeller

modeller
graphics

renderer

renderer

ISO/IEC 14478-4:1998(E) © ISO/IEC

16

— group C contains the audio engine and renderer, and the virtual connection between them;

— group D contains the graphics engine and renderer, and the virtual connection between them.

Although these groups in the example are loosely based around the devices located at each node there is no assumption or re-
quirement in PREMO that there should be such a correspondence. Groups are a logical concept, and in general are independent
of the system organisation. Although users of this part of ISO/IEC 14478 may need to be aware of groups and connections and
may wish to make use of them explicitly when constructing a MRI network, ISO/IEC 14478-3 also provides the LogicalDevice
object types that can be used to hide much of this detail from an application. Furthermore, for applications that distribute presen-
tation data (e.g. primitives, or other media-specific formats) to multiple renderers or devices, the use of Coordinator devices may
also be necessary. The Coordinator object type is defined in this part of PREMO, and is a subtype of MRI_Device. Its role is
described in 6.7.

The purpose of this overview is to illustrate some of the key connections between the object types defined in this part and those
introduced by ISO/IEC 14478-1 to ISO/IEC 14478-3. In practice, the object types mentioned in the discussion will only be a sub-
set of those utilized by an application. For example, in the audio-visual scenario, mouse input is passed along a stream to the
graphics renderer, which may be providing immediate visual feedback on the changes made to certain control parameters (per-
haps by adjusting the drawing of interface elements showing the volume, speed etc. of the audio and video playback). Other
mechanisms, in particular event handlers and reference points, may also be present to control or mediate interaction between the
components of the system, but have not been mentioned in this overview.

6.3 Devices for Modelling, Rendering, and Interaction

This part of PREMO introduces a hierarchy of devices for processing streams of media data constructed using objects based on
the primitive hierarchy described elsewhere in this part (see 6.4). The root of this local hierarchy is the MRI_Device object type
that extends the VirtualDevice object type defined in Part 3. This means that the devices defined in this part as subtypes of
MRI_Device can be directly integrated into a network of more general devices that may include media-specific input and output
devices as well as more abstract processing nodes. An example of such a network has been developed in 6.2. As virtual devices,
MRI_Device and its subtypes contain a number of ports that allow either input or output of data in a particular format. The Format
object type is introduced in ISO/IEC 14478-3, and a small subtype hierarchy for certain common media formats is presented as
an informative annex (Annex C) of that part. The Modelling, Rendering, and Interaction component defines a subtype of the For-
mat object type, called MRI_Format, that characterises a data stream that carries the primitives described in 6.4. Subsequent PRE-
MO components, or applications, may specialize this format object type to define the input and output format of a MRI device
that can utilise a richer collection of primitives. Figure 4 illustrates the relationship between the Format and MRI_Format object
types, the examples of Format object types from Annex C of ISO/IEC 14478-3, and any future extensions for processing special-
ised streams of MRI primitives.

This part defines a number of subtypes of MRI_Device as abstract object types for particular kinds of processing functionality.
Three of these generalize the traditional computer graphics concerns, of modelling and rendering, to multimedia data processors.
These devices differ in the kind of interface that they are required to support for input and output.

— A Modeller is a device that provides at least one output port that can support MRI_Format. In contrast, the input interface
of a modeller is typically application-specific. A CSG modeller might offer operations that allow the construction and

Format

Formats for general devices, MRI_Format

Figure 4 — Format hierarchy

including examples in part 3 Annex C

Formats for MRI devices
(application specific) defined
by applications or future PREMO components

© ISO/IEC ISO/IEC 14478-4:1998(E)

17

manipulation of a CSG solid, while a modeller for music scores defined using audio primitives might have a direct manipu-
lation interface through which an end user interactively constructs the score, which the modeller can then pass as a stream of
primitives to other MRI devices for processing.

— A Renderer is a device that provides at least one input port that can use MRI_Format to accept primitives. The output
interface of a renderer is typically application specific. Renderers include devices that output primitives directly to end users
as a presentation (images, sound etc.) as well as devices that drive further software or hardware components of a system
through some interface, the nature of which is not of concern to this part. This does not preclude a specific renderer from uti-
lising PREMO functionality for its output mechanisms.

— A MediaEngine is both a Modeller and a Renderer. A MediaEngine is a device that offer at least one input port and at
least one output port that are capable of operating with MRI_Format, allowing the engine to accept, process and produce
streams of primitives. Media engines, like other MRI devices, may have additional ports that allow the device to accept or
produce data in other formats.

NOTE — If a media format such as MPEG is to be taken directly as input by a renderer, as for example in the audio/visual system shown in
Figure 1, then the raw input stream may need to be converted into a stream of primitives in which the MPEG data is carried within the
primitive structure described shortly. This will allow additional information to be attached, such as a geometric data to characterise the
position of the video data within a graphical scene. This transformation may either be a capability of a renderer, or may be realized by a
specific device that acts as a translator or pre-processor. Such translators could be introduced by subsequent components, if any, as an object
type derived from MediaEngine. A translator would have exactly two ports, one accepting a stream of an arbitrary format, the other generating
a stream of primitives, with the semantics that the translator simply ‘wraps’ the media stream into an appropriate primitive object.

6.4 Primitives and Coordinates

6.4.1 Introduction

The MSS component, which provides the base object types from which MRI devices are derived, contains no statement on the
content and structure of the data carried on streams and operated on by virtual devices. The contribution of the MRI component
is to add just such information about the data used to realize multimedia presentation and interaction. This data, which is de-
scribed by a hierarchy of PREMO object types, are called primitives. The organization of primitive types into categories or hier-
archies varies widely in practice. This part of ISO/IEC 14478 defines primitive object types where it is intended that client
applications, or any subsequent components that address the needs of specific domain areas or presentation technologies, extend
this hierarchy in a way most appropriate to their specific needs. By providing a common set of basic primitive types, this part of
PREMO is able to utilize the property and negotiation frameworks defined in ISO/IEC 14478-2 and ISO/IEC 14478-3 for estab-
lishing a network of MRI devices, and ensures that there is common vocabulary for basic MRI device capabilities.

6.4.2 Coordinates

Primitives within the PREMO hierarchy that address specific media such as graphics and audio are defined as abstract object
types to ensure that they can adequately be specialized to the needs of specific application areas or implementations. As such,
primitive object types do not define the structure of primitives in terms of coordinates within the various spaces (cartesian or other
geometric spaces, properties of sound, etc.) through which primitives are specified in practice. However, to support inter-opera-
bility between implementations of the primitive hierarchy, this part of ISO/IEC 14478 defines a generic object type for coordi-
nates within spaces of arbitrary dimensionality, subject to the constraint that the components representing each dimension of a
coordinate are each drawn from the one PREMO type.

A specialization of this notion of coordinate, to the representation of colours within a colour model, is also provided by this part.
A mapping from four colour models into the dimensions of the colour object type is provided.

6.4.3 The Primitive Hierarchy in PREMO

6.4.3.1 Overview

Primitives are structures that primarily carry information that is to be rendered to the user, or information that characterises input.
PREMO does not attempt to describe a closed set of primitives for modelling and rendering. Instead, the approach of this part is
to provide a general, extensible framework that provides a uniform basis for deriving primitive sets appropriate to specific appli-

ISO/IEC 14478-4:1998(E) © ISO/IEC

18

cations or renderer technologies. In general, modellers may use specific techniques such as Constructive Solid Geometry or
NURBS surfaces for a particular range of applications. Such techniques may require an enriched set of basic primitives. The aim
of the primitive hierarchy defined in this part is to provide a minimal common vocabulary of structures that can be extended as
needed, either by applications using PREMO, or by subsequent PREMO Components providing modellers and renderers to uti-
lise a specialized set of primitives. For example, a component for Constructive Solid Geometry may enrich the primitive hierar-
chy with object types to represent a CSG tree, for example in the form of object types for basic geometric solids together with
Intersection and Union types.

More specifically, the output generated by modellers and renderers, and the input to renderers, can consist of structures that are
derived from a type called primitive. Examples of the information that might be carried by a primitive include:

— a polyline (in the sense of GKS and PHIGS);

— a Bézier curve;

— a triangular mesh;

— MPEG data;

— an audio waveform envelope located at a spatial coordinate;

— a location on the display (obtained by a PICK device).

At the top level, the primitive hierarchy consists of seven categories.

6.4.3.2 Captured Primitives

A captured primitive contains a reference to a source of raw data encoded in some standard format such as JPEG, MPEG, MIDI,
or VRML. This data may happen to be recorded (for example, an image stored as a JPEG file, or a video stored as an MPEG file),
or live, for example fed from a microphone device.

6.4.3.3 Form Primitives

This category represents primitives whose presentation has to be generated in some way, for example lines, curves, sounds, or
textual information. This type is further classified into types representing specific kinds of information. The text below lists the
different kinds of form primitive and provides some examples of their use - note that the examples do not necessarily correspond
to subtypes defined in this part of ISO/IEC 14478. Rather, they illustrate how the hierarchy might be utilized in any subsequent
components or applications of PREMO. Full details of the primitive types in PREMO are given in clause 8.

— Audio: information for generating sounds;

— Geometric: lines, planes, surfaces, curves, point data sets etc.;

— Tactile: a description of haptic properties;

— Text: character strings to be represented in some way.

6.4.3.4 Modifier Primitives

A modifier primitive carries information that affects the presentation of other primitives. Examples include visual effects (colour
and texture), transformations on the coordinates that define the structure of media data, and audio effects.

— Acoustic: sound effects, and characteristics of voices;

— Structural; transformations on coordinates, such as scaling and rotation in geometric space, operations on time; con-
straints for use, for example, in geometric and/or temporal clipping are also subtypes of Structural modifier;

— TimeFrame: changing the clock against which progression of time is measured;

— Visual: properties of light, texture information etc.

© ISO/IEC ISO/IEC 14478-4:1998(E)

19

6.4.3.5 Reference Primitives

A reference primitive allows some part of a primitive structure to be reused, by providing a means of referring to that part of the
structure in terms of strings carried by a Name object. Name objects are introduced into a presentation by structured primitives.

6.4.3.6 Structured Primitives

A ‘structured primitive’ is one that contains a collection of other primitives (which may including further structures), and a name
by which that structure can be referenced. By naming structured primitives, it becomes possible to refer to part of a primitive
structure from elsewhere in that structure, thereby facilitating reuse. Such names can also be used in application-dependent ways
to provide feedback, for example on structures selected during interaction. PREMO identifies two kinds of structured primitive,
each with a specific semantics:

— Aggregate: An aggregate is a combination of primitives in which information carried by some primitives is intended to
modify the presentation of others in the aggregate. For example, a coloured line might be defined by aggregating a polyline
(geometric) primitive with a visual colour modifier. Similarly, a sound effect might be applied to a recording referenced
through a ‘captured’ primitive, while a polygonal mesh might be defined via some geometric primitive aggregated with spe-
cific colour, linestyle and linewidth modifiers.

— TimeComposite: Multimedia presentations exist in time, and may involve the coordinated presentation of different
streams of data. A TimeComposite primitive defines the way in which the presentation of its components are to be related in
time. PREMO defines three kinds of primitive that organise the components of TimeComposite to achieve specific effects.

- Sequential; one primitive follows another.

- Parallel; the temporal extents of the primitives overlap.

- Alternative; there is a choice between components, depending on the current state of a controller object.

NOTE — Any of the primitives that appears as a component of a structured primitive may itself be structured, i.e., may be a TimeComposite
or Aggregate primitive. Consequently it is possible to construct complex multimedia presentations from simpler elements by organising them
into a hierarchy that approximates the required pattern of coordination. Fine control over synchronization can then be effected through other
mechanisms, such as the use of synchronization points.

6.4.3.7 Tracer Primitives

A tracer primitive carries an event object. When such a primitive is encountered at the input or output port of a device derived
from the MRI_Device object type, the event handler attached to that port will be notified of the event carried by the primitive.
The use of tracers in supporting coordination between devices is explained in clause 13.

6.4.3.8 Wrapper Primitives

This class of primitive allows arbitrary PREMO values to be carried as primitives, for example for use in handling interaction.

6.4.4 Primitives and MRI Devices

The semantics of the primitive hierarchy with respect to devices for media processing are defined in terms of the diagram in
Figure 5. The two parts of the figure show part of a primitive hierarchy, and a renderer accepting a stream of primitives via a port
with a format that is defined to accept certain kinds of primitive. A sample input and output stream is also shown, with the ‘effect’
of rendering indicated (for illustration) by the application of a pattern to the primitives. The renderer in Figure 5(a) accepts two
types of geometric primitive, P1 and P2, that are defined as subtypes of Geometric in the corresponding type hierarchy. If the
type hierarchy is subsequently extended as shown in Figure 5(b), by deriving new geometric primitives P3, P2.1 and P2.2, and
the format attached to the renderer’s input port is modified to allow the port to accept primitives of type P3, then the following
behaviour will result.

a) primitives of type P1 and P2 will be rendered as in part (a) of Figure 5.

ISO/IEC 14478-4:1998(E) © ISO/IEC

20

b) primitives of type P3 (pentagon) will be rendered in a way defined by the renderer, as these have been included explicitly
in the list of primitive types that the renderer can accept via that port.

c) primitives of type P2.1 and P2.2 (drawn as rotated triangles) will be rendered as if they were primitives of type P2. These
primitives are subtypes of a primitive type (P2, shown as a triangle) that the renderer can accept through the input port, but
as the specific details of these subtypes are not explicitly known to the renderer, it will treat instances of P2.1 and P2.2 as
instances of P2.

If a primitive p is presented to a Renderer or MediaEngine via a port, and the type of p is not a subtype of any of the primitive
types that are defined for that port, then the device will raise an exception, PrimitiveNotRecognised. Apart from this exception,
the behaviour of a MRI device on receipt of an unrecognized primitive is application dependent.

6.5 Scene

A simple PREMO application may realise a rendering network by connecting directly output ports of one device (for example a
modeller) to the input ports of other devices, such as renderers. However, this simple strategy is not always appropriate, particu-
larly in the kind of high-end application areas for which PREMO is intended. For example, there may be more than one modeller
contributing primitives for presentation, or there may be multiple renderers at different locations that want to render a subset of
the primitive structure. To support these needs, this part defines an object type called Scene, instances of which can be placed
into a modeller/renderer network to act as a storage container and access mediator for a shared primitive structure. As a scene is
also a kind of VirtualDevice it can be inter-connected freely with other devices in the modelling and rendering network.

The Scene object type provides operations that allow applications to construct, access, and delete a number of primitive struc-
tures. These structures are built by organising smaller primitives (or primitive structures) into larger units through the various
structuring mechanisms provided by this part of ISO/IEC 14478 or by new mechanisms introduced by subsequent components.
A primitive structure represents information that will form some or all of a multimedia presentation. Access to primitive struc-
tures within a scene is effected through the use of a name–valued attribute associated with the Structured primitive object type
and its subtypes.

