
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

564

Advisory Board: W. Brauer D. Giles J. Stoer

I. Herman

The Use of
Projective Geometry
in Computer Graphics

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universitfit Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-Stra6e 1
W-7500 Karlsruhe, FRG

Juris Hartmanis
Department. of Computer Science
Cornell University
5148 Upson Hall
Ithaca, NY 14853, USA

Author

Ivan Herman
Centre of Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

CR Subject Classification (1991): 1.3.2-4, G.0, 1.6-7

ISBN 3-540-55075-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55075-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

P r e f a c e

This book has its history. In 1986, I got involved with some of my friends in the
implementation of a GKS-3D package at a small firm called lnsotec Consult, in
Munich, Germany. We did not have too much time, so we tried to produce a
straightforward implementation of the Standard as fast as we could and we planned
to optimize it in a later stage. We already had the common experience of a GKS-2D
implementation, so the task seemed to be relatively easy. To implement the 3D out-
put pipeline, we just had to program some appropriate matrix-matrix and matrix-
vector multiplications and we soon started the first toy test-program, to navigate
among randomly positioned wire-framed objects in space. The output seemed to be
right at a first glance: we saw what we expected. However, in some cases some
unexpected lines appeared on the screen in a fairly chaotic manner which we just
could not explain to ourselves. Being self-critical enough, we set down to find the
bug in our code by running through it several times, but without success. It was only
after several days' of work that we begun to suspect that implementing a 3D pipe-
line is not that simple after all.

Of course, we did not do our homework properly; the notion of 'external
lines' or, as it is called in this book, the 'W-Wraparound' (which turned out to be the
reason for our problems) had already been presented in the literature before. How-
ever, not having easy access to literature in our small software house we had to find
a solution for ourselves. This work had unexpected results for all of us; it made us
realize that the computer graphics community makes astonishingly little use of the
notions of projective geometry in solving its problems in spite of the fact that the
very essence of 3D computer graphics is closely related to this classical branch of
mathematics. Looking at the problem with fresh eyes has proven to be advantageous
after all; it has led us to some really new and interesting results which have proven
to be of a general interest, going beyond the particular problem which had triggered
it. This story was was the start for me of a long-term activity in trying to adapt some
projective geometry results for the purposes of computer graphics; it led to a series
of publications and to my PhD thesis which I defended in 1990 at the University of
Leiden, in the Netherlands. This thesis has essentially provided the material for this
book.

Such a small book obviously cannot and does not cover all the problems of a
3D output pipeline as it appears in practice, nor does it describe all possible applica-
tions of projective geometry in computer graphics. Instead, it concentrates on some
of its special and very much algorithmic aspects which are related first of all to the
different transformations used in computer graphics. However, all specialists or stu-
dents of computer graphics who want to understand the underlying mathematic prin-
ciples of 3D graphics systems or want to participate in the implementation of a new
one can get, I hope, some inspiration for such work.

A hidden, but also very important aim of the book is to make clear what the

VI

usual curricula in computer sciences seem not to emphasize enough: that higher-
level mathematics m projective geometry is just an example - - have a major role to
play in computer graphics and computer science in general. A number of problems
become easier to solve or just simply to describe provided that the appropriate
mathematical tools are used. If this book succeeds in turning the attention of some
of its readers toward mathematics again, it has achieved a major goal set for myself
when planning to publish this work through Springer Verlag.

The mistake of the 'missing homework' was committed together with my col-
league and friend, J. Reviczky, with whom I had a long and very fruitful cooperation
before I decided to join the Center for Mathematics and Computer Sciences in
Amsterdam; it is a pleasure for me to acknowledge his major role in the birth of this
book. The ongoing discussions and common works with all my former colleagues of
Insotec Consult, primarily J. Hiibl, are also acknowledged and very much appreci-
ated.

The text of this book was fleshed out, revised and shaped in discussions with
my PhD advisers, namely Prof. F. Peters, Prof. R. Hubbold, Prof. G. Joubert, Prof.
D. Duce and Prof. J. van den Bos. It is again a pleasure for me to acknowledge their
help and encouraging remarks in the preparation of the manuscript. The outstanding
facilities of the Center for Mathematics and Computer Sciences made it possible to
produce the output reliable and the way I wanted. Finally, I am grateful to my wife,
Eva, who really pushed me to do this work and helped me through difficult times;
this work would never have been finished without her.

Amsterdam, October 1991, Ivan Herman

Contents

1 Introduction .. 1

2 Projective Geometry in General ... 5

2.1 Some History .. 5

2.2 Notational Conventions .. 7

2.3 The Axiomatic System of Projective Geometry 8

2.3.1 Background .. 8

2.3.2 The Basic Construction .. 10

2.4 Projective Coordinate Systems ... 16

2.5 Isomorphic Models of Projective Planes and Projective Spaces 21

2.5.1 Riemann Sphere ... 21

2.5.2 Embedding Into/R3/a? 4 (the Straight Model) 23

2.6 Some Basic Calculation Formulae .. 24

2.6.1 Formulae for the Projective Plane ... 25

2.6.2 Formulae for the Projective Space ... 26

2.7 Collinearities ... 27

2.7.1 Representation of Collinearities ... 29

2.7.2 Viewing and Modelling Transformation 31

2.7.3 Description of Collinearities Based on the Straight Model 33

2.8 Division Ratio and Cross Ratio ... 35

2.9 Projective Theory of Conics ... 42

2.9.1 Introduction .. 42

2.9.2 General Theory of Conics .. 44

2.9.2.1 The 2D Case .. 44

2.9.2.2 The 3D Case .. 49

3 Prac t ica l Use of Four -Dimens iona l G e o m e t r y .. 53

3.1 The W-Wraparound Problem ... 53

3.1.1 Introduction .. 53

3.1.2 The W-C l i p ... 56

3.1.3 The U W - C l i p ... 63

VIII

3.1.4 C o m p a r i s o n o f the W - C l i p and the U W - C l i p 65

3.2 L inea r Pr imi t ives in ~R 4 ... 66

3.2.1 Ce l l Ar ray ... 66

3.2.2 Pat tern F i l l ing ... 70

3.2.3 S T R O K E Characters .. 73

3.3 Con ics ... 74

3.3.1 In t roduct ion .. 74

3.3.2 Aff ine Invar iant Fo rmulae ... 76

3.3.2.1 El l ipses .. 76

3.3.2.2 Hype rbo lae .. 79

3.3.2.3 Parabo lae ... 81

4 M o d e l l i n g C l i p .. 85

4.1 P r o b l e m Descr ip t ion ~ .. 8 5

4.2 So lu t ions in 4D .. 91

4.3 A Genera l So lu t ion ... 95

5 Projective Algorithms ... 101

5.1 In t roduc t ion ... 101

5.2 Regu l a r Subdiv i s ions and Their Images ... 103

5.2.1 Regu la r Subd iv i s ion o f Lines ... 104

5.2.2 Cel l Ar ray ... 112

5.2.3 Pat tern F i l l ing ... 117

5.2.4 S T R O K E Characters .. 122

5.3 Con ics 124

6 Conclusions ... 129

7 Directions for Further Research .. 131

8 An Unsolved Problem: Shaded B-Spline Surfaces 135

References .. 141

1. Introduction

The ultimate goal of all 3D graphics systems is to render 3D objects on an
inherently two dimensional surface, which may be a plotter output, a screen or any-
thing similar. One way of achieving this is to start from the medium itself, and to
cast so-called rays (that is half-lines), starting from the viewer's eye and deter-
mined by each raster point of the display, back into the scene. The intersections of
these rays with the three dimensional objects will determine the visible raster dots
on the view surface. This is basically what the technique called ray-tracing does.
Although ray-tracing gives the possibility to perform complicated shading, tran-
sparency, translucency, and shadow calculations on all intersection points and can
therefore lead to highly realistic images, the computational requirements of this
approach are still so high that it cannot be used for interactive applications (for a
more consistent description of ray-tracing see for example [Fole90] or some other
standard textbooks on computer graphics).

""

Figure 1.1.

Another approach, which is adopted by most 3D graphics systems as well as
the different ISO documents on 3D graphics (for example GKS-3D, PHIGS,
PHIGS PLUS, CGM Addenda etc; additionally to the ISO documents themselves,
the reader may refer for example to [Arno90] for a good overview of these stan-
dards) is to design a system which performs a central or a parallel projection of the
objects to render onto the view surface. As this projection is done on the geometrical
level (that is by describing the projected lines/polygons etc. on the 2D surface), this

approach requires fewer calculations than ray-tracing. As a consequence however,
these three dimensional systems have to make use of the mathematical results of
projective geometry.

Early three dimensional systems explicitly implemented the parallel or central
projections as shown in figure 1.1, that is they calculated the intersection points of
the projection lines with the view surface to determine the outlines of the projected
objects. In more modem systems as well as in all the cited ISO documents the
approach is different. These systems define and perform a transformation of the
whole scene, so that the central projection becomes a simple parallel one onto the
z--0 plane. More precisely, the transformation should result in a projection such that:

(x,y,z) r ---, (x,y) r (1.1)

This means, mathematically, that the transformation to be applied is such that the
view point is moved to the "point at infinity on the z-axis". The reason for this
approach is that performing the parallel projection after this transformation creates
the possibility to perform the so called Hidden Surface/Hidden Line calculations
efficiently, that is to determine which part of the scene is effectively visible on the
view surface (this presupposes, however, that the algorithms make use of the rela-
tive magnitude of the z values only). It also makes the necessary clipping processes
computationally simpler. Furthermore, efficient hardware can also be used to per-
form these computations (for example the so-called Z-buffer calculations) easily
and effectively (for the details, see the cited ISO documents in [ISO88], [ISO88b],
[ISO89], [ISO89a] or any of the general works on computer graphics like
[Newm791, [Fole84], [Magn861, [Mndu86], [Salm87], [Watt891, [Fole90]).

The mathematically precise formulation of what is stated above is to introduce
the notion of ideal points, which are the mathematically precise definitions of the
"points at infinity". Projective geometry is the branch of mathematics which pro-
vides a uniform description of ideal and Euclidean points. One may also speak of
projective planes (ie Euclidean planes extended with ideal points) and projective
spaces (ie Euclidean space extended with ideal points).

Using these notions one can say that all 3D graphics systems tend to perform
their internal calculations in the projective space rather than the Euclidean one. The
fact that a projective space has its natural coordinate system by means of homogene-
ous coordinates makes this approach feasible: if a homogeneous coordinate system
is chosen, all projective transformations may be described by (homogeneous) 4x4
matrices and the effect of the transformation is then a matrix-vector multiplication.
The use of homogeneous coordinates also gives a uniform way to describe
efficiently all transformations usually used in graphics systems: rotations, scaling,
shearing and translations.