Primitive

Geometric

P1 P2

Engine

MRI_Format

Primitive

Geometric

P1 P2

Engine

MRI_Format

P2.1 P2.2

P3

Figure 5 — Media devices and the primitive hierarchy

(a)

(b)

© ISO/IEC ISO/IEC 14478-4:1998(E)

21

6.6 Interaction

Interaction refers to the ability of system components to accept and respond to input. In terms of the CGRM (see Annex C), this
is information that originates as input from the operator to the Realization Environment and is then sent towards the Construction
Environment. The input can be processed at various points along the pipeline, for example to provide feedback, or can be passed
to further components of the modelling/rendering network. Input data is realized as instances of object types in the Primitive hi-
erarchy described in 6.4. That is, PREMO does not impose a separation between primitives used for output and those used for
input. As this part does not impose any specific structure on devices for modelling, rendering and interaction, there is also no
explicit provision of mechanisms for the control of interaction or feedback. Exactly how feedback can or should be handled will
depend on the configuration of specific devices and the combination of modalities that are employed by a given application.

Interaction in PREMO is effected through the use of objects that are instances of InputDevice, an object type derived from Mod-
eller. As an input device is also indirectly an MRI_Device and a VirtualDevice, it contains, in addition to a procedural interface,
a reference to an event handler and ports for stream data. Through these various mechanisms, PREMO supports the construction
of three fundamental approaches to input handling: event, sampled and request modes.

a) Event mode. A client that is interested in receiving input from the device registers itself with the event handler attached to
the processing element of the device. This will generate an event when new data are available, and will pass the data to reg-
istered objects via events.

b) Sampled mode. A client is connected to the device by a stream which is initially muted. When the client wishes to sample
input, the stream is put into play mode until the next item of data arrives; it is then returned to mute.

c) Request mode. A client invokes the operation request in the interface of the input device. This operation is synchronous,
and therefore control is transferred to the device until the operation returns. The type of the datum returned by the operation
is a subtype of Primitive.

That is, in ‘event mode’ the event handler is used to return input data, in ‘sampled mode’ the client utilises the output stream, and
in ‘request mode’ the input data is returned as a result parameter of the request operation.

Management of event mode interaction is handled by the use of EventHandler object types and subtypes defined in ISO/IEC
14478-2, and no further mechanism is defined in this part. For sampled mode interaction, this part introduces the concept of a
Router object to assist applications in coordinating the distribution of input data. A router is a virtual device that is also subtyped
from Controller, and thus combines a collection of input and output ports with a finite state machine. Each state of a router is
characterized by the connections from input ports to output ports. This assignment of data flow to states is dynamic, and can be
changed by the application or client using operations in the interface of the Router object type.

6.7 Coordinators

The primitive hierarchy of PREMO, in particular the TimeComposite object type and its immediate subtypes, forms the basis of
a declarative model of multimedia presentation content. That is, a collection of primitives, organised into a hierarchy using var-
ious kinds of Structured primitive, represents a static description of a presentation. For this presentation to be realised, i.e. dis-
played to a user or otherwise processed, its component primitives must at some point be operated on by a suitable device, i.e. a
device that can accept this kind of primitive on its input port. Also, if the presentation consists of parallel components (in the form
of a Parallel TimeComposite primitive, for example), then either a device has to be found that can manage parallel presentation,
or two or more devices have to be used in parallel within a processing network. In the latter case, some mechanism is required to
enable synchronization between these devices. These two requirements — the allocation of primitives to suitable media devices,
and the scheduling and synchronization of parallel media content — are significant technical problems in the design of a multi-
media system. While ISO/IEC 14478-1 to ISO/IEC 14478-3 do not mandate any one solution, this part of ISO/IEC 14478 defines
an object type, called Coordinator, that can provide the behaviour described above.

The Coordinator object type is a subtype of MRI_Device. Each instance of this type has exactly one input port on which it can
receive a stream of primitives in MRI_Format. Its interface contains operations that allow a specified device to be added to or
removed from the set of devices that the coordinator can use in processing its own input stream. These facilities are similar to
those provided by the Group object type defined in ISO/IEC 14478-3, but are restricted in comparison with those of the Group
object type. Also, when a device is added to a coordinator, it is necessary to specify the input port of the device to which the
coordinator is to direct appropriate primitives. For these reasons, Coordinator is not a subtype of Group.

ISO/IEC 14478-4:1998(E) © ISO/IEC

22

The devices that can be added to or removed from a coordinator are required to be subtypes of Renderer. However, functionality
that is not directly available within a single Renderer can still be utilised by a coordinator provided it is encapsulated in a type
that inherits from Renderer. For example, an application that wishes to make a network of devices available to a coordinator could
define a new type that inherits from Renderer and the LogicalDevice object type defined in ISO/IEC 14478-3. The operations
inherited from LogicalDevice would allow the network to be established and viewed as a single device, while inheriting from
Renderer ensures that objects of this new type can interoperate with a coordinator. Figure 6 shows how, by using such an ap-
proach, the system first illustrated in Figure 1 might be realised using three devices derived from LogicalDevice (labelled A, B,
and C), and an instance of Coordinator. The coordinator encapsulate the two devices concerned with rendering, which will as-
sume are also subtypes of Renderer. The presentations accessed from the scene object arrive at the coordinator, where they are
decomposed into components suitable for the audio engine and renderer, and for the graphics engine and renderer. Note that the
graphics engine can obtain data directly from another device, by–passing the input port of the coordinator.

As a coordinator has access to the devices to which it distributes media primitives, it has the potential to manage synchronization
between these devices by manipulating the StreamControl object associated with the processing element of each device. How-
ever, other approaches are possible, either as alternatives to, or in parallel with, this scheme. For example, a coordinator could
use an ANDSynchronizationPoint object, and reference points on the input streams to its component devices, to enforce synchro-
nization constraints. The could also utilise Tracer primitives to monitor the progress of media data through the various processing
elements. Given the range of possible synchronization mechanisms, ISO/IEC 14478 does not mandate that a coordinator imple-
ment any specific scheme. Instead, it is expected that particular synchronization strategies will be realized by subtypes of the
Coordinator object type defined by specific applications or any future PREMO component that extends this part of ISO/IEC
14478. Further details on the role of the Coordinator object type in media synchronization can be found in clause 15.

Figure 6 — Audio/visual system using logical devices and coordinator

audio
engine

video
engine

scene

graphics
engine

router

Coordinator

audio
modeller

graphics
modeller

audio

graphics

mouse

fr
om

ap
pl

ic
at

io
n

renderer

renderer

© ISO/IEC ISO/IEC 14478-4:1998(E)

23

6.8 Dependencies on other Parts

This part of ISO/IEC 14478 builds extensively on the services and object types defined in other Parts of the standard. At a defi-
nitional level, it utilises the object model and notational conventions described in part 1. The creation and operation of an MRI
system is also expected to utilise the Property Management services and Factory mechanisms set out in part 2. However, there
are also some specific dependencies, where object and non-object data types defined in ISO/IEC 14478-2 and ISO/IEC 14478-3
have been used directly in defining the types and services of this part. These specific dependencies are listed below.

— The Controller object type defined in ISO/IEC 14478-2 is used as a supertype for the Router object type. Each Alternate
primitive also contains a reference to a Controller instance.

— A TimeComposite primitive contains a reference to an instance of the EventHandler object type defined in ISO/IEC
14478-2.

— A TimeFrame primitive contains a reference to an instance of the Clock object type defined in ISO/IEC 14478-2.

— Instances of the Event structure defined in ISO/IEC 14478-2 are created by TimeComposite objects during processing.

— The Time non-object data type defined in ISO/IEC 14478-2 is used in Temporal and TimeComposite primitives.

— The Port non-object data type defined in ISO/IEC 14478-3 is used in the definition of Captured primitives, and in the
definitions of the Scene and Router object types.

— The ISO/IEC 14478-3 Format object type is the superclass for the MRI_Format type.

— The VirtualDevice object type defined in ISO/IEC 14478-3 is the supertype of the MRI_Device object type defined in
this part.

— The Primitive, Coordinate, EfficiencyMeasure and Name object types defined in this part are immediate subtypes of the
SimplePREMOObject object type defined in ISO/IEC 14478-2.

6.9 Subtyping Diagram

Figure 7 on page 24 gives an overview of the object type hierarchies introduced in this part, and in particular their relationship
to the object type hierarchy defined in ISO/IEC 14478-1 to ISO/IEC 14478-3. Object types introduced in this part are shown with
their names enclosed in boxes. The hierarchy of object types subtyped from Primitive has been elided from this diagram, but can
be found in Figure 8 on page 26. Also, full object-type diagrams can be found in Annex A. Note that the Router and MediaEngine
object types are defined through multiple inheritance.

7 Coordinates

7.1 General Coordinates

PREMO is concerned with audio and video, as well as with synthetic graphics, tactile or other media. These data may be located
within specialised coordinate spaces (e.g. frequency, pressure, etc.) and thus it is necessary for this part of PREMO to include a
general, extensible representation of coordinate. To this end, a generic Coordinate object type is defined with the following in-
terface:

— a dimensionality (read only), i.e. the number of dimensions;

— a getRange operation which, for a given dimension, returns the range of values allowed in that dimension; and

— setComponent and getComponent operations which access and update the ith component of the coordinate, where 1 ≤ i ≤
dimensionality.

ISO/IEC 14478-4:1998(E) © ISO/IEC

24

The coordinate object type is generic to allow the types from which components of coordinates are drawn to vary. However, for
any given coordinate object, all components of that coordinate will be from the actual type used to instantiate the generic param-
eter. That is, each component of a coordinate must belong to the one type.

NOTE — To support efficient implementation of coordinates, the effect of accessing (via setComponent and getComponent) a component of a
coordinate outside the dimensionality of that coordinate is not defined. Similarly, this part of ISO/IEC 14478 does not require that the value
stored in the component of a coordinate be checked against the specified range for that component. Such checks can be implemented by
subtyping the Coordinate object type and redefining the operations, for example to raise an exception when components or values outside of
the specified range are supplied as parameters.

7.2 Colour

This part of PREMO defines an object type, Colour, as a subtype of Coordinate specialized to represent colours within a range
of colour models in use. In this object type, the dimensions of the generic coordinate are mapped onto the attributes that locate a
colour within a particular colour model. A string-valued attribute colourModel (read only) is defined in the Colour object type to
name the colour model in which that colour is defined. The use of a given colour model imposes an interpretation on the dimen-
sionality of a colour object and on each of the components of that object. To support such interpretations, a number of integer
constants are defined to identify the component of a colour object that is used to store particular characteristics of a colour:

Constant Value Description

ColourRGBR 1 Red component of RGB

ColourRGBG 2 Green component of RGB

ColourRGBB 3 Blue component of RGB

Figure 7 — Subtyping diagram

VirtualDevice

Modeller

MediaEngineInputDevice

Primitive

PREMOObject

Format

SimplePREMOObject

PropertyInquiry

VirtualResource

EnhancedPREMOObject

PropertyConstraint

MRI_Format

Coordinator RouterScene

EfficiencyMeasure

MRI_Device

Renderer

Coordinate

Colour

Name Controller

TimeLocation

© ISO/IEC ISO/IEC 14478-4:1998(E)

25

The combination of constants that should be used in setting and getting the components of a colour object depend on the value
of the colourModel attribute. The following combinations are defined by this part of PREMO:

The colour models mentioned in this sub-clause are those described in the ISO/IEC PHIGS standard.

7.3 TimeLocation

Time in PREMO is treated as a one-dimensional coordinate space. A TimeLocation object represents a point in this space. That
is, an instance of this type is a coordinate with a dimensionality of one. That is, TimeLocation is defined as a subtype of the Co-
ordinate object type. Values in the coordinate space for time are drawn from a particular PREMO non-object data type called
Time (see 16.2). The value recorded within a TimeLocation object represents a number of ticks as measured with respect to some
clock. The fact that time in PREMO is measured relative to a clock is important, as in a distributed setting different clocks may
be available, offering varying degrees of accuracy and with different concepts of the current time. Consequently, the full inter-
pretation of a given TimeLocation object depends on the context in which it occurs. For example, TimeLocation objects used in
the context of a Structured primitive (see 8.6) may be related to a specific clock through the use of a Temporal modifier primitive
(see 8.4.4).

8 Primitives

8.1 Introduction

Primitives are the means by which an application defines the structure and appearance of the data that is to be rendered for pres-
entation. In some contexts, for example some graphics standards, the term ‘output primitive’ is used to distinguish between the
information that determines the presentation, and information returned by input devices (input primitives). In PREMO, the one
kind of entity is used for both roles. It is not uncommon for graphics systems to reserve the term (output) primitive for data that
determines the structure of presented information, and to use the term ‘attribute’ or ‘property’ for data that affects the appearance
of the presented data, for example colour or line thickness. In PREMO, the concept of primitive encompasses the description of
both structure and appearance.

ColourHSVH 1 Hue component of HSV

ColourHSVS 2 Saturation component of HSV

ColourHSVV 3 Value component of HSV

ColourHLSH 1 Hue component of HLS

ColourHLSL 2 Lightness component of HLS

ColourHLSS 3 Saturation component of HLS

ColourCIEL 1 L component of CIELUV

ColourCIEU 2 U component of CIELUV

ColourCIEV 3 V component of CIELUV

colourModel Description Constants Used

RGB Red-Green-Blue ColourRGBR, ColourRGBG, ColourRGBB

CIELUV 1976 CIE Uniform Colour Space ColourCIEL, ColourCIEU, ColourCIEV

HSV Hue, Saturation and Value ColourHSVH, ColourHSVS, ColourHSVV

HLS Hue, Lightness and Saturation ColourHLSH, ColourHLSL, ColourHLSS

Constant Value Description

ISO/IEC 14478-4:1998(E) © ISO/IEC

26

PREMO is concerned with the presentation of multimedia information, and in allowing different renderers to interoperate within
a potentially distributed system. For this reason, this part of ISO/IEC 14478 does not attempt to define the structure of primitives
to the same level of detail as found for example in graphics standards such as GKS and PHIGS. Instead, this part of ISO/IEC
14478 defines a broad ‘primitive hierarchy’ that is intended to characterize the types of information that components of a PREMO
system might produce or consume. A PREMO application may define a network of devices, including modellers and renderers,
that utilize fundamentally different representations and methods. Consequently, it is not possible or desirable to define a canon-
ical hierarchy. The primitive hierarchy described in this Clause is instead intended to provide a minimal framework through
which MRI devices operating within a PREMO application can identify their properties and capabilities, and which applications
can use as a starting point for defining, through inheritance, a set of primitives suited to that domain.