Although a number of calculations (ie line/line intersections and the like) can
be performed easily with homogeneous coordinates, the fact of working in projec-
tive rather than Euclidean space is the source of additional complications. A number
of graphical output primitives are described inherently in a linear fashion, that is

using different linear combinations of the points and vectors involved in 3D. Exam-
ples are the description of colour patterns (usually a rectangular array is to be calcu-
lated) and high precision text (described as a set of small line segments). While a
"traditional" transformation of a Euclidean space does keep this linear structure,
this is definitely not the case for projective space and projective transformations,
which might lead to distortions which are not easily describable by linear means. As
a consequence, the implementor of a graphics system might choose to perform all
such generation (that is to generate the series of points approximating the high preci-
sion text) before the transformation and to transform, as a second step, the generated
points. This leads clearly to a loss of efficiency: the number of generated points may
be very high and therefore the computational cost of the transformation itself may
be significant.

The use of projective transformations and projective space may lead to other
problems. In the course of a projective transformation it may happen that some of
the (originally Euclidean) points of the objects to be rendered become ideal points
(in homogeneous terms this means that the last coordinate value, usually denoted by
w, will become 0). A graphics system must have some means to deal with such
situations which can lead, if not properly handled, to computational singularities and
unexpected visual effects on the screen.

A common framework to handle these problems may be found if the exact
mathematical behaviour of projective transformations in graphics systems is care-
fully analysed. The derivation of such a framework is the central subject of this
thesis. It will be shown that a mathematically precise description of the projective
geometrical nature of a 3D (or even 2D) graphics system leads not only to a deeper
understanding of the system but also to new approaches which result in faster or
more precise algorithms.

The thesis aims to be self-consistent for all those computer scientists who
have a general knowledge about computer graphics. However, no preliminary
knowledge about projective geometry is needed; instead, an extensive introduction
to the subject with all necessary notions' and theorems will be given. It is
well-known that projective geometry is (unfortunately) missing from the usual cur-
riculum for computer scientists and apart from the excellent book of Penna and
Patterson ([Penn86]) and the tutorial at the Eurographics'88 Conference ([Herm91])
there are no other textbooks available for specialists of computer graphics. It is of
course true that a large number of textbooks are available as an introduction to pro-
jective geometry; some of them are listed among the references ([Coxe49],
[Coxe74], [Crem60], [Fisc85], [Haj660], [Heyt63], [Kel163], [Ker~66], [Lanc70],
[Rose63], [Stru53]) and the list is certainly not exhaustive. (The author's knowledge
of this area originates mostly from the lectures made by Prof. M. Bogn~ir at the
University of Budapest in the year 1971, from which only hand-written notes are
available.) A common problem with these books is that they were written by
mathematicians for mathematicians; in other words they stress different aspects of
projective geometry from those needed for the purposes of computer graphics.
Whereas they present very general and important theorems, the computational

aspects of the mathematical structures tend to be disregarded; in other words, it is
sometimes quite difficult to extract the specific information which is necessary for
the purposes of computer graphics. Those readers, however, who have the neces-
sary background in projective geometry, may bypass chapter 2 altogether and start
at chapter 3 directly.

The material included in this thesis has been admittedly influenced by the
algorithmic problems arising when implementing one of the ISO 3D graphics stan-
dards. Some of the ideas have been implemented when the author took part in a
GKS-3D and a CGI-3D implementation in the years 1986-87 at Insotec Consult
GmbH in Munich (Federal Republic of Germany) (see also [Herm88b]). PHIGS
and PHIGS PLUS have also generated a number of additional problems while some
of the works presented here (and having been published already elsewhere, like
[Herm89]). However, most of the problems presented in the sequel are not
exclusively proprietary to the standardisation activities; in fact, they are inherent to
most 3D graphics systems in use and/or in development such as the Dor~ package of
Ardent Computers [Arde87], RenderMan of PIXAR [Pixa88] and others still to
come t .

tThe main outlines of all the cited ISO standards are however considered as known and will not
be detailed in what follows. The reader should refer to the relevant ISO documents or the existing
textbooks and tutorials on the subject, as for example [Hopg83], [Salm87], [Arno90], [Hubb90],
[Howa91] or [Hopg91].

2. Projective Geometry in General

2.1. Some History

Projective geometry is by no means a new field of mathematics. Some of its very
classic theorems cited in all basic textbooks (eg theorems of Pappos and Menelaos)
are of Greek origin. It can be supposed that ancient Greek mathematicians knew
much more about projective geometry; unfortunately, most of their work has been
lost and only some indirect facts can be used to measure the exact amount of their
knowledge.

It was in the period of the Renaissance that projective geometry gained a
much greater importance. This was the result of the fact that artists at that time were
greatly interested in creating realistic pictures; as opposed to medieval painters they
wanted to understand exactly how a three dimensional object could be rendered on a
two dimensional plane, that is a canvas. And this is basically what projective
geometry is all about. At a time when it was (still) natural that artists would also
work on "scientific problems" if they felt the necessity for it, Pietro della Francesca
(1420-1492) or Albrecht Diirer (1471-1528) wrote down their ideas about the rules
of projection; the book of Diker ([Diire66]) is probably one of the first books ever
written on the subject. It is also interesting to note that he produced a number of
carvings in which practical techniques of how to make projections are presented in
an artistic way.