Primitives are structures, that is, the object type Primitive inherits from SimplePREMOObject. At the top level PREMO distin-
guishes between seven kinds of primitive; as shown in Figure 8 these are Captured, Form, Tracer, Modifier, Reference, Struc-
tured and Wrapper. A detailed account of each of the types shown in the hierarchy is given later within this clause.

Primitive

Figure 8 — The PREMO primitive hierarchy

Form

Captured

Modifier

Structured

Geometric

Visual

Tactile

Text

Reference

Audio

TimeComposite

Aggregate
Sequential

Parallel

Alternate

Acoustic

Music

Speech

Light

Shading

Texture

Material

Structural

VocalCharacteristic

Constraint

Transformation

Tracer

Wrapper

SoundCharacteristic

TimeFrame

© ISO/IEC ISO/IEC 14478-4:1998(E)

27

8.2 Captured Primitives

Captured primitives are those for which some or all of the perceivable aspects of the primitive have been encoded in some format
defined externally to the PREMO world. Rather than being synthesized, the data for presentation will be obtained from some
other component of the system. In the context of this part, access to such data is supported via the port and virtual device mech-
anism inherited from ISO/IEC 14478-3. Thus, a captured primitive consists of a reference to a virtual device, and a reference to
a port of that device from which the data can be obtained. As virtual devices include both data files and input devices such as
microphones and cameras, the captured data may be either recorded or live. The format of the captured data can be determined
by enquiring the port format, and could encompass:

— Recorded sound, for example in AIFF format.

— A digitized image, for example in JPEG or GIF format.

— A video feed as an MPEG stream.

— A metafile in some defined format, for example VRML.

8.3 Form Primitives

8.3.1 Introduction

A Form is a primitive for which the presentation is determined (constructed) by a renderer based on the information contained in
the primitive, in contrast with captured primitives where the structure of the presented information has already been encoded in
some transfer format. Forms describe structures in visual, audio, haptic or temporal space using the abstractions that characterise
the space. For example, geometric primitives are described in terms of spatial coordinates. Additional kinds of form primitives
may be added in future to include other categories such as olfactory and taste.

8.3.2 Audio Primitives

Audio primitives are those needed to represent sound characteristics. By using Aggregate and TimeComposite objects, more so-
phisticated sound characteristics can be described, for example by combining a number of audio primitives and acoustic effects
(see 8.4.2) into a score. Audio information is located in several parts of the primitive hierarchy shown in Figure 8; a condensed
version highlighting audio information is shown in Figure 9, with the primitives of concern in this clause shown in bold.

Synthesized sound is described using some abstract representation that operates in terms of the constituents of the sound. This
varies depending on whether it is speech or music being described. In the case of music, a typical example of a representation
used in synthesis is MIDI. A music primitive contains information about the kind of instrument to be used in realising the sound,
plus the data that represents the encoding of the music. Speech on the other hand consists of some textual representation of the
words to be uttered, and a means of describing the characteristics of the voice that should be used to render the text. The latter is
discussed in 8.4.2. The issue of which language should be used to render the text is unspecified at the level of this part of ISO/
IEC 14478.

Figure 9 — Audio primitives within the PREMO hierarchy

Primitive

Form Captured Modifier

Audio Acoustic

Music Speech VocalCharacteristicSoundCharacteristic

ISO/IEC 14478-4:1998(E) © ISO/IEC

28

8.3.3 Geometric Primitives

Geometric primitives describe locations and structures in multidimensional space, usually (but not necessarily) within a cartesian
2D or 3D system.

NOTE — Although this part of PREMO does not provide object types for representing specific geometric structures, it is expected that any
subsequent components or applications will create subtypes of Geometric to represent concrete primitives from which a renderer may generate
a presentation, the nature of which will depend on the semantics assigned to that subtype by the renderer. For example, both GKS and PHIGS
contain Polyline and PolyMarker primitives that are defined by sequences of coordinates. A polyline is rendered as a sequence of line
segments, starting from the first coordinate, and passing through each point in the primitive in turn. A polymarker primitive is usually rendered
by placing some symbol at each coordinate within the primitive. Both of these would be defined by subtyping from the Geometric primitive.
More complex geometric primitives, such as polygonal meshes, may also be defined by starting from a model of geometric structure
consisting of a sequence of coordinates, and then imposing additional structure (and a different interpretation) on this sequence through the use
of inheritance. In this context it should be noted that geometric primitives may be generic with respect to the coordinate system in which their
locations are defined. In particular, applications that require additional information to be associated with locations, for example a normal,
could be handled by deriving a extended form of Coordinate and using that as the basis for a geometric structure.

NOTE — Within this part of PREMO, primitives do not contain operations. Thus, although it would be in keeping with an object-oriented
approach for geometric primitives to offer services such as ‘compute bounding box’ and ‘apply clipping’, the model adopted in this part
assumes that these operations will be provided by some other object such as a renderer, that operates on primitives. One rationale for this is
that a typical graphics application will generate large numbers of primitives. If primitives were required to contain operations, then their use in
a distributed environment, where multiple processors may be operating on shared data sets, becomes problematic. However, any subsequent
component, or application using PREMO, for example a package for object-oriented graphics, may of course choose to locate such
functionality in the definition of its primitives.

8.3.4 Tactile Primitives

Tactile primitives describe parameters of touch-based interactions, for instance, temperature, thermal conductivity and hardness.

8.3.5 Text Primitives

A Text primitive contains a character string that is to be rendered on some display. This part of ISO/IEC 14478 makes no state-
ment about properties of the text such as font, size, style or direction. Subsequent components can realize these in at least two
ways. One is by extending the text primitive using subtyping to represent these properties as attributes of the primitive. The sec-
ond is to define a subtype of the Modifier primitives described in 8.4, and then to combine these with the raw text primitive using
the aggregation mechanism.

8.4 Modifier Primitives

8.4.1 Introduction

The primitives contained in this category have no perceivable representation by themselves. Instead they are used to modify or
transform the presentation of other primitives by combining them through the aggregation mechanism. The modifiers have been
grouped to reflect the kind of effect they produce, and the kind of primitives to which they can be applied. PREMO does not
describe the order in which modifiers are applied, and whether or not they are accumulative or override previous modifications.
For example, in the two hierarchies shown in Figure 10, the standard makes no statement about whether Mod–A should be carried
out before or after Mod–B, and in the case of the second hierarchy, whether in fact Mod–B over-rides the effect of Mod–A with

© ISO/IEC ISO/IEC 14478-4:1998(E)

29

respect to P. The reason for this non-commitment is that applications or any subsequent components of PREMO may realize
graphical rendering through existing systems and standards, within which the order and scope of modifications within the ren-
dering pipeline or scene structures varies widely.

8.4.2 Acoustic Modifiers

Acoustic modifiers are not themselves sounds, but rather are modifiers that alter the presentation of captured or synthesised
sounds. Two kinds of acoustic modifier are represented by abstract subtypes of Acoustic.

— A SoundCharacteristic is a modifier that is defined in terms of the physical characteristics of a sound, for example its
amplitude, volume or properties of its waveform.

— A VocalCharacteristic is a modifier that applies to synthetic speech, and affects the way in which the constituents of a
given speech object are realized. Examples of possible vocal characteristics include sex, age, intonation and dialect.

8.4.3 Structural Modifiers

Structural modifiers affect the interpretation of coordinate values representing, for example geometric structure or time, within
some collection of primitives. When used in conjunction with geometric primitives, structural modifiers encompass both the
‘standard’ operations such as translation, scaling, rotation and shearing, and the definition of geometry that serves to constrain
the appearance of other geometric primitives, for example clip regions. These two kinds of specialized structural modifier are
identified explicitly through the provision of the following subtypes.

— Transformation objects, which include, but are not limited to, the common affine and projective transformations.

— Constraint objects, such as clipping, shielding, culling, level of detail or the definition of stencils.

It should however be noted that concepts of transformation and constraint can also be applied to non-geometric coordinates such
as time, or colour.

NOTE — The structural modifier primitive and the given subtypes are abstract object types. The family of modifications relevant to an
application will depend on the dimensionality of the primitives used. Different approaches to representing a structural modifier may also be
used, for example an explicit matrix representation, or an implicit approach in which the modifier primitive stores parameters such as
translation distance along each axis, scale factors etc. and it is up to the renderer to use this information to construct an internal matrix or carry
out the operations in some other way.

8.4.4 TimeFrame Modifiers

All temporal primitives in PREMO are defined relative to some clock; this is important, as in a distributed setting different clocks
may be available, offering varying degrees of accuracy and with different concepts of the current time. This part defines a single
concrete modifier object type, TimeFrame, that contains a reference to a clock. The aggregation of a TimeFrame instance with
other primitives allows a media processor to utilise the clock referenced by that instance when calculating or otherwise working
with time units contained within the other primitives. Note that modifiers that affect other aspects of temporal structure, for ex-
ample, transformations on time, are organised as Structural modifiers. The TimeFrame modifier is treated separately as it is in-
dependent of coordinate space.

aggregate

Modifier

Mod-A P primitive

Key:

Mod-B Mod-A

PMod-B

Figure 10 — Scope of modifiers

ISO/IEC 14478-4:1998(E) © ISO/IEC

30

8.4.5 Visual Modifiers

Visual modifiers affect the appearance of geometric primitives by providing attributes such as reflection coefficients or material
properties. The combination of visual modifier and geometric forms can either be effected by the use of aggregates, or by the use
of multiple inheritance. Four specific kinds of visual modifier are identified in this part, as shown in Figure 11. These are all ab-
stract object types.

a) Light is an abstract supertype for properties of light. PREMO makes no commitment to any specific lighting model, and
it is up to any subsequent components or applications to extend this type in an appropriate manner.

b) Shading is an abstract supertype for object types that convey information about the shading model or parameters that
should be used to render some or all of a primitive structure.

c) Texture is an abstract supertype for object types that define texture properties, for example a reference to another object
that provides a texture map or bump map.

d) Material is an abstract supertype for object types that define properties such as translucency and transparency.

8.5 Reference Primitives

8.5.1 References

A Reference primitive introduces a link to a structured primitive defined in some other part of a primitive hierarchy. It contains
a single attribute, label, which is a reference to a Name object that is intended to be matched against a name object either from
some other part of the same structure or a second separate structure. The effect of matching on the subsequent processing of a
primitive hierarchy is application dependent.

8.5.2 The Name Object Type

A Name object contains a single attribute which holds a sequence of strings, and a single operation, equal, that takes a name object
as input and returns a boolean value that indicates whether the name passed as parameter should be considered equal to the name
on which the operation is invoked. This part of ISO/IEC 14478 does not mandate rules for determining fully when two Name
objects are equal, or should match when used as labels in Structured and Reference primitives. This is for the application or a
subsequent component to determine. However, it is required that if the equal operation of a given name object is invoked with a
reference to that object as input parameter, the result must be true. That is, any name object is always equal to itself. By default,
the equal operator will implement set equality between the strings. That is, the sequence is considered to be a set of strings. For
example, the string sequences <“alpha”, “beta”, “gamma”> and <“beta”, “alpha”, “beta”, “gamma”> should be considered equal.

NOTE — For example, a GKS component may use the default, interpreting sequences as sets and ignoring duplicates and order when
comparing name objects. However, extensions to the primitive hierarchy may also impose additional structure on the strings in the sequence,
for example by treating them as paths as used in many filesystems.

Visual

Light

Figure 11 — The visual modifier hierarchy

Shading Texture Material

© ISO/IEC ISO/IEC 14478-4:1998(E)

31

8.6 Structured Primitives

8.6.1 Introduction

Form, Captured and Modifier primitives can be viewed as atomic units of information that determine or affect the presentation
of a multimedia system. Multimedia systems, however, need to define and manipulate collections of primitives, both to represent
large-scale or application-specific structures, and to coordinate the presentation of primitives within time. These two roles are
somewhat different, and are reflected in PREMO by two object types that encapsulate a collection of primitives. This collection
(called the components of the structure) may itself include structured primitives, allowing the construction of hierarchical struc-
tures. At this level no constraint is placed on the primitives that can be components of a structured primitive. However, subsequent
components, if any, may choose to define subtypes where membership of the structure is limited to objects of a specific type. One
variation on this approach would be to define a generic subtype of structured primitive in which the type of the objects that make
up the structure can be constrained.

Each Structured primitive has an attribute, label, that refers to a Name object (see 8.5.2). This allows the structure to be referenced
from elsewhere within a collection of primitives, and is also used in operations of the Scene object type that are described in clause
13.

NOTE — Such names can be used to refer to some part of a primitive structure, either by an application or by the PREMO system. A
particular use of names within this part is associated with the Scene object defined in clause 13. PREMO also provides a reference primitive to
allow reuse of substructures within a primitive structure; see 8.5. The name attached to a structured primitive might also be used for returning
pick-identification during interaction, or for structure editing, for example in a PHIGS renderer.

The object types in this sub-clause are defined at a greater level of detail than the other kinds of primitive objects introduced in
this part. This difference reflects the role of PREMO as a framework for integrating the processing of digital media. It is not the
role of ISO/IEC 14478 to prescribe the structure of data associated with specific media, but instead to provide a model in which
media primitives can be organized and coordinated.

8.6.2 Aggregate

Aggregates allow a number of primitives to be combined into a structure without imposing any interpretation on the meaning of
the structure. Their use in combining other primitives with modifiers has already been discussed (see 8.4), but their role is rather
more general. They provide a facility for building larger-scale primitives, such as polygonal meshes, from smaller structures, and
also allow an application to group semantically-related primitives into single units that can be named using its label attribute. In
this respect they support the implementation of facilities such as segments in GKS and structures in PHIGS.

A property of aggregate primitives is that there is no distinction between their components; they are just a means of combining
or grouping a number of primitives into a larger structure. This will not be sufficient in general, as there are different ways of
interpreting an aggregate of primitives. For example:

a) The combination of a 3D point (a geometric primitive) and a MIDI file (a captured primitive) might be rendered by dis-
playing the point on some display and playing the contents of the file. Alternatively, such a primitive may indicate that 3D
rendering is to be used for the sound, with the point giving the source of the sound within some scene.

b) A polygon (a geometric primitive) and a further aggregate containing geometric features may define a structure that is
intended for rendering on a display, or the polygon may define a region that is to be used for clipping the geometric presen-
tation of the primitives in the second aggregate.

NOTE — It is expected that applications or any subsequent PREMO components will extend the primitive hierarchy by inheriting the
aggregate object type into new types that associate a particular role or meaning to the constituents of the aggregate. Using the examples above
as a basis, one application might define an extended hierarchy containing subtypes of aggregate for 3D sound and clipped polygon. While the
former could also be realised by multiply inheriting from coordinate primitive and capture primitive, the latter contains two geometric
primitives and therefore must be realized by aggregation.

ISO/IEC 14478-4:1998(E) © ISO/IEC

32

8.6.3 TimeComposite

Time and temporal extent are fundamental to multimedia presentation and in general a multimedia system will contain a number
of primitives that need to be synchronized in time. Although time could arguably be treated in a way similar to that used for spatial
coordinates, most multimedia implementations will typically treat time in a specialized way. For example, the timing of primi-
tives may be adjusted dynamically to satisfy quality of service requirements, and synchronization requirements will be realized
by placing synchronization points within streams or other time-synchronizable components of a system. Thus there is a degree
of specialized functionality associated with time that is not reflected in other coordinate spaces, and the object types that manip-
ulate temporal aspects of presentation must therefore have a standard and efficient means of accessing this information. This role
is partially filled by the TimeComposite primitive.

The TimeComposite object type is a subtype of the Structured primitive object type, and therefore contains a sequence of com-
ponent primitives. The meaning assigned to these components (that is, how their presentations are coordinated) depends on the
kind of composition; PREMO recognises sequential, parallel and alternative TimeComposites whose meaning is defined below.
TimeComposite objects do however have shared characteristics, in particular, each contains a reference to an event handler that
will be notified when significant points in the structure of the TimeComposite are reached during presentation or other forms of
processing. The points at which events are generated are defined by attributes of the TimeComposite object type and its subtypes.

Associated with each instance of a TimeComposite object (sub)type are the following attributes:

a) min and max: these two attributes are time values (i.e. numbers of ticks) that define a duration in which the content of the
object, introduced through the Structured supertype, should be located. The clock against which this interval is measured is
not specified by the primitive; it may be given as a TimeFrame modifier within a larger structure containing this primitive,
or it may depend on the context in which the primitive is processed. This interval may be infinite, in which case an imple-
mentation is free to use as much time as necessary to process the components of the TimeComposite. It may however be
bounded, in which case the devices involved may need to adopt a strategy for optimizing the presentation of components,
possibly by making use of the overlap features in the case of synchronous TimeComposite objects, or more generally by
degrading the quality of service provided. In the case that the required processing cannot be slotted into the specified dura-
tion, a device may take some application dependent action, for example raising an exception or simply terminating process-
ing of the primitive abruptly.

a) monitor: a reference to the event handler that will be informed of progress as the TimeComposite is processed. As noted
above, all TimeComposite objects generate events at the start and completion of the presentation of their components.
Details of the events generated by TimeComposite objects and particular subtypes are included under each sub-clause.

b) startTime offset: this is a delay between the time that processing of the TimeComposite primitive commences, and the
time at which processing of the first component commences. The time at which processing commences depends on the
device that is performing the processing, and it is the responsibility of such a device to note the time at which it starts to
process a primitive and to apply effects such as startTime as required, relative to the time that processing started. An event is
generated once the startTime offset has elapsed. This event has the following structure:

eventName = “compStart”

eventData = < (“TimeComposite”, Ref TimeComposite) >

eventSource = Ref VirtualDevice

The TimeComposite referenced by the eventData field is the TimeComposite being rendered, while the device referenced by
the eventSource field is the device that is operating on the TimeComposite.

c) endTime offset: this is a delay between the time that processing of the final component of the TimeComposite is com-
pleted and the time at which processing of the TimeComposite itself should be completed. An event is generated on comple-
tion of the presentation of the components, and before the endTime delay begins. The structure of the event is similar to that
in point (b), except that the eventName field takes the value “compEnd”.

Both the start and end time offsets are specified as durations, meaning that they are stretchable.

Figure 12 shows the relationship between these attributes.

© ISO/IEC ISO/IEC 14478-4:1998(E)

33

The three kinds of TimeComposite primitive are as follows:

Sequential TimeComposite

Each primitive listed as a component is presented in the order in which it appears in the component sequence. Associated with
this primitive object type are three attributes:

— startDelta: This is the offset between the time that the system begins processing a component, and the time at which the
presentation of that component should begin. At the end of startDelta an event is sent to the event handler referenced by the
inherited monitor attribute. The structure of the event is as follows.

eventName = “seqStart”

eventData = < (“sequential”, Ref Sequential), (“position”, integer) >

eventSource = Ref VirtualDevice

As before, the event data includes a reference to the TimeComposite (in this case a sequential TimeComposite), but here it
also includes an integer giving the position in the component sequence of the primitive that is about to be processed. The
event source is the renderer that is doing the processing.

— endDelta: This is the offset between the time that the presentation of a component primitive concludes, and the time at
which processing of the next component should begin. An event is generated on conclusion of the component presentation,
before the onset of the delay. The information carried in the event is the same as for startDelta, except that the event name
takes the value “seqEnd”.

— overlap: this attribute takes on one of three values, defined by the following non-object data type:

1) When the value is never, the presentation of one component must finish before processing the next component can
begin.

2) When the value is left, the presentation of the previous component can be shortened if needed to fit the presentation of
the current component. This will be achieved by reducing the endDelta time of the previous component, i.e. shortening
the actual delay imposed for that primitive. This part of PREMO makes no statement about the behaviour that results if
there is insufficient time available in the delay to ensure presentation of the current component.

NOTE — In the event of insufficient endDelta delay in the previous component to enable full presentation of the current,
some possible behaviours include, but are not limited to: (i) the renderer may modify the presentation of the current
component in an application specific way, or (ii) it may send a specific event to the monitor, or (iii) the renderer may raise an
exception.

startTime endTime

duration (min and max)

clock

components

Figure 12 — Attributes of a TimeComposite primitive

“compStart” “compEnd”

to monitor

presentation of components, plus startTime and endTime,
falls between min and max bounds of duration.

OverlapType never left right ::=

ISO/IEC 14478-4:1998(E) © ISO/IEC

34

3) When the value is right, the presentation of the next component can be shortened, if needed, to fully renderer the cur-
rent component, by reducing the time allocated for the startDelta delay of that component. The caveats and comments of
the previous point (2) also apply here.

The value of all temporal attributes is relative to the clock referenced in the inherited TimeComposite object type. Figure 13
shows the relationship between these attribute settings. Partial information is shown for two events, all of which are directed at
the event handler named as the monitor for TimeComposite.

Parallel TimeComposite

The presentations of all components of the TimeComposite occur concurrently, but are modified depending on the values of the
following two attributes:

— startSync is a boolean value that indicates whether or not the presentation of all components of the TimeComposite must
start at the same time.

— endSync is a boolean value that indicates whether or not the presentation of all components of the TimeComposite must
end at the same time.

Together, these attributes define a space of four possible ‘ideal’ states for the coordination of parallel TimeComposite objects. A
representative sample of these states is shown in Figure 14.

seq-1 seq-2 seq-n...

seq-1 seq-2 seq-n...

seq-1 seq-2 seq-n...

seq-1 component of a TimeComposite

start-delta

end-delta

event

overlap:

never

left

right

Figure 13 — Attributes of a Sequential TimeComposite primitive

“startSeq”
position = 1

“endSeq”
position = 2

components
of parallel
TimeComposite

duration of TimeComposite

par-1

par-3

par-2

par-1

par-3

par-2

par-1

par-3

par-2

par-1

par-3

par-2

(a) startSync = TRUE, endSync = FALSE (b) startSync = TRUE, endSync = TRUE

(d) startSync = FALSE, endSync = FALSE(c) startSync = FALSE, endSync = TRUE

Figure 14 — Attributes of a Parallel TimeComposite primitive

© ISO/IEC ISO/IEC 14478-4:1998(E)

35

There are four points to note.

— First, where the presentation of one component is shorter than that of another, the ‘effect’ of non-presentation is unde-
fined. For example, if a graphics image is to be presented for a particular duration in parallel with a soundtrack, and the tem-
poral extent of the soundtrack is longer than the given duration, then PREMO makes no statement about the appearance of
the display between the times that the graphics duration and soundtrack end. Figure 14(b) shows two possibilities that an
implementation might use - the primitive ‘par–2’ has been ‘padded out’ perhaps with a blank display in the case of a graphi-
cal presentation, while ‘par–3’ has been stretched, possibly by slowing the playback rate if it happens to be a video stream.

— Second, the temporal extent of a parallel TimeComposite primitive will be the smallest duration necessary to present each
of its components subject to the constraints imposed by the attributes above. This means that the presentation of the longest
component of a TimeComposite will begin as soon as the presentation of the TimeComposite itself begins.

— Third, if either startSync or endSync is FALSE, it means that the start, respectively end, of the presentations of the com-
ponents do not need to be synchronized. It may however happen that they are synchronized, depending on the way that the
primitive is handled by a specific renderer.

— Fourth, if endSync is TRUE, processing devices should attempt to ensure that the presentations conclude at the same
time. It may be that satisfaction of this constraint cannot be guaranteed, in which case a value of TRUE for this flag is a sig-
nal that devices should make a ‘best effort’ to achieve this synchronization.

NOTE — If a component of a TimeComposite is another TimeComposite, then complex effects and coordination patterns can be achieved by
manipulating attributes of the subelement such as its startTime, endTime and duration.

Alternate TimeComposite

One of the component primitives listed in the TimeComposite is chosen for processing and presentation. The choice of component
is determined by the state of a controller object referenced by an attribute of the TimeComposite called selector. This choice is
carried out at the time taken as the start of processing for the primitive itself (see the comment concerning the startTime offset
attribute of the TimeComposite object type). The mapping between controller states, identified by strings, and component prim-
itives (indexed by their position in the components sequence), is given by the attribute called options. This consists of a sequence
of (string, integer) pairs, where a pair (s, i) means that components(i) should be rendered when the state of the controller object
is s. One component of the TimeComposite may be linked to more than one state of the controller. The effect of having more than
one component linked to a given controller state is undefined. The relationship between these attributes in summarised in
Figure 15.

NOTE — The PREMO TimeComposite hierarchy is analogous to the requirements set out in the HyperODA standard.

8.7 Tracer Primitives

A Tracer is a primitive that encapsulates an event as an attribute of the primitive. The eventName attribute of the event is set to
“TracerEvent”, and the eventSource attribute is set to reference the Tracer primitive object in which the event is contained. Tracer
primitives are defined to allow modelling, rendering and interaction devices in a media network to determine the progress of
primitives through such a network. This role of the Tracer primitive relies on the behaviour of the MRI_Device object type de-
fined in clause 9.

componentsoptionsselector

stateA 1

stateB 2

stateC 3

stateD n

stateA

stateB

stateC

1 2 3 n...

...

current
state

Figure 15 — Attributes of an Alternate TimeComposite primitive

stateD

ISO/IEC 14478-4:1998(E) © ISO/IEC

36

8.8 Wrapper Primitives

A Wrapper primitive encapsulates a non-object value within a primitive. The value carried by a Wrapper object is required to be
of the non-object type Value defined in ISO/IEC 14478-2.

NOTE — As the non-object type Value includes object references, a wrapper primitive can also encapsulate arbitrary objects. One use of a
wrapper primitive is to carry information from an input device from a logical class such as VALUATOR or PICK within the media streams
that are processed by MRI devices.

9 Modelling, Rendering and Interaction Device

9.1 Introduction

An object type called MRI_Device is defined as an abstract supertype for elements of a media network that produce, consume or
otherwise process data constructed from the Primitive type hierarchy described in clause 7. MRI_Device inherits from the Virtu-
alDevice type defined in ISO/IEC 14478-3, and therefore can inter-operate with other devices and resources in a distributed net-
work. However, the behaviour of MRI_Device specialises that of VirtualDevice to enable coordination of processing activities
between objects that are instances of MRI_Device or its subtypes. Also associated with the MRI_Device type are two further ob-
ject types, MRI_Format and EfficiencyMeasure .

9.2 MRI_Format

Each MRI_Device has at least one port that accepts or produces a stream of Primitive objects. The format object type associated
with any such port is called MRI_Format (Modelling, Rendering and Interaction format). This format object subtype is associated
with a number of properties and capabilities that are useful in characterising the behaviour of an MRI_Device. These are:

a) DimensionsK. This describes the coordinate space that any geometric primitives that use this port are expected to be
defined in. An associated capability, DimensionsCK, gives the possible coordinate spaces that the data transferred via this
port can be defined in.

b) PrimitivesK. This property gives the list of the types of primitives that the modeller or renderer is able to use via this port.
For an input port, this will be the list of primitive types that the device can process; for output ports, it will be the list that the
device can generate.

NOTE — Specialised formats may be created in subsequent components, if any, to deal with specific properties of audio, graphics etc. For
example, a graphics renderer may associate a number of colours with its ports, whereas an audio renderer may have a number of channels that
can be controlled concurrently via the port.

9.3 Efficiency

MRI devices that can process similar kinds of primitive may differ in the efficiency with which they can process those primitives.
It is difficult, however, to give a simple measure for efficiency, since it may depend on the type and complexity of the input or
output that the device handles. However, there are cases where it may be possible to compare devices, possibly as part of the
process of creating and configuring a network through the negotiation framework set out in ISO/IEC 14478-3. To this end, an
object type called EfficiencyMeasure is defined. It provides a single operation called ‘compare’. This operation accepts a refer-
ence to an object of type MRI_Device as input, and returns a result which is a value of the non-object data type ComparisonRes,
defined by:

ComparisonRes worseThan equivalentTo betterThan notComparable  ::=

© ISO/IEC ISO/IEC 14478-4:1998(E)

37

The return result indicates whether, with respect to come criterion, the performance of the receiver is worse than, equivalent to,
or better than that of the device given as input to the operation. EfficiencyMeasure objects are associated with subtypes of
MRI_Device through the property list of the device. The property or properties of an object to which an EfficiencyMeasure is
attached depends on the particular subtype of MRI_Device of which the object is an instance. The value notComparable will be
returned if the EfficiencyMeasure is unable to relate the efficiency of the two objects. In particular this can arise if one object does
not implement the functionality of the other object.

9.4 Behaviour

The facilities and mechanisms for stream control described in ISO/IEC 14478-3 are independent of the content of a stream or the
purpose for which the stream is used. In contrast, this part is concerned with the use of streams for transporting specific kinds of
media data between processing elements. One requirement that this imposes is the need for one processing node to determine
when a particular datum has been received by another node. This requirement is fulfilled through a two-part mechanism.

— The Tracer primitive described in 8.7 can be placed by a client into a stream, either as a single object or as a component
of a Structured primitive (see 8.6). This primitive carries an event object.

— When a Tracer primitive is encountered at a port configured for processing data in MRI_Format, the event carried by the
tracer primitive is dispatched to the event handler attached to that port. As defined in 8.7, the eventSource attribute of the
event is set to the be the Tracer primitive carrying the event. The eventData attribute will contain two pairs. One pair con-
sists of the string “TracerDevice” and a reference to the device containing the port from which the event was dispatched. By
definition, this device will be a MRI_Device. The second pair consists of the string “TracerPortId” and the identifier of the
specific port at which the Tracer was detected.