A more concise mathematical investigation on projective geometry was
started by G. Desargues (1593-1662). It was he who has introduced the notion of a
point and a line at infinity. His work was followed by a number of other mathemati-
cians (B. Pascal, L.N. Carnot, G. Monge and others) who discovered those theorems
and facts about projective geometry which still form the basis of the theory today.

However, the exact role of projective geometry in the description of the sur-
rounding world was for a long time somewhat fuzzy. Indeed, one has to understand
that at that time geometry as well as the philosophy of nature in general was very
much dominated by Euclidean geometry. In his monumental work The Elements
([Euk175]), which was a kind of an encyclopaedia of Greek geometry, Euclid had
created the first axiomatic system in history of mathematics; his work was so suc-
cessful that up to the 19 th century everybody thought that Euclidean geometry was
not only an efficient tool to describe nature but the surrounding world was

Euclidean. This belief was even more strengthened by the fact that Newton's Princi-

p/a was very much based on Euclidean geometry when describing the rules of
mechanics. Very typically, the "Princeps Mathematicae", F. Gauss (1777-1855),
who was probably one of the first mathematicians to realise that the truth might be
different, did not dare to publish his results; he was afraid to be in conflict with all
the great intellects of his time.

This firm belief in the overall nature of Euclidean geometry was tarnished by
the independent works of J. B61yai and N.I. Lobatchewsky. Indeed, these two
mathematicians succeeded in creating a new geometry (which later received the

name of hyperbolic geometry) which was fundamentally different from the
Euclidean one. This geometry was the result of their investigations on Euclid's so
called 5 th postulate, which said that if a point does not intersect a line, then there is
only one line intersecting this point which is parallel to the given line. After centu-
ries of unsuccessful attempts to prove this postulate out of the remaining axioms of
Euclidean geometry, both B61yai and Lobatchewsky created a new axiomatic sys-
tem by taking all other Euclidean axioms and the negation of the 5 th postulate (that
is that there exist more than one distinct parallel line intersecting the external point).
This new geometry is very different in flavour: the sum of the internal angles of a
triangle is not 180 ~ , the "traditional" trigonometrical equations are no longer valid
etc. It is, however, undecidable whether Euclidean geometry or the hyperbolic one is
the adequate description of reality; in fact, both of them are only models and one
could as well describe the whole surrounding world by using hyperbolic geometry
instead of the Euclidean one.

Besides the technical nature of this result, the birth of hyperbolic geometry
has shown that there might be a whole range of different "geometries", each of
them modelling some particular aspect of reality. One may speak of multidimen-
sional geometry (giving a geometrical structure to the set of vectors of higher
dimensions), of complex geometry, of hyperbolic and elliptic geometries etc. Pro-
jective geometry turned out to be one of these different geometries, a useful tool in
the description of some phenomena concerning projections, lines, planes and so
forth.

These results (together with other advances in mathematics in the 19 th cen-
tury) had also strengthened the need of a precise foundation of all mathematical
fields, including projective geometry. This was performed by the thorough use of
the axiomatic method and of set theory, which has become the fundamental basis of
mathematics in our century and had been initiated largely by the Erlanger Pro-
gramm of F. Klein (1849-1925) and by the Grundlagen der Geometric of D. Hilbert
(1862-1943). Projective geometry has also been reformulated in this way: there is a
very precise set of axioms which defines projective geometry and the existence of
this axiomatic approach gives also a very precise insight of how projective geometry
is related to other fields of mathematics (specially Euclidean geometry). This system
of axioms will be presented in a later section.

In the 20 th century traditional projective geometry has lost its momentum as a
field of basic mathematical research; in this sense it might be considered as a "clas-
sical" theory t. It has by no means lost importance though, having given birth to a
whole range of practical tools and methods used to make drafts and technical draw-
ings throughout the world. It is the very aim of this present work to show that a
more precise knowledge of projective geometry can also play a significant role in

t Today's researches are more directed toward algebraic and combinatorical problems arising
when investigating for example finite projective spaces; these problems have had, however, no
relevance for computer graphics up to now.

giving new and perhaps more understandable approaches to the methods and algo-
rithms used in computer graphics.

2.2. Notational Conventions

Before going further some notations are listed which will be used throughout the
thesis.

Points will be denoted by capital Latin characters (A, A', A", P, Q and also
Ai, Bj etc.) whereas small Latin characters (a, a', a", n, I etc.) will denote lines. 2D
subplanes of the Euclidean space will be denoted by capital Greek letters like
I-I, I-I', I-I", ~, tlJ. The symbol " ^ " will be used to denote intersection; that is aAb
will give the intersection of the lines a and b while lIAb will denote the intersection
of the plane II and the line b. Symmetrically, the symbol " v " will be used for a
generated line or plane; that is, PvQ will give the line generated by the points P and
Q while R va denotes the plane generated by the point R and the line a. The symbols
^ and v will also be used in logical statements; for example A Aa = ~ means that the
intersection of the point A and the line a is the empty set, that is the point A does not
belong to the line a. Both the relation "A" and " v " are associative and, conse-
quently, their meaning can be extended to more than two operands. This means for
example that the notation PvQvS can be used to denote the plane generated by the
points P,Q and S. Finally, E 2 will be used to denote the 2D Euclidean plane in gen-
eral whereas E3 will be the Euclidean (three dimensional) space.