This mechanism allows one client to ensure that media data has been delivered in full to a remote client. The sender registers
itself with the event handler of the port to which it is sending data, and then transmits a Tracer primitive on the stream used for
that data. Streams are guaranteed to preserve the order of data, and therefore the client will only be notified once all of the data
sent on the stream before the tracer has been received.

NOTE — As Tracer primitives are objects, a reference to such a primitive may be contained within a Wrapper primitive. When such a
Wrapper primitive enters or leaves a MRI_Device via a port of that device, no event is generated by the wrapped Tracer. That is, the contents
of Wrapper primitives are not inspected at the ports of an MRI_Device.

10 Modeller

A Modeller is a MRI_Device that has an application-specific interface for obtaining input from outside of a PREMO application
but which has at least one output port through which primitives can be passed, via a stream, to other MRI_Device objects. This
does not preclude a modeller from also accepting PREMO primitives as input from the application, though a modeller which also
processes PREMO primitives is properly a renderer, as described in clause 11. That is, a Modeller is a device that can acquire
input through an interface that is not specified by ISO/IEC 14478, but which must provide at least one port in its output interface
that allows the Modeller to interoperate with other devices using the stream and event mechanisms described in Parts 2 and 3 of
this standard. The relationship between modellers and other devices is illustrated in Figure 16.

Figure 16 — A Modeller device

Streams of primitivesApplication Interface

MRI network and devicesClient application

Modeller

ISO/IEC 14478-4:1998(E) © ISO/IEC

38

The output of a Modeller is obtained via an output port that uses the format MRI_Format. The data available at this port will be
objects of type Primitive or some subtype of this. The actual types of primitives that a Modeller can generate are defined by the
PrimitivesOutK property. The capability of a Modeller to generate different output primitives is described in the capability Prim-
itivesOutCK.

The EfficiencyOutK property of a modeller provides a sequence containing the names of the primitive types that the Modeller can
produce as output, and for each such primitive, an object of type EfficiencyMeasure for use in comparing the performance of that
Modeller against another for that kind of primitive. See 9.3 for a description of this mechanism.

11 Renderer

A Renderer is a subtype of MRI_Device that provides the dual functionality of a Modeller. It provides at least one input port that
can accept a stream of primitives using MRI_Format. However, the means by which a renderer passes output (if any) to a PREMO
client is not specified within the PREMO standard.

NOTE — A display device for example might accept a stream of primitives and output graphical primitives as images on its screen.

The input to a Renderer is handled via at least one input port that uses the format MRI_Format. The data passed to this port will
be objects of type Primitive or some subtype of this. The actual types of primitives that a Renderer can process are defined by
the PrimitivesInK property. The ability of a Renderer to accept different input primitives is described in the capability Primitive-
sOutCK.

The EfficiencyInK property of a Renderer provides a sequence containing the names of the primitive types that the Renderer can
accept as input, and for each such primitive, an object of type EfficiencyMeasure for use in comparing the performance of that
Renderer against another for that kind of primitive. See 9.3 for a description of this mechanism.

12 MediaEngine

A MediaEngine is a combination of a Modeller and a Renderer, and thus also a subtype (indirectly) of MRI_Device. The interface
of a MediaEngine contains at least one input port and one output port that can be connected to streams of primitives carried in
MRI_Format or a subtype of it. Examples of such derived formats may include CGM, PHIGS Metafile and VRML. A MediaEn-
gine maps primitives received via its input ports into primitives or media specific data format that can:

— be passed for further processing by other MediaEngine;

— be stored, or returned to a Scene, for use for example as a texture;

Figure 17 — A Renderer device

Streams of primitives Application Interface

MRI network and devices Client application

Renderer

© ISO/IEC ISO/IEC 14478-4:1998(E)

39

— be presented to the operator via some Renderer.

The criteria for selecting a particular MediaEngine will include the kinds of primitive that it can accept as input and produce as
output, and also how well the engine maps particular types of input into outputs. As an engine is a subtype of both Modeller and
Renderer, its ability to consume input and produce output over particular ports is represented by the EfficiencyMeasure objects
associated with the inherited EfficiencyInK and EfficiencyOutK properties. In addition to these, a MediaEngine includes a prop-
erty called TransmutationK that places a measure on its ability to generate specific kinds of output from given kinds of input. The
value of this property is a sequence of entries, each consisting of a pair of primitives (i,o) associated with an EfficiencyMeasure
object. Conceptually, this property is a matrix that indicates how well a given MediaEngine is able to map input in the form of
primitives of type i into output of the form of primitives of type o. If the MediaEngine is unable to map instances of one type into
another then the corresponding pair will be omitted from the list.

NOTE — Other properties may be introduced by subsequent components, in association with media-specific renderers.

13 Scene

Modellers, Renderers and MediaEngines may be connected directly via streams using the facilities associated with virtual devices
and defined in ISO/IEC 14478-3. However, there are also situations where the input to and output from one of these subtypes of
MRI_Device needs to pass through an intermediate object. One rationale for this is that a PREMO system is potentially distrib-
uted. Consequently it may be used in applications where multiple modellers are working on a common presentation, and where
multiple renderers, either at different locations or for different media, need access to the primitives produced by the modellers.
Some means of mediating the activities of multiple readers and writers is required, and the object type introduced to provide these
functionalities is called a Scene. The name chosen for this type reflects the fact that it maintains a collection of primitives that are
to be presented.

As the scene is a virtual device, it has a number of ports to which other devices can be attached. However, the way that informa-
tion is transferred from input ports to the primitive store, and from the primitive store to output ports, is controlled by a specialised
interface. A common feature of the operations provided in this interface is the use of a Name object, also used to label Structured
primitives (see 8.6), to indicate the part(s) of the primitive structure affected by each operation. The operations are:

— create a new primitive structure in the scene with a given name as its label;

— delete a primitive structure with a given label from the scene;

— attach the stream of data from an input port to the node in the scene with a given name;

— attach an output port to a node in the scene with a given name;

— transfer (copy) the structure attached to a given output port onto the stream, followed by a tracer primitive;

— detach a port (input or output) from the scene;

— inquire the existence of a named primitive;

Figure 18 — A MediaEngine device

Streams of primitives

Media Streams of primitivesEngine

ISO/IEC 14478-4:1998(E) © ISO/IEC

40

An example will illustrate the relationship between these operations and the structures maintained within a scene object. Consider
the system shown in Figure 19, consisting of a modeller, two media engines and a renderer, all sharing data via a scene. Assume
that the scene is initially empty.

— Before it can receive any primitives for storage, the application has to make a call to create a new primitive, of type
Structured or a subtype of Structured, identified by a given name. Figure 20 (a) shows the content of a scene after a structure
labelled by the name ‘Nm-A’ has been created. In this example, the structure consists of a single Aggregate primitive, con-
taining the string ‘Nm-A’ as the value of the tag attribute of the name object referenced through the label attribute of the
aggregate.

— Input from a modeller can then be added to the structured primitive by attaching the port to the node labelled by a given
name. For example, Figure 20 (b) shows the situation after the port for Modeller 1 has been attached to the node named
‘Nm-A’ and a collection of primitives (labelled ‘P’ in the diagram) has arrived on the stream. This collection of primitives
may contain structures built from further Aggregate and TimeComposite objects.

— In general the scene maintains a collection of primitive structures - the application may for example create a new struc-
ture identified by ‘Nm-B’ which then exists alongside the existing structure, as in Figure 20 (c).

— Either of the devices attached to the scene for writing may contribute primitives to either structure. Thus, Figure 20 (d)
shows the original structure being extended below the ‘Nm-A’ node by another sub-structure, here called Q, which might be
contributed by ‘Engine 1’.

— Any of the primitive structures contributed by modellers may themselves contain primitives derived from the Structured
object type, and these can be used to allow one modeller to extend part of the structure created by another. To do this, the
port used by the modeller has first to be detached from the part of the structure it is currently connected to, and then re-
attached to the new node. For example, the port used by the modeller was initially attached to the structure identified by
‘Nm-A’. If the output from the modeller is to be directed to a substructure, perhaps within P, identified by ‘Nm–C’, the port
used by the modeller would first be detached from ‘Nm–A’ and then attached to ‘Nm–C’. If the modeller then generates a
primitive sub–structure called ‘R’ the result will be a scene containing the primitives in Figure 20 (e).

The transfer of primitives from one device to another via streams is conceptually an asynchronous operation, and one which, in
a distributed context, may take a significant amount of time. It is therefore necessary to ensure, before the detach operation is
invoked, that the structures sent to a scene via a stream have arrived. This task is supported by this part of PREMO through the
tracer primitive and its interaction with the ports of an MRI_Device and its subtypes which include Scene (see 9.4). The device
or process controlling the transfer of data can register itself with the event handler of the scene input port to be notified of tracer
primitive arrival. Once the collection of primitives has been put into the stream, a tracer primitive is placed into the stream. As a
stream guarantees order of delivery, the event handler will be notified of the tracer primitive once the primitives sent by device
have been received by the scene. At this point the detach operation can be invoked safely.

Once defined in a scene object, a primitive structure may be accessed by a device D through the following protocol, which again
uses the tracer primitive facility to ensure synchronization. In the paragraphs labelled a) to f) that follow, the term ‘client’ is used
to refer to the entity that is initiating and controlling the interaction between D and the scene; this may be D itself, or some other
object or control thread that has access to both:

Modeller Engine 2 further MRI devices

Engine 1

scene

Figure 19 — A Scene within a media processing network

presentationRenderer

© ISO/IEC ISO/IEC 14478-4:1998(E)

41

a) The device D is connected by the client to an output port of the scene object.

b) The attachRead operation is invoked on the scene object by the client, with the port P as one argument and the name
associated with the root node of the structure to be accessed by D as the second argument.

c) The client arranges to be notified of tracer primitive arrival on the input port of D being used to accept the data stream
from the scene.

d) The client invokes the transfer operation on the scene object, with the port on the scene to which D is connected as
parameter. The scene then begins to send the primitive structure to which the port is attached over the stream. When the
structure has been sent, the scene places a tracer primitive onto the stream.

e) Once the client has been notified by the input port of D that the tracer primitive has been received, it invokes the detach
operation on the scene object, giving the scene output port as parameter.

f) If a primitive structure is no longer needed, it can be removed from the scene by invoking the delete operation, and pass-
ing the name associated with the root node to be deleted. Invoking this operation on the scene containing the primitive struc-
tures shown in Figure 20 (e) using the name ‘Nm-A’ would result in a scene containing a single primitive structure
consisting of the aggregate primitive labelled ‘Nm-B’.

In general, a PREMO system may consist of a number of objects, derived from MRI_Device, that are sending primitives into a
scene concurrently, and/or reading from the scene concurrently. One responsibility of the scene object is to provide concurrency
control to prevent interference. In this respect a scene object is similar to a conventional database server, and it is assumed that
the environment of a PREMO system will supply a suitable mechanism for controlling concurrent access, for example in the form
of multi-granularity locking.

The scene object type provides an operation for enquiring whether a specific named structure exists in the scene for read or write
attachment. However, the existence of a named primitive inside a scene does not necessarily mean that the associated structure
is available for immediate reading or writing. In particular, the part of a structure of interest to a reader may, at the time of an
attachRead request, still be under construction by another device. Resolution of such race conditions may involve a number of
strategies whose definition is beyond the scope of this part of ISO/IEC 14478. Notification of generic access failure is supported
by allowing the attachRead and attachWrite operations to raise an exception called ‘AccessFailure’.

NOTE — Information on the precise cause of an AccessFailure exception is dependent on the concurrency policy used by a particular
PREMO system or application. Such information could be associated with the exception.

NOTE — Applications are not required to utilise the exception mechanism described above. Other strategies, for example a waiting call with
timeout, may be utilised.

aggregate

P

Nm-C

Nm-A

Nm-A

P

Nm-A

Nm-A Nm-B

Nm-A Nm-B

Q

P
Q

RP

Nm-B

subtree

Figure 20 — Growth of a scene structure

Key:

(a) (b) (c)

(d) (e)

ISO/IEC 14478-4:1998(E) © ISO/IEC

42

Four further exceptions may be raised (where relevant) by the operations of the scene object type. These are:

— BadPort: a parameter refers to a port that does not exist.

— NoStructure: a Name given as input does not occur as the label of any Structured primitive in the scene.

— MultiplyDefined: more than one Structured primitive in the scene matches a given Name parameter. To provide a client
with some level of control over duplication of names, a scene object will raise an event when the device receives a primitive
that has a name object equal to some other name object already defined within the scene. The event is raised on the event
handler attached to the port on which the primitive was received. Testing for equality is carried out using the equal operation
of the object most recently received. The name of the event raised is “AmbiguousName”, the event source is set to the scene
object, and the event data carried the data <(“primitive”, Ref Primitive)>, i.e. a reference to the primitive that carried the
duplicate name.

— NotAttached: the transfer operation is invoked on a port which is not attached for reading to a structure in the scene.

14 Interaction

14.1 Introduction

The device and stream model of PREMO provides a flexible mechanism for passing data between nodes in a network. How a
particular node handles or responds to that data is beyond the scope of this part. Instead, this section defines general mechanisms
that support a range of interaction-handling styles and techniques.

14.2 Input Device

Input in a multimedia system is usually handled in one of two styles, sampled or event driven. A third style, called request mode,
is also provided though its use may be more restricted. In the context of PREMO, input involves the transfer of data from the
environment of a PREMO system into the system. The interface through which data is collected from the environment is not of
concern in this part of the PREMO standard; it may be through a software interface to some external program, or input may be
gathered by a hardware device. Independent of the method used to gather data, this part of PREMO defines the concept of an
InputDevice object type to provide a standard interface for accessing input within the modes of operation described above. As an
input device transfers data from an external context into a network of MRI devices, its behaviour is that of a Modeller, and thus
InputDevice inherits from Modeller. Support for the three modes for input handling is described below.

— In event mode, the arrival of data causes an event to be generated and dispatched to the handler associated with the
device. The list of possible events is maintained as a property with key EventNamesK. The data associated with the event
will be a reference to an object of an appropriate subtype of Primitive that holds the input data.

— In sampled mode, all arriving data is placed on an output port. Clients interested in sampling this data can connect to the
port. Muting can be used to discard input values. The format used by the port is MRI_Format, and the data placed on the
stream connected to the port will be objects of appropriate subtypes of Primitive.

— Finally, in request mode, a client obtains an input datum by invoking a specific operation, request, in the interface of the
input device. The operation is synchronous, and the client is suspended until the device is able to deliver a result.

This part does not define a specialized notion of input primitive, in contrast to Standards such as PHIGS and GKS. Instead, input
data is stored and transmitted as objects of some subtype of Primitive.

NOTE — Geometric entities, for example locations, might be represented as subtypes of Coordinate. Media-independent input, for example
the measure of a Valuator or Pick device, can be carried using the Wrapper primitive; see 8.8 for details of this.