The set of real numbers will be denoted by/R and the symbols ~z, ~3, ~n
etc. will denote the set of column vectors of corresponding dimensions. The vectors
themselves will be denoted by small Latin characters as well, choosing characters
usually at the end of the alphabet. If x~_~ 3, x r denotes the transpose of the vector x.
To save space, (1,2,3) r will be used instead of

To resolve ambiguities, the notationS'will also be used for a vector to distinguish it
from a line. In a number of cases a coordinate system will be implicitly present in
the geometric environment in use. In such cases, the points will be identified with
their coordinate vector and characters like p or q, which denote in fact vectors, will
also be used to denote points. This convention, although not necessarily very pre-
cise mathematically, will be extensively used later.

Matrices will be denoted by capital Latin characters with their elements being
the corresponding small characters (that is the elements of the matrix A will be ai,j).
A r denotes the transposed matrix of A; if x is a vector of the appropriate dimension,
Ax will be the (multiplied) column vector and xrA the row vector. In case of doubt,
the notation A will also be used to differentiate matrices from points.

The scalar (or inner) product of two vectors x and y will be denoted by xry;
the vector (or outer) product of two vectors is x• This latter product can be

calculated by evaluating the following formal determinant:

xxy ~- det
XI X2 X3
Yl Y2 Y3
el e2 e3

(2.2)

where ei, (i ~- 1,2,3) denote the basic unit vectors of ~3 (that is (1,0,0) r, (0,1,0) r
and (0,0,1)T). In other words, the vector product is:

I etly: 31 x ll y3 (2.3)

IfA is a quadratic matrix of dimension n and x,y~__lR n, xAy will denote the so
called bilinearform, that is:

xAy --- xr (Ay) --- (xrA)y (2.4)

2.3. The Axiomatic System of Projective Geometry

2.3.1. Background

Figure 2.1 illustrates what were the basic problems which led to the development of
projective geometry. A central projection is made onto the plane I1; for the sake of
simplicity we concentrate now on projecting (from the centre C) the plane tlJ onto
17.

The central projection has a number of very nice properties as seen from the
figure. It maps (almost) all points of qJ onto points of 17; it maps a line of W onto a
line of H and maps (usually) the points of intersections of two lines onto the point of
intersection of the image of these lines. It is also almost invertible; that is for almost
all points of II there is a corresponding point of W which would be the inverse
image.

Figure 2.1 also shows why such vague statements are to be used to character-
ise this mapping. Indeed, there are some points of W (eg P) for which the central
projection is not properly defined (the projection line does not have an intersection
with the image plane). Accordingly, all lines which intersect in points for which no
image could be defined (like m and n), though being mapped onto lines, become
parallel on 17, that is they have no intersection points any more. Additionally, all
points on the line l' on H (which is the intersection line of H and a plane containing
C and parallel to tt t) are without inverse image.

The reason for all these singularities can be traced back to the very existence
of parallel lines in a Euclidean environment. One would like to interpret somehow
what happens to the intersection point of parallel lines; if this were done, the image
of P could be defined as being the "intersection" in some sense of the parallel lines
of m' and n'. Clearly, the problem is that no Euclidean point can play such a role;
there are "holes", or missing elements in the set of all points in a Euclidean plane.

9

..C

Figure 2.1.

Y

What is usually done in such cases in mathematical practice is to enlarge the
basic set one is working with. In other words, a new set is created which would con-
tain (in this case) the set of all Euclidean planar points but which would also contain
some additional elements. The usual notions (in this case " l ines" , "intersection"
etc.) should be extended for this larger set so as to include the traditional notions as
well. If this extension is well done, the "ho les" may be filled and one arrives at a
much clearer structure than the original one. This is what will be done for projective
geometry: new elements (which are not Euclidean points) will be defined and the
notion of lines, line intersections etc. will be extended so as to include these new
elements as well, such that all the problems stated in figure 2.1 can be overcome.
These new elements will be called the ideal points; they will be the mathematically
precise form of what is commonly called "points at infinity".

The way of doing this extension is again very classic in mathematics but it
requires some abstractions which are not always easy to understand for
non-mathematicians. What has to be used is what is called an equivalence relation
and the generated quotient set. This is as follows.

A (binary) relation on a set H is defined to be a subset of the set of element
pairs (that is a subset of H• If x,y~r-I and the relation is denoted by p, than xpy
denotes the fact that the two elements x and y belong to the same subset, that is the
defined relation " h o l d s " for them. A relation p is an equivalence relation if the fol-
lowing three properties hold:

Vx, y ,z : xpy A ypz ~ xpz

Vx, y : xpy ~ ypx (2.5)

Vx : xpx

The relation is said to be transitive, symmetric and reflexive. One can easily

10

recognise that the relation "--" on ~ is an equivalence relation.

Equivalence relations divide the set on which they are defined into a set of
mutually disjoint subsets (they provide an abstract tessellation of the supporting set).
Indeed, irA is an arbitrary set and p is a relation defined onA for which (2.5) holds,
then for each x~A the following set can be defined:

x o = { z : z~_A and x p z } (2.6)

These sets are called the equivalence classes of A defined by p. It is a typical
mathematical exercise to prove that if x p y holds then also xp = y p and if xpy does
not hold then xpf')y o --~). In other words, the equivalence classes are disjoint sets
which are "generated" by each elements of the set A. As a result of the reflexivity,
x~_xp; that is, the equivalence classes effectively tessellate the whole set (no ele-
ment is left out). Proving the previous statements is not particularly complicated;
this is left to the reader.

As a result of the tessellation one can also speak of a new set, denoted by Ap ,
by taking:

A p ~- {xo : x~__.A } (2.7)

This set is usually called the quotient set or quotient space. If one wants to go
beyond the abstract definition, it could be said that it is a set of which the elements
characterise the equivalence relation p by collecting into one element all elements of
A which somehow belong together.

The quotient set is widely used for a mathematically precise formulation of an
extension mechanism. An equivalence relation is defined either on the elements of
the set A or on some other set B related strongly to A; the set A UB o provides then an
extension of A ,which makes the characterisation of the relation p simpler (provided
the set B is chosen in an appropriate manner). This approach is very widespread in
mathematics; this is how for example irrational numbers are constructed out of
rational ones on ~ , and this is also how ideal points are defined properly.

2.3.2. The Basic Construction

For the sake of simplicity, in what follows the axiomatic system for a projective
plane will be described systematically; the construction leading to the projective
space is quite similar and only the major differences will be presented. As shown
later, there exist very good means to give an intuitive picture of a projective plane
whereas it is much more difficult to visualise a projective space; consequently, pro-
jective planes will always be used as illustrative examples even if the real environ-
ments used in graphics systems tend to be a projective space rather than a plane.

11

If j~2 is the Euclidean plane, let us denote by A(~ 2) the set of all lines of j~2 .

On this set, the relation of parallelism is an equivalence relation (provided that each
line is considered to be parallel to itself). In other words, the relation p could be
defined by:

Vn,m E A(E2): npm~--, n and m are parallel (2.8)

The fact that this relation is an equivalence relation can be seen easily. Conse-
quently, one may speak of the quotient space of A(E2), which (instead of A(E2)p)
will be simply denoted by// .

Intuitively speaking the elements of / /a re mathematically precise abstractions
of what is common in two lines of E 2 vis-a-vis parallelism. Indeed, two parallel
lines will generate the very same element of / / (us ing formula (2.6)) and elements
generated by two non-parallel lines will be different. This also means that if a new
set is defined by

//9E2 = j~2 [,...j H (2.9)

the resulting set will contain on the one hand the "traditional" Euclidean points plus
some abstract elements describing the "common part" of two parallel lines of E 2.

To define some kind of geometry on hOE 2, the notions of points, lines, inter-
sections of lines etc. have to be extended onto this larger set; of course only an
extension which would preserve the "traditional" Euclidean notions is of real
interest. By defining these extensions and by finding some elementary properties of
them, a new mathematical structure, a new geometry will be created. Mathemati-
cally, this means that the set of elementary properties might also be considered as a
new set of axioms (much the same way as the axioms described in the Elements of
Euclid form the basis of Euclidean geometry or the modified set of these axioms
defined by B61yai and Lobatchewsky would form the axiomatic basis for hyperbolic
geometry). This new geometry is called project&e geometry.

In Euclidean geometry, the notion of point is just another name for the
(set-theoretical) elements of the set E 2 (or E3). The same approach can be used in
the case of projective geometry, that is:

Definition 2.1. The elements of /PE 2 are called (projective) points. In
case it is necessary to make a difference, the elements of ~r are also
called ideal points whereas the elements of E 2 are also called affine
points t.

Lines in Euclidean geometry are special subsets of E 2; the properties of these sub-
sets are described in the axioms of the Euclidean axiomatic system (the notation
A(E 2) has been used to denote the set of all lines). The aim is to maintain Euclidean
lines in the new environment as well. Here is the precise definition:

tThe term directions is also in use for affine points.

12

Definition 2.2. Lines of/PE 2 a re special subsets of/PE 2. The set of all
lines is denoted by A(h~ 2) and its elements can be described as fol-
lows:

A(hPE 2) = {xU{xp} : x E A (~ 2) } U {~t}

where p stands for the equivalence relation "parallelism".

In plain English: each line of b e is extended by its direction, that is the ideal point
generated by the line using (2.6); additionally, the set of all ideal points is also con-
sidered as a line. Just as in the case of points, if there is a necessity to make a differ-
ence, U will also be called the ideal line (there is only one such line!) whereas all
other lines are the affine lines. An affine line is not equal to a Euclidean line; it is a
Euclidean line plus one point (also called the ideal point of the line).

The intersection of a line and a point is just another terminology for the
set-theoretical inclusion; it is therefore automatically valid for the new environment
as well.

What are the basic properties of these lines and points (also called, to make
the distinction, projective lines and points)? There are some statements forming a set
of basic theorems on these notions and which are as follows.

Theorem 2.1. For each two elements of/]~ the following holds:

VP, Q~_.IPE2,(P ~ Q): 3! I~A(/PE 2) for which

PAl ~ 0 and QAI ~ 0

That is for every pair of projective points there exists one and only one
projective line which contains the given two points.

The proof of this theorem follows a fairly standard mathematical line of thought:
different cases should be examined apart.

(1) If both P and Q are affine points, the corresponding axiom of the Euclidean
geometry says that there is one and only one Euclidean line which intersects
both P and Q; the corresponding affine line will do for the projective case. It
is trivial to see that no other projective line will satisfy the requirements.