© ISO/IEC ISO/IEC 14478-4:1998(E)

43

NOTE — An application or any subsequent PREMO component could incorporate a notion of input primitive as follows:

1 Create a new subtype of Primitive called InputPrimitive
2 Subtype from InputPrimitive to obtain each kind of input primitive, possibly using multiple subtyping. For example, a TextInput primitive
could be obtained by multiply subtyping from InputPrimitive and Text. Similarly, Valuator input could make use of a coordinate value in a
one-dimensional coordinate space. For other kinds of input primitive, for example the Locator class of PHIGS, additional attributes may be
needed to carry renderer-specific information such as viewport.

14.3 Router

The input device concept provides an interface between the external world and the concepts of event and stream that underlie this
Component of PREMO, but they provide no means of structuring or controlling input. To provide a simple control mechanism
for managing the distribution of stream input (and indeed other) data, PREMO defines the concept of a Router. This is built by
combining a Controller object (defined in part 2) with a virtual resource (as defined in part 3). The states of the controller object
determine the flow of data from input ports to output ports. In each state, each output port of the router can be connected to at
most one input port of the router. Initially, there are no connections between ports in any state. Control over connections is pro-
vided by the following operations:

— A connection from Port A to Port B in state S is requested by invoking the operation addConnection that takes an input
port (A), an output port (B), and a state (S).

— The connection to from any port to Port B in state S can be discarded by invoking the operation dropConnection that
takes the output port (B) and state (S) as parameters. Note that the input port (if any) to which B is connected is not needed.

— The list of all connections that are defined in a given state can be inquired using the inquireConnections operation. This
returns a sequence of port pairs, where a pair (A,B) in the sequence means that the input port A is connected to the output
port B in that state.

The following exceptions may be raised (where appropriate) by the operations of the Router object type. A list of which excep-
tions each operation can raise specifically can be found in the functional specification in 16.10.2.

— BadPort: a parameter refers to a port that does not exist.

— BadState: a parameter refers to a controller state that does not exist

— AlreadyConnected: the (input) port passed as a parameter is already connected to some output port.

15 Coordinator

In order to render or process a presentation constructed from multiple types of media data, it will at some point be necessary to
use media–specific devices. One possibility is that an application has access to a device that can itself carry out the processing of
this multimedia data. More generally however, the devices available to an application will each be able to manage some subset
of the media data, and it then becomes necessary to ensure that the original media data is decomposed and distributed to these
specific processors, and that the actions of these processors are synchronized if required.

This part of ISO/IEC 14478 provides facilities for the description of multimedia presentations through the hierarchy of Structured
primitives. The object types provided in ISO/IEC 14478-2 and ISO/IEC 14478-3 provide an application with middleware to sup-
port the distribution and synchronization of such presentations. This part of PREMO provides one more level of support, by de-
fining an object type, Coordinator, that will manage the distribution of media primitives to specific processing devices, and which
provides a foundation for realizing the synchronization constraints required for the overall presentation.

A Coordinator is a subtype of MRI_Device that provides a single input port, which accepts data in MRI_Format. It is also able
to encapsulate a number of other media devices, each of which provides the coordinator with one input port. These devices must
be instances of an object type that is a subtype of Renderer. As a coordinator receives primitives, it is responsible for decomposing
any structured presentation into components that can be processed by the devices that it encapsulates. Figure 21 summarises the
use of a coordinator within the AV system example from clause 6. In the example, the coordinator may receive presentations that

ISO/IEC 14478-4:1998(E) © ISO/IEC

44

involve synthetic graphics, video, and audio components. The audio component of the presentation is delegated to the logical
device responsible for audio rendering, while the graphics and video are managed by the second logical device. The coordinator
is also responsible for ensuring that its components maintain any coarse-grained synchronization constraints captured by the over-
all presentation. Note that these encapsulated devices may receive input from other components of the system; the coordinator is
only responsible for processing media data received via its own input port. The distribution of primitives to the devices available
to a coordinator is determined by the abilities of those devices to accept particular kinds of primitive as input. If a coordinator
receives a presentation which it is not able to distribute in this way, because the presentation contains primitives which are sup-
ported by none of the available devices, the coordinator will raise the exception PrimitiveNotRecognized.

Processing devices are added to and removed from a coordinator using operations in the interface of the coordinator. These are:

— addDevice. This accepts a reference to a Renderer, and a port identifier, as input parameters. The port identifier must be
that of an input port on the specified device that accepts MRI_Format; if this condition is not satisfied, the exception Bad-
Port will be raised. If the device is already known to the coordinator, the only effect will be that the given port identifier will
replace whatever port identifier is currently registered for that device. That is, addDevice also allows a client to change the
port that the coordinator should use when forwarding data to a device.

— removeDevice. This takes as input a reference to a renderer, and removes the device from the collection of devices to
which the coordinator can distribute media data. If the specified device is not within the collection of devices available to the
renderer, there is no change to the state.

A third operation, inquireDevices, allows a client to find the set of devices that a coordinator can use, and for each such device,
the port to which primitives will be sent by the coordinator.

The parallel streams of primitives that result from the distribution of a single multimedia presentation to the devices managed by
a coordinator will need to be synchronized. In particular, the relative arrangement of media content within the ‘slots’ defined by
sequential, parallel, and alternate primitives must be respected. Coarse–grained synchronization may also need to reflect struc-
tural or temporal modifiers within the media streams. At a finer level of granularity, synchronization may also be needed to main-
tain processing of the media streams within quality–of–service requirements. This too may be managed in whole or in part by a
coordinator. ISO/IEC 14478-4 provides a variety of mechanisms, any of which might be used as, or within, an implementation

from

application

Figure 21 — The role of the Coordinator

audio engine

video engine

scene

router

Coordinator

audio modeller

graphics modeller

audio

graphics

mouse

renderer

renderer
enginegraphics

© ISO/IEC ISO/IEC 14478-4:1998(E)

45

of synchronization constraints. This variety of techniques reflects the range of problem domains in which multimedia systems
are found. Consequently, this part of PREMO does not require that a coordinator use a specific approach to managing the syn-
chronization of media streams to the devices at its disposal.

NOTE — One possible approach to implementing the distribution and synchronization of media data within a coordinator is described here.
The purpose of doing so is to further explain the role of coordinator objects; an implementation of Coordinator need not follow the outline
given here. For simplicity, it is assumed that the devices available to a coordinator are not capable of managing parallel, sequential or alternate
time composite primitives themselves. Consequently, when a coordinator receives a presentation (in the form of a primitive structure) on its
input port, it must carry out an allocation of the primitives within the presentation to the devices that it has available. This allocation can be
thought of as defining a set of media tracks. There is one track per device, and arranged along each track are the various primitives that the
corresponding device is to process. A track itself represents time, so another way of stating the distribution problem is that the coordinator
must create a schedule indicating which device will be processing a component primitive of the overall presentation at a specific time. Thus
the allocation of media to devices becomes an instance of the general scheduling problem.

Once the presentation of media data has been scheduled, the coordinator can place the primitives onto media streams that are linked to the
input ports of the rendering devices. To ensure that these media streams remain synchronized, the coordinator may adopt some or all of the
following strategies. First, it can explicitly control the end-to-end processing of constituent devices by using the state-machine interface of the
StreamControl objects associated with the input port and processing element of the device. The coordinator can monitor the progress of
processing activities by inserting Tracer primitives into the media streams, and arranging to be notified when these streams are encountered at
the input port of each device. A second strategy for synchronization is for a coordinator to place synchronization elements at reference points
along each stream corresponding to significant features (e.g. the beginning or end of a component primitive) along any of the streams. By
connecting these synchronization elements to an ANDSynchronizationPoint object, the coordinator can ensure that all media streams have
reached a specific point before progression continues. Third, a finer level of control can be obtained by using periodic synchronization
elements along the progression space of the streams.

16 Functional Specification

16.1 Introduction

This clause provides the detailed functional specification of the object types that define the PREMO Modelling, Presentation and
Interaction Component. The notation used in this clause follows the rules detailed in Annex A of ISO/IEC 14478-1.

16.2 Non-object data types

This sub-clause defines the non-object data types that are introduced for the first time within this part.

A mapping from one type of primitive into another.

Possible overlap between the presentations of components of sequential TimeComposite primitives.

The following data type describes the possible states of a primitive contained in a scene object.

The ComparisonRes data type defines values for use in comparing the efficiency of modellers and renderers.

PrimMap ObjectType ObjectType×==

OverlapType never left right ::=

SceneObjectState NotPresent Locked Available MultiplyDefined  ::=

ComparisonRes worseThan equivalentTo betterThan notComparable  ::=

ISO/IEC 14478-4:1998(E) © ISO/IEC

46

The following constants are defined for use with the Colour object type.

16.3 Exceptions

This sub-clause lists the exceptions raised by operations defined in PREMO MRI types and which are not defined as part of the
exceptions defined for ISO/IEC 14478-2 (see clause 9.3 of ISO/IEC 14478-2) and for ISO/IEC 14478-3 (see clause 10.3 of ISO/
IEC 14478-3).

AccessFailure == Exception

AlreadyConnected == Exception

AlreadyExists == Exception

NoStructure == Exception

BadPort == Exception

BadState == Exception

InvalidPort == Exception

InvalidResource == Exception

MultiplyDefined == Exception

NotAttached == Exception

PrimitiveNotRecognized == Exception

ColourRGBR N ColourRGBR 1=:

ColourRGBG N ColourRGBG 2=:

ColourRGBB N ColourRGBB 3=:

ColourHSVH N ColourHSVH 1=:

ColourHSVS N ColourHSVS 2=:

ColourHSVV N ColourHSVV 3=:

ColourHLSH N ColourHLSH 1=:

ColourHLSL N ColourHLSL 2=:

ColourHLSS N ColourHLSS 3=:

ColourCIEL N ColourCIEL 1=:

ColourCIEU N ColourCIEU 2=:

ColourCIEV N ColourCIEV 3=:

© ISO/IEC ISO/IEC 14478-4:1998(E)

47

16.4 Objects for coordinate spaces

16.4.1 Coordinate object

Coordinate[T]

SimplePREMOObject

dimensionality: [Retrieve Only]

This generic object type describes coordinates of arbitrary dimensionality, subject to the restriction that each com-
ponent of the coordinate belongs to a common type that instantiates the generic parameter T. The dimensionality is
defined as a read-only attribute.

getRange

indexin:
minout: T
maxout: T

The minimum and maximum range of the dimension given by indexin is returned. The effect of inquiring the range
for dimensions outside of a coordinate’s defined dimensionality is undefined.

Exceptions raised: None.

setComponent

indexin:
valuein: T

The value of the coordinate for the dimension given by indexin is set to valuein. If the value of indexin is outside of
the dimensionality of the coordinate, or if valuein is outside the range of values for that dimension, the effect is un-
defined.

Exceptions raised: None.

getComponent

indexin:
valueout: T

The value of the coordinate for the dimension given by indexin is returned as valuein. If the value of indexin is outside
of the dimensionality of the coordinate the result is undefined.

Exceptions raised: None.

Coordinate

N

N

N

N

ISO/IEC 14478-4:1998(E) © ISO/IEC

48

16.4.2 Colour object

16.4.3 TimeLocation object

Colour[T]

Coordinate[T]

colourModel: String [Retrieve Only]

This object type is a subtype of coordinate for use in representing colours within a given colour model. The name
of the model in which the colour is defined is represented by the read-only attribute colourModel. Permitted values
for this attribute include: “RGB”, “CIELUV”, “HSV” and “HLS”. A dimensionality of 3 is associated with each of
these colour models, and the interpretation of each component of a colour object under such a model is given by
the tables in 7.2.

Colour

TimeLocation

Coordinate[Time]

A TimeLocation object is a specialization of Coordinate in which dimensionality is fixed at 1, and the type of
values recorded for the single component is Time. This specifies an absolute moment in time, in terms of a
number of ticks. For any instance of this object type, the clock against which these ticks are measured is
determined from the context in which the instance appears.

TimeLocation

© ISO/IEC ISO/IEC 14478-4:1998(E)

49

16.5 Name object

16.6 Objects for media primitives

16.6.1 Primitive object

Name

SimplePREMOObject

tag: seq String

A Name is defined by a sequence of strings, and supports an operation to determine whether or not its sequence
of strings is equal to that of another Name object. The semantics of equality are not prescribed by this part of
ISO/IEC 14478, but the default behaviour is to treat the sequences as sets of strings and test for equality be-
tween sets.

equal

otherNamein: Ref Name
resultout: Boolean

Determine whether the name referenced by the parameter ‘otherName’ is equal to the receiver.

Exceptions raised: None.

Name

Primitiveabstract

SimplePREMOObject

This abstract object type is the common abstract supertype for the hierarchy of object types that describe the
primitives defined for modelling, rendering and interaction within PREMO.

Primitiveabstract

ISO/IEC 14478-4:1998(E) © ISO/IEC

50

16.6.2 Captured object

16.6.3 Objects describing primitives with spatial and/or temporal form

16.6.3.1 Form object

16.6.3.2 Objects describing form primitives for audio media data

P.6.3.2.1 Audio object

Captured

Primitive

srcDevice: Ref VirtualDevice
srcPort: Port

A Captured primitive is one for which its presentation is determined by formatted data obtained via the port
of some virtual device. The Captured object type contains a reference to the device on which the port is
located, and the identity of the port on the device from which the data are to be obtained. The format of the
data can be determined by inspecting the format object attached to the port.

Captured

Formabstract

Primitive

This is a common abstract supertype for primitives whose presentation has to be constructed by a renderer based
on some abstract description of the properties of the primitive.

Formabstract

Audioabstract

Form

This is the common abstract supertype for primitives that describe audio information that is to be synthesized.

Audioabstract

© ISO/IEC ISO/IEC 14478-4:1998(E)

51

16.6.3.2.2 Music object

16.6.3.2.3 Speech object

16.6.3.3 Objects describing form primitives for geometric media data

16.6.3.3.1 Geometric objects

Music

Audio

instrument:
score: seq

A musical primitive contains a reference to a musical instrument, here given by a natural number, and the
score which is described simply as a sequence on numbers which encodes, in some way, the notes and other
information about the sounds that are to be rendered. PREMO does not mandate any naming system for
assigning numbers to specific sounds, instruments or notes, as none have yet been standardized. A common
example of a system in current use however is MIDI.

Music

Speech

Audio

voice: Ref VocalCharacteristics
text: seq Character

This is a primitive containing a sequence of characters (text) that is to be presented as synthesized speech.
The text is to be articulated using the vocal characteristics captured by the attribute voice. The text may con-
tain both words and other information needed by a specific system for emphasis etc. The object type for
describing vocal characteristics is defined in 16.6.4.2.3.