(2) If both P and Q are ideal points, the ideal line will contain both of them; furth-
ermore, no affine line may intersect two distinct ideal points.

(3) Finally if P is affine and Q ideal, there is a whole set of affine lines intersect-
ing P. However, out of these lines only one may have as an ideal point Q: the
ideal point is just an element of ,g determined by the relation (2.6). II

13

An analogous statement for lines is as follows.

Theorem 2.2. For every pair of lines on/PE 2 the following holds:

VI, nEA(IPE z) (l ~ n): 3! P~_IPE 2 for which

P Al ~ O and P An ~ 9)

That is each two distinct lines have an intersection point (there are no parallel
lines!). This intersection point is denoted by lAn. The proof of this theorem is simi-
lar to the previous one:

(1) If both n and m are affine, there are again two cases:

(a) the two lines are parallel in the Euclidean sense; in this case they share
the same ideal point (according to (2.6));

(b) the two lines have an Euclidean intersection point which will also serve
as an intersection point in the projective sense as well.

(2) If n is affine and m is the ideal line, the ideal point of n (which exists accord-
ing to definition 2.2) is the intersection point. �9

Finally, two theorems are needed which are rather technical in nature but are neces-
sary for the full description of the whole theory:

Theorem 2.3. Each projective line contains at least three points.

Theorem 2.4. There exist three points on hOE 2 which are not on the
same line (they are not coUinear).

Theorems 2.1 to 2.4, together with the corresponding definitions 2.1 and 2.2 form
the axiomatic foundation of (planar) projective geometry. By using these notions
and theorems the ambiguities of the description related to figure 2.1 may now be
removed. The planes 17 and tlJ should now be considered projective planes instead
of Euclidean ones. P, which is an affine point of tlJ, will be mapped onto an ideal
point of 17; the lines n and m which intersect at P on �9 will be mapped onto 17 (that
is onto n' and m') by still keeping the line intersection; the only problem is that this
intersection point happens to be an ideal point. In the case of projective geometry,
this makes no real difference, however.

A projective space can be constructed very similarly. Instead of A(/E2),
A (~ 3) should be considered for the equivalence relation; the resulting quotient set
will contain the set of idealpoints again. The set of all projective points will be

//9E3 = 6 3 U/7" (2.10)

just as in the case of the plane.

The definitions corresponding to 2.1 and 2.2 are very similar but there are
however some differences. In the case of spatial geometry, there are two special
kinds of subspaces: lines and planes. Likewise, projective lines and projective
planes should both be defined to ensure a correct extension.

The most important remark which helps to make these extensions possible is

14

l

~F

Figure 2.2.

J
as follows. If I-[(• 3) denotes the set of all planes of j~3 and 1t/~]I(~3), this plane
generates a special subset of hr (see also figure 2.2). Indeed, the ideal points which
are parallel to tlJ (like the one generated by l on figure 2.2) will have a special
characteristic: they will describe all the planes and lines which are parallel to tlJ.
Denoting this subset of H by tlJp, the following definition may be accepted:

Definition 2.3. Lines of ff~E 3 are special subsets of/PE 3. The set of all
lines is denoted by A(/PE 3) and its elements may be described as fol-
lows:

A(/PE 3) = {xU{xo} : x~A(E3)} U {tII9 : q~EIIOE3)}

In other words, each spatial plane induces a subset of H which is called an ideal line;
there is one such ideal line for each set of parallel planes. It is intuitively clear (and
mathematically easily provable) that the equivalence classes induced on I I (~ 3) by
the relation parallelism are isomorphic to these ideal lines.

Definition 2.4. Planes of LPE 3 are special subsets of/PE 3. The set of all
planes is denoted by rI(/PE 3) and its elements may be described as fol-
lows:

1-I(~g 3) -- {I-I-JU{Itlp} "- 1u U {M}

Here again,//is called the idealplane whereas all other planes are denoted by affine
planes. Definitions 2.1, 2.3 and 2.4 form the necessary extensions for projective
space. There is a set of theorems which form the necessary axiomatic basis for the
theory. The theorems themselves are very much the same as above in flavour and
they are just listed here without proof (the reader may easily reproduce the
mathematical deductions). These theorems are as follows (some very technical ones
like the analogies of theorem 2.4 are omitted).

Theorem 2.5. If a point is the element of a line and the line is a subset
of a plane then the point is an element of the plane (that is the two dif-
ferent kind of subsets in/PE 3 form a "hierarchy' ').

15

Theorem 2.6. Every pair of points generate one and only one line
which contains them both (denoted by PvQ).
Theorem 2.7. Every pair of planes have one and only one common
intersection line (denoted by II^qJ). In other words, there are no paral-
lel planes.

Theorem 2.8. A line and a plane has either an intersection point or the
line belongs to the plane.

Theorem 2.9. For every pair of lines there is at most one plane which
contains them both (denoted by lvn).
Theorem 2.10. Each three non collinear points generate one and only
one plane which contains them all (denoted by PvQvS).
Theorem 2.11. Each three planes intersect in either a line or one point
(denoted by lInttJ^~).

Theorem 2.12. If two lines are coplanar (that is there exists a plane
which contains them both), they have one and only one intersection
point (denoted by lAm).