Speech

Geometricabstract

Form

This is the common abstract supertype for primitives that describe or define geometric structures.

Geometricabstract

N
N

ISO/IEC 14478-4:1998(E) © ISO/IEC

52

16.6.3.3.2 Tactile object

16.6.3.3.3 Text object

16.6.4 Objects describing primitives for the modification of media data

16.6.4.1 Modifier object

16.6.4.2 Objects describing modifier primitives for audio media data

16.6.4.2.1 Acoustic object

Tactileabstract

Form

This is an abstract supertype for primitives representing aspects of tactile (haptic) feedback. As current systems
for supporting this are still at an experimental stage, no further provision for this modality is available in this
part of the standard.

Tactileabstract

Text

Form

characters: String

This object type contains a sequence of characters to be rendered as text. Information about the size, font or
other aspects that affect the appearance of the text will depend on the context in which the primitive appears.
See 8.3.5 for further discussion on this.

Text

Modifierabstract

Primitive

This is the abstract supertype for objects representing modifications. A modifier is a primitive that has not pres-
entation itself, but rather, which acts to modify the presentation of other primitives. Modifiers are grouped ac-
cording to the kind of primitive on which they act.

Modifierabstract

Acousticabstract

Modifier

This is the abstract supertype for modifiers that act on audio primitives.

Acousticabstract

© ISO/IEC ISO/IEC 14478-4:1998(E)

53

16.6.4.2.2 SoundCharacteristic object

16.6.4.2.3 VocalCharacteristic object

16.6.4.3 Objects describing modifier primitives for structural aspects of media data

16.6.4.3.1 Structural object

16.6.4.3.2 Transformation object

SoundCharacteristicabstract

Acoustic

This object type provides a hook for any subsequent components or applications using sound renderers to define
means by which the presentation of a sound may be modified, independent of whether the sound represents
speech or music. Such modifications should thus be defined over external properties of the sound, such as vol-
ume, waveform, etc.

SoundCharacteristicabstract

VocalCharacteristicsabstract

Acoustic

This object type provides a hook for subsequent components, if any, or applications using sound renderers to
attach models for describing the characteristics of voices that can be used to control the presentation offered
by such renderers. At the time of writing, there is no standard or commonly used framework for this function-
ality.

VocalCharacteristicsabstract

Structuralabstract

Modifier

This is the abstract supertype for modifiers that affect the interpretation of coordinates associated with some col-
lection of primitives. The affected coordinates can encompass, e.g., geometric structure or temporal properties.

Structuralabstract

Transformationabstract

Structural

This is the abstract supertype for modifiers that transform coordinates into new coordinates.

Transformationabstract

ISO/IEC 14478-4:1998(E) © ISO/IEC

54

16.6.4.3.3 Constraint object

16.6.4.4 TimeFrame object

16.6.4.5 Objects describing modifier primitives for visual aspects of media data

16.6.4.5.1 Visual objects

16.6.4.5.2 Light object

Constraintabstract

Structural

This is the abstract supertype for constraints that are used to modify the appearance of primitives by affecting or
restricting their coordinate values, for example by clipping or stencilling.

Constraintabstract

TimeFrame

Modifier

timeBase: Ref Clock

A TimeFrame modifier carries a reference to a Clock object. Media processors could use the referenced clock
as the basis for working with time coordinates contained within the primitives that make up a presentation.

TimeFrame

Visualabstract

Modifier

This is the abstract supertype for modifiers that act on geometric primitives to modify non-geometric or tem-
poral aspects of their presentation.

Visualabstract

Lightabstract

Visual

This is an abstract supertype for primitives that represent properties of light. This part does not mandate the use
of any particular lighting model.

Lightabstract

© ISO/IEC ISO/IEC 14478-4:1998(E)

55

16.6.4.5.3 Material object

16.6.4.5.4 Shading object

16.6.4.5.5 Texture object

16.6.5 Reference object

Materialabstract

Visual

This is an abstract supertype for primitives that describe properties of materials constructed from geometric
primitives.

Materialabstract

Shadingabstract

Visual

This is an abstract supertype for primitives that describe the shading of structures constructed from geometric
primitives.

Shadingabstract

Textureabstract

Visual

This is an abstract supertype for primitives that describe the texture of structures constructed from geometric
primitives.

Textureabstract

Reference

Primitive

label: Ref Name

A Reference primitive contains a label attribute that references a Name object. At the time that the primitive
is processed, it is assumed that an equal name will have been introduced elsewhere in the same primitive struc-
ture. The effect of reference-ing a name that has not been introduced is not defined.

Reference

ISO/IEC 14478-4:1998(E) © ISO/IEC

56

16.6.6 Objects for organising primitives into structures

16.6.6.1 Structured object

16.6.6.2 Aggregate object

Structuredabstract

Primitive

components: seq Ref Primitiveabstract
label: Ref Name

This is the abstract supertype for primitives that group together other primitives into larger structures. The se-
mantics of such groupings are determined by concrete subtypes. All structured primitives however contain an
attribute, components, that defines a sequence of references to primitives. This part places no interpretation on
the order of the component primitives, though subsequent components, if any, or applications that extend
structured subtypes are at liberty to do so.

Each structured primitive also has a label attribute that references a name that can be used to identify or refer
to the primitive.

Structuredabstract

Aggregate

Structured

An aggregate is a concrete form of structured primitive intended for combining collections of syn-
thesized primitives into larger structures or for combining Form and Modifier primitives so that
the effect of modifiers can be scoped. However, PREMO defines no specific scoping rules, as dis-
cussed in 8.6.

Aggregate

© ISO/IEC ISO/IEC 14478-4:1998(E)

57

16.6.6.3 Objects for organising media data within time

16.6.6.3.1 TimeComposite object

16.6.6.3.2 Sequential object

TimeCompositeabstract

Structured

min, max: Time
startTime, endTime: Time
monitor: Ref EventHandler

This is the abstract supertype for primitives used to describe the temporal organization and synchronization
of a structured presentation. The two attributes of type Time, min and max, define the size of the temporal
context (duration) in which the media content inherited from the Structured supertype is to be presented.

The monitor attribute is a reference to an event handler that will be notified of progress in presenting the con-
tents of the TimeComposite. The startTime and endTime attributes define the delay between the start/end of
presentation of the TimeComposite, and the start/end of presentation of the first/last component. Note that all
times are measured relative to the clock inherited through Duration. The event handler will be signalled
between the end of startTime and the onset of processing of the first component, and between the end of
processing of the last component and the beginning of endTime.

TimeCompositeabstract

Sequential

TimeComposite

startDelta, endDelta: Time
overlap: OverlapType

A sequential TimeComposite primitive describes a presentation in which each primitive in the component se-
quence is rendered in the order in which it appears in the sequence. The presentation of each component is
preceded by a delay of startDelta ticks, and is followed by a delay of endDelta ticks. An event is generated
between the end of each startDelta and the beginning of the presentation of the next component, and between
the end of the presentation of each component and the beginning of the subsequent endDelta.

In order to fit the presentation of the sequence into the duration available for the TimeComposite, a renderer
may need to compress or truncate the presentations of some or all components. The attribute overlap describes
the way in which this can be performed. It takes on three possible values: never, left and right. The meaning
of each of these values is explained in 8.6.3.

Sequential

ISO/IEC 14478-4:1998(E) © ISO/IEC

58

16.6.6.3.3 Parallel object

16.6.6.3.4 Alternate object

16.6.7 Tracer object

Parallel

TimeComposite

startSync, endSync: Boolean

This object type describes a TimeComposite whose components should be presented in parallel. In addition
to the components, it specifies two attributes, startSync and endSync. When startSync is true, the presentations
of each component shall begin synchronously; when it is false, the presentations may begin asynchronously.
If endSync is true, a media device should attempt to ensure that the presentations end at the same time.

Parallel

Alternate

TimeComposite

selector: Ref Controller
options:

An alternate TimeComposite is one where one of the components will be chosen for presentation, depending
on the state of a controller object referenced by the attribute selector. The link between controller states and
component primitives is defined by the options attribute. The consequences of presenting an alternate primi-
tive when either the state of the controller corresponds to none of the listed options, or when there is more than
one option for the specified state value, is not determined by this part.

Alternate

Tracer

Primitive

trace: Event

A Tracer primitive carries an event. Whenever a tracer object is received or transmitted via the port of a MRI
device (see 16.8) the event carried by the tracer will be dispatched to the event handler associated with that
port. The eventName attribute of the event is set to “TracerEvent”. The eventSource attribute is set to reference
the Tracer primitive object in which the event is contained.

Tracer

String Z×()seq

© ISO/IEC ISO/IEC 14478-4:1998(E)

59

16.6.8 Wrapper object

16.7 Objects for describing properties of devices

16.7.1 MRI_Format object

Properties defined:

Capabilities defined:

Wrapper

Primitive

content: Value

 A Wrapper primitive is used to enclose a value from the union type Value defined in ISO/IEC 14478-2 into
an object that can be used in contexts where a Primitive would be expected.

Wrapper

MRI_Format

Format

This is the format to be used by ports of MRI devices for input and output of primitives, i.e. for ports associated
with a stream of data consisting of references to objects of type Primitiveabstract or its subtypes.

MRI_Format

Key Type of Value R.O or R/W Description

DimensionsK seq (ObjectType ×) R/W Dimensions of the coordinate space in which
primitives of a specific type will be defined.

PrimitivesK seq ObjectType R.O. The kinds of primitive that can be accepted or
generated via this port.

Key Type of Value Values

DimensionsCK seq (ObjectType × ×) <primitive, minimum value, maximum value>

PrimitivesCK seq ObjectType The primitives that can be produced by a mod-
eller of this type.

N

N N

ISO/IEC 14478-4:1998(E) © ISO/IEC

60

16.7.2 EfficiencyMeasure object

16.8 Processing devices for media data

16.8.1 MRI_Device object

16.8.2 Modeller object

EfficiencyMeasure

SimplePREMOObject

This object type provides an interface that supports comparison with another object of this type, for use for
example in comparing efficiency of modellers and renderers with respect to some criterion.

compare

alternativein: Ref MRI_Device
resultout: ComparisonRes

The level of efficiency represented by the receiver is compared with that of the input alternativein. Provided
that the receiver and argument are comparable, a result is returned indicating whether the receiver is worse
than, equivalent to, or better than the argument. The value notComparable is returned otherwise.

EfficiencyMeasure

MRI_Device

VirtualDevice

This is a device that contains at least one port that can either accept data using MRI_Format or can produce
data using that format. Any port set to use MRI_Format will monitor the primitives that pass through the port.
Whenever a Tracer primitive is observed, the event carried by the tracer will be dispatched to the event handler
associated with the port.

MRI_Device

Modeller

MRI_Device

A Modeller is a MRI_Device that contains at least one output port that accepts MRI_Format.

Modeller

© ISO/IEC ISO/IEC 14478-4:1998(E)

61

Properties defined:

Capabilities defined:

None.

16.8.3 Renderer object

Properties defined:

Capabilities defined:

None.

16.8.4 MediaEngine object

Key Type of Value R.O or R/W Description

EfficiencyOutK seq (ObjectType × EfficiencyMeasure) R.O. A measure of the efficiency with which
the modeller can produce primitives of
a particular type.

Renderer

MRI_Device

A Renderer is a MRI_Device that contains at least one output port that accepts MRI_Format.

Renderer

Key Type of Value R.O or R/W Description

EfficiencyInK seq (ObjectType × EfficiencyMeasure) R.O. A measure of the efficiency with which
the renderer can accept and process
primitives of a particular type.

MediaEngine

Modeller
Renderer

A MediaEngine is both a Modeller and a Renderer, that is, it has both at least one input port and one output
port capable of using MRI_Format.

MediaEngine

ISO/IEC 14478-4:1998(E) © ISO/IEC

62

Properties defined:

Capabilities defined:

None.

Key Type of Value R.O or R/W Description

TransmutationK seq (PrimMap × EfficiencyMeasure) R.O. A measure of the efficiency with which
the engine can transform one kind of
primitive into another

© ISO/IEC ISO/IEC 14478-4:1998(E)

63

16.9 Scene object

Scene

VirtualDevice

A scene object is a container for holding a collection of primitive structures and for mediating access to those
structures by a number of modellers and renderers. The clients of a Scene object gain access to part of a primitive
structure by requesting the object to attach one of its ports, either for reading or writing, to part of a primitive
structure labelled by a specific name (via an Identification primitive)

create

structnamein: Name
structureTypein: ObjectType
exceptions: {AlreadyExists, InvalidType}

Create a primitive structure of the type specified by structureTypein named structnamein. The type specified by
structureTypein must be a subtype of Structured.

Exceptions raised:
AlreadyExists A structure of that name already exists in the scene.
InvalidType The type structureTypein is not a valid subtype of Structured.

attachRead

structnamein: Name
portidin: Port
exceptions: {NoStructure, MultiplyDefined, BadPort, AccessFailure}

Attach the port named portidin to the primitive structure identified by the name structnamein for subsequent read-
ing, i.e. the primitive hierarchy rooted at structnamein will be placed on the stream associated with the given port
identifier. While primitives are being read from a stream, any Name object received is checked against the set of
name objects already defined within the scene. If a new Name object contains a name that is equal to that of an
existing name, an event is dispatched to the event handler associated with port portidin.

Exceptions raised:
NoStructure No structured primitive in the scene has the specified name.
MultiplyDefined More than one structured primitive in the scene matches the name.
BadPort The output port given by portidin does not exist.
AccessFailure The structured primitive labelled by the given name cannot be

accessed for reading.

inquireStatus

structnamein: Name
resultout: SceneObjectState

Inquire the status of a structured primitive in the scene labelled by structnamein. The result is a value of type
SceneObjectState as defined in 16.2.

Exceptions raised: None.

ISO/IEC 14478-4:1998(E) © ISO/IEC

64

attachWrite

structnamein: Name
portidin: Port
exceptions: {NoStructure, MultiplyDefined, BadPort, AccessFailure}

Attach the port named portidin to the primitive structure identified by the name structnamein for subsequent writ-
ing, i.e. the primitive hierarchy rooted at structnamein will be extended with new data arriving on the stream as-
sociated with the given port identifier.

Exceptions raised:
NoStructure No structured primitive in the scene has the specified name.
MultiplyDefined More than one structured primitive in the scene matches the name.
BadPort The input port given by portidin does not exist.
AccessFailure The structured primitive labelled by the given name cannot be

accessed for writing.

transfera

portidin: Port
exceptions: {BadPort, NotAttached}

Request the scene to begin transfer of the contents of the structure to which the input port portidin is attached.
Note that this operation is asynchronous. Once the primitives from the structure have been transferred, a tracer
primitive will be sent via the same port.

Exceptions raised:
BadPort The input port given by portidin does not exist.
NotAttached The port is not attached for reading to a structure in the database.

detach

portidin: Port
exceptions: {BadPort}

Detach the port named portidin from the primitive structure that it is currently connected to for reading or writing.

Exceptions raised:
BadPort The input port given by portidin does not exist.

© ISO/IEC ISO/IEC 14478-4:1998(E)

65

Properties defined:

None.

Capabilities defined:

None.

16.10 Objects for supporting interaction

16.10.1 InputDevice object

delete

structnamein: Name
exceptions: {NoStructure, Locked}

Remove all primitive structures from the scene that have as their root a Structured primitive with a label attribute
that matches structnamein.

Exceptions raised:
NoStructure No structured primitive in the scene has the specified name.
Locked The structured primitive labelled by the given name is currently

locked for writing by another device.

Scene

InputDevice

Modeller

An input device is a form of modeller that, in addition to the stream and event interface provided through its
output ports, defines an operation through which a primitive can be requested.

request

inputout: Ref Primitive

This operation allows a client to obtain input in ‘request mode’. The result of the request operation is an
instance of the Primitive object type or a subtype, determined by the nature of the input device.

Exceptions raised: None.

InputDevice

ISO/IEC 14478-4:1998(E) © ISO/IEC

66

Properties defined:

Capabilities defined:

None.

16.10.2 Router object

Key Type of Value R.O or R/W Description

InputEventNamesK seq EventName R.O. Names of events that will be raised
when particular input data arrives while
in event mode.

Router

MRI_Device
Controller

A router object is a MRI_Device and Controller that copies data on its input ports to a set of output ports deter-
mined by the current state of its controller component.

addConnection

statein: String
inputPortin: Ref Port
outputPortin: Ref Port
exceptions: {BadPort, BadState, AlreadyConnected}

Update the router so that when the control state is statein there is a connection from the port inputPortin to the
port outputPortin, i.e. any data received on the stream associated with inputPortin is copied to the stream asso-
ciated with outputPortin.

Exceptions raised:
BadPort One of the ports provided as input argument does not exist.
BadState The state statein given as input argument does not exist.
AlreadyConnected Some input port is already connected to outputPortin in statein.

dropConnection

statein: String
outputPortin: Ref Port
exceptions: {BadPort, BadState, AlreadyConnected}

Remove all connections between input ports and the port outputPortin for the state statein. This means that when
the router is in state statein, there are no connections that will result in data being copied onto the stream con-
nected to port outputPortin.

Exceptions raised:
BadPort The port provided as input argument does not exist.
BadState The state statein given as input argument does not exist.

© ISO/IEC ISO/IEC 14478-4:1998(E)

67

Properties defined:

None.

Capabilities defined:

None.

16.11 Coordinator object

inquireConnections

statein: String

linksout: seq
exceptions: {BadState}

Determine the set of links that exist from input ports to output ports in a designated state. The result is returned
through the output parameter linksout as a sequence of pairs of states. No specific order is implied.

Exceptions raised:
BadState The state statein given as input argument does not exist.

Router

Coordinator

MRI_Device

A Coordinator is a subtype of MRI_Device. Each coordinator device encapsulates a collection of devices that it
utilises to process primitive structures received on its input port. When a primitive structure is received, a coor-
dinator is required to distribute components of the structure to the devices so that (i) each primitive within he
structure is sent to a device that is able to process it, and (ii) synchronization requirements within the original pres-
entation are met. Although PREMO provides a number of facilities to support synchronization (e.g. synchroniza-
tion elements, ANDSynchronizationPoint, and Tracer primitives), no specific approach is mandated for the
implementation of synchronization requirements within the Coordinator object type.

addDevice

devicein: Renderer
portin: Port
exceptions: {BadPort}

Add the renderer device devicein to the collection of devices that the coordinator can use to process a primitive
structure it receives. The parameter portin gives the port to which the coordinator should direct primitives. The
MRI_Format attached to this port will determine the primitives that this device can accept. If the device is
already available to the coordinator, the port used by the coordinator will be updated to the port specified by the
parameter.

Exceptions raised:
BadPort The port portin is not an input port of the renderer devicein, and/or

does not accept data in MRI_Format.

Port Port×()

ISO/IEC 14478-4:1998(E) © ISO/IEC

68

Properties defined:

None.

Capabilities defined:

None.

dropDevice

devicein: Renderer

The device specified by devicein is removed from the collection of devices that the coordinator can use for
processing media data. If the device is not one that the coordinator has in its collection, the operation has no effect.

inquireDevice

devicesout: seq

The operation returns the set of renderers that the coordinator has in its collection, and for each renderer, the port
of the renderer to which the stream used by the coordinator is attached.

Coordinator

Renderer Port×()

© ISO/IEC ISO/IEC 14478-4:1998(E)

69

17 Component Specification

MRIComponent

Basic

provides service

MRI_Device, Modeller, MediaEngine, Renderer,
Scene,
Coordinator,
InputDevice, Router

provides type

MRI_Format,
Coordinate, Colour, TimeLocation,
Primitive, Form, Geometric, Text, Tactile,
Audio, Music, Speech, Reference, Name,
Modifier, Acoustic, SoundCharacteristic, VocalCharacteristic,
Structural, Transformation, Constraint,
Temporal, TimeFrame,
Visual, Light, Shading, Material, Texture,
Structured, Aggregate, TimeComposite, Sequential, Parallel, Alternate

requires service

Component MSSComponent Profile Basic

requires type

Component MSSComponent Profile Basic

MRIComponent

ISO/IEC 14478-4:1998(E) © ISO/IEC

70

Annex A
(normative)

Overview of PREMO Modelling, Rendering and Interaction Object Types

This annex gives an overview of all PREMO object types defined in this part. This Annex does not add any new information and
is here for easier reference only.

Figure 22 — PREMO primitive object types

Primitive

FormCaptured

srcDevice
srcPort

Structured

components
labels

Text

characters

TactileAudio Geometric

Speech

voice
text

Music

srcDevice
srcPort

Reference

label

SimplePREMOObject

EfficiencyMeasure

compare

Modifer Tracer

trace

Wrapper

value

Coordinate[T]

dimensionality

Colour[T]

colourModel

setComponent
getComponent

getRange

Name

tag

equal

TimeLocation

when

T / Time

© ISO/IEC ISO/IEC 14478-4:1998(E)

71

VocalCharacteristics

startDelta
endDelta
overlap

Parallel

startSync
endSync

Figure 23 — PREMO Modifier and Structured primitive object types

Modifier

Structural Visual

ShadingLight

Material Texture

Acoustic

ConstraintTransformation

SoundCharacteristic

Structured

components
label

Aggregate TimeComposite

startTime
endTime

min
max

monitor

Sequential Alternate

selector
options

VocalCharacteristicsVocalCharacteristic

TimeFrame

timeBase

ISO/IEC 14478-4:1998(E) © ISO/IEC

72

Modeller

MediaEngine

Figure 24 — PREMO MRI devices and format object types

Router

addConnection
dropConnection

inquireConnections

request

InputDevice

Format

MRI_Format

Scene

create
attachRead
attachWrite

detach
transfer

inquireStatus
delete

Coordinator

VirtualDevice

getConnection
getPortConfig
setPortConfig
portValidate

resourceEventHandler
ports

stream
configuration

Controller

handleEvent
ΞhandleUnknownEvent

ΞcheckTransition
ΞonEnter
selAction

removeAction
setActionOnPair

removeActionOnPair

currentState
possibleStates

MRI_Device

Renderer

addDevice
dropDevice

inquireDevices

© ISO/IEC ISO/IEC 14478-4:1998(E)

73

Annex B
(informative)

Diagrammatic Conventions

B.1 Introduction

ISO/IEC 14478-3 utilizes a number of graphical conventions for illustrating virtual devices, resources and the ports and streams
that interconnect them. This part is concerned with a larger collection of specialized processing devices, and while these are all
ultimately subtypes of VirtualDevice, it is convenient to use a correspondingly richer collection of shapes to represent these de-
vices within this part. The role of this Annex is simply to summarise the notation used. This is done in the form of a subtype
hierarchy that mimics appropriate parts of the structure given in Annex A. Here graphical signatures are used in place of object
type structures.

B.2 General Graphical Signatures

MediaEngine

Scene

Router

Coordinator

Logical Device

Modeller Renderer

Virtual Device
(part 3)

MRI_Device

(abstract)

Figure 25 — Graphical signatures for part 4 device subtypes

Controller
(part 3)

Group
(part 3)

(part 3)

ISO/IEC 14478-4:1998(E) © ISO/IEC

74

B.3 Conventions for Devices and Communication

audio
modeller

MRI_Device, or subtype

port

procedural
interface

communication via
procedure call
or other non-
stream mechanism

media stream

all media streams connect
the port(s) of one device to
port(s) of another device

= raising of an event
(used, for example, in the description of TimeComposite primitives)

Figure 26 — Conventions for representing media flow and other forms of communication

© ISO/IEC ISO/IEC 14478-4:1998(E)

75

Annex C
(informative)

Relationship between Part 4 and the CGRM

C.1 Introduction

The Computer Graphics Reference Model (CGRM) [ISO/IEC 11072:1992] is a descriptive framework intended for use in under-
standing and explaining the entities and processes involved in computer graphics. It is not an implementation framework, but
rather a conceptual model into which specific and disparate systems may be mapped. The CGRM defines an abstract architecture
for graphics applications, consisting of a ‘pipeline’ of environments shown on the left of Figure 27. Each environment consists
of a number of processing elements and data stores. These are represented as rectangles and circles (respectively) in the diagram
on the right hand side of Figure 27.

C.2 Architectural Links

There is no simple mapping between this architecture and the structures defined by this part of ISO/IEC 14478. Rather, the map-
ping depends on how the facilities available to the application and on how it combines them with the structures defined in this
part. For example, one application might make use of an existing GKS’94 renderer as part of a larger network of modellers and

Figure 27 — CGRM pipeline and environment models

Construction
Environment

Virtual
Environment

Viewing
Environment

Logical
Environment

Realization
Environment

Application

Operator

Manipulation

AssemblyDistribution

Absorption Emanation

Collection
Store

Environment
State

Token
Store

Aggregation
Store

Composition

ISO/IEC 14478-4:1998(E) © ISO/IEC

76

renderers. The GKS renderer has components that map onto the environments in the CGRM pipeline. However, other renderers
in the same application may implement a subset of the pipeline. A number of processing modules, derived from the renderer ob-
ject type defined in this part, might be linked together to realize a second complete pipeline.

C.3 Processing Links

In each environment, there is a single interface for incoming entities from the immediately higher environment concerning graph-
ical output and a single interface for incoming entities from the immediately lower environment concerning graphical input. The
same coordinate system is used for both input and output entities passing between each pair of adjacent environments. The coor-
dinate systems used by the composition, collection store, token store and aggregation store within an environment are the same.
Consequently, all transformations occur in the absorption and emanation processes. There are interfaces for storage and retrieval
of all or parts of data elements in data capture metafiles.

C.4 Input and Output Primitives

This part of ISO/IEC 14478 does not distinguish between primitives used for input and those used for output.

C.5 Storage

In the CGRM, output is defined in terms of output primitives which make up a composition that is presented to the operator. Input
is defined in terms of input tokens which make up a token store that is accumulated for the application in an appropriate form.
Any connection between received input and generated output is conceptually handled by the application. The application may
delegate this responsibility to specific environments. To support the creation and manipulation of complex presentations in a dis-
tributed environment, PREMO defines a storage facility — the scene object type — that can be understood as a means of realizing
the various storage environments described in the CGRM. As noted previously however, there is no requirement that users of
PREMO conform to the architecture of the CGRM.

© ISO/IEC ISO/IEC 14478-4:1998(E)

77

Annex D
(informative)

A typical example scenario of MRI usage

Here is an overview of the actions that a client would carry out to construct the multimedia system shown in Figure 6 on page 22,
and which was discussed in clause 6. The order given here is somewhat arbitrary, as a client may for example prefer to build the
system on a node by node basis and would therefore interleave some of the steps described below.

a) Creation of devices needed for interaction. Using the factory finder mechanism described in PREMO Part 2, the client
would create (or obtain a reference to) instances of the device types needed to make up the network. As the properties used
when requesting object instances may include location, the objects so created may be distributed. For the system used in the
example, the following devices are required:

1) Two modellers;

2) Three media engines, one each for audio, video and graphics;

3) A scene;

4) An audio renderer;

5) A graphics renderer;

6) A mouse (input device);

7) A router;

8) Three logical devices;

9) A coordinator;

10)Various Group objects and VirtualConnection objects.

b) Using the procedure illustrated in Annex B of PREMO part 3, the client uses the VirtualConnections and Groups to
establish the direct connections between devices, for example, the link from the graphics renderer to the display. The struc-
ture of the system at this stage is shown below.

c) The three instances of LogicalDevice are populated by the client with their respective components using the acquireRe-
source operation inherited from the Group object type to add appropriate devices to each group (this is again illustrated in
PREMO part 3). The client invokes the definePort operation on each LogicalDevice to obtain a port to access particular ports

audio
engine

video
engine

scene

graphics
engine

router

LogicalDevice 1

Coordinator

LogicalDevice 2 LogicalDevice 3

graphics
modeller

audio

graphics

audio
modeller

mouse

renderer

renderer

Figure 28 — AV system: basic components

ISO/IEC 14478-4:1998(E) © ISO/IEC

78

of the devices contained within. The client does not explicitly connect the new port to the one on the target device; this is
done by the definePort operation. The result is shown below.

d) The client again uses the part 3 procedure to interconnect the appropriate ports of the LogicalDevices. The system now
looks as shown below.

audio
engine

video
engine

scene

graphics
engine

router

Coordinator

LogicalDevice 1 LogicalDevice 2

LogicalDevice 3

graphics
modeller

audio
modeller

audio

graphics

mouse

renderer

renderer

Figure 29 — AV system: adding resources to the logical devices

audio
engine

video
engine

scene

graphics
engine

router

LogicalDevice 1
LogicalDevice 2

LogicalDevice 3

Coordinator

graphics
modeller

audio
modeller

audio

graphics

mouse

renderer

renderer

Figure 30 — AV system: establishing logical device ports

© ISO/IEC ISO/IEC 14478-4:1998(E)

79

e) The three logical devices are encapsulated into the coordinator object, using the acquireResource operation as in step (c).

f) The client obtains three ports to the Synchronizer using the definePort operation. The final result is:

At this point the devices needed to carry out multimedia presentation are connected. The client may need to invoke instance-
specific operations on those devices to initialize them, for example in the case of the graphics renderer to create a workstation or
to establish viewing parameters.

Figure 31 — AV system: introducing the coordinator

audio
engine

video
engine

scene

graphics
engine

router

audio
modeller

graphics
modeller

audio

graphics

mouse

fr
om

ap
pl

ic
at

io
n

renderer

renderer

Coordinator