One has to be very careful in the case of the last statement: in projective space there
may be lines which do not have an intersection point (these kinds of lines are not
considered to be parallel in classical Euclidean geometry either). It is true, however,
that there are no parallel lines any more. Another point of interest: each plane in
/PE 3 can be considered as a projective plane by itself (just as each plane in E3
behaves "locally" as a Euclidean plane). This statement sounds trivial but in a pre-
cise formulation of projective geometry it has to be proven that the axioms of the
projective plane are valid locally as well.

As said before, theorems 2.1 up to 2.4 together with the definitions 2.1 and 2.2
(or their three-dimensional counterparts), may be considered as an axiomatic sys-
tem: this is the axiomatic foundation of projective geometry. In theory, based on
these axioms, all the (sometimes obscure) steps of the construction may be relegated
to the background: one could just speak of points and lines in/PE 2 where no parallel
lines exist any more. This geometry has a very different nature compared to the
"wel l -known" Euclidean one. A projective plane or space is locally very much like
its Euclidean counterpart but has different global characteristics (the exact relation-
ships between Euclidean and projective geometry will become clear in a later
chapter).

The main difference comes from the fact that a projective line behaves much
like an Euclidean (planar) circle; in fact, it is isomorphic with it. The ideal point of
the line is the element which somehow "glues" the two ends. This fact has far
reaching consequences: the very notion of line segment has no meaning any more
(by giving the points A and B on the line, one can reach B from A in two ways).
Consequently, the concept of the interior of a polygon disappears from the theory as
do convex polygons. ~ There is no way of defining the notions of "clockwise" and

tMore generally, Jordan's theorem, which states the existence of the interior and the exterior of a

planar area generated by a "well-behaved" curve on the Euclidean plane is not true any more.

16

"anticlockwise" on a projective plane; mathematically speaking, the projective
plane is not orientable.

Of course, these differences are at the source of a number of problems when
projective geometry has to be used for the purposes of computer graphics. Com-
puter graphics applications rely heavily on, for example, the interior of a polygon,
which also forms an integral part of all ISO standards on graphics (see all ISO docu-
ments in the references). One possibility would be to avoid the use of this theory;
however, as stated in the introduction, this is barely possible. Another approach
would be to develop an alternative mathematical theory which would try to avoid
the appearance of these problems; an attempt has been made recently by J. Stolfi
([Sto189]) based on some earlier mathematical works made by H. Grassmann about
a hundred years ago and followed by a number of other mathematicians (Stolfi
refers to the works [Berm61] and [Hest84] for earlier references). In his thesis,
Stolfi describes the theory of oriented projective spaces, which contains many simi-
larities to classical projective geometry but where the notion of the orientation of a
line, plane and space still has a meaning. However, the mathematical theory and for-
mulae involved tend to be rather complicated and quite abstract; to use it in practice
would probably require a reformulation of a number of classical approaches which
have been in use in computer graphics in the past 10 to 15 years. Whether this is
worthwhile or not is still to be proven; the approach is of interest, however.

The approach described in this thesis is much more pragmatic. Projective
geometry should be used, because it is a precise description of practical problems
arising in computer graphics and it also helps to create more efficient algorithms and
methods. However, the extreme axiomatic nature of projective geometry, which
would ignore the origins of, for example, ideal points will not be followed every-
where; in most of the cases the construction described here will be present in the
background. By carefully exploiting the relationships between projective geometry
and the Euclidean one, some of the problems may be described in terms of a
Euclidean environment even if the price to be paid might be sometimes to use four
dimensional geometry instead of the well known two and/or three dimensional ones.
In some other cases the full power of projective geometry has to be used (eg for the
handling of conics). By alternating between projective and Euclidean geometries,
most of the problems can be avoided in a down-to-earth but still powerful way.

In contrast to the traditional and "purist" projective geometry textbooks, the
numerical aspects of projective geometry are of primary interest to computer graph-
ics scientists. Some kind of coordinate system is essential to be able to describe
geometric entities with numbers and hence make them manageable by computers.
This is will be covered in the next section.

2.4. Projective Coordinate Systems (Homogeneous Coordinates)
Coordinate systems as used in Euclidean geometry were only introduced in the 18 a'
century. Their use has become so natural that one tends to underestimate the impor-
tance and the mathematical difficulties involved when using them. The use of the

17

Cartesian system creates a "bridge" between two very different mathematical
theories, namely Euclidean geometry and the theory of real numbers. A more exact
mathematical formulation of what the Cartesian coordinate system really means is
presented here, to show what is the necessary approach to achieve something analo-
gous for projective plane/space.

Theorem 2.13. If O, E1 and E 2 are three non-collinear points of the
Euclidean plane /E 2, then there exists a one-to-one correspondence
between/E 2 and ~2 so that the point O will correspond to the vector
(0,0) T, the point E 1 to (1,0) r and, finally, E2 to (0,1) r. If, furthermore,
it is required that the distance of the points P and Q should be expressed
by the formula:

dist(P,Q) --- ~/(Pl - ql) 2 + (P2 - q2) 2

(where P is mapped onto (p a,p2) T and Q onto (ql,qE)r), then there ex-
ists only one such correspondence which fulfils these requirements.

It is not possible to have a one-to-one correspondence between the projective plane
and/R 2. A mapping is however provided by the use of homogeneous coordinates.

Two non-zero vectors a,b~_lR n are considered to be equal in the homogene-
ous sense if there exists a non-zero ~.~_~ so that the equality a = Kb holds. This
relation is an equivalence relation on/R n - {0} (the origin). The corresponding quo-
tient set (denoted by IPR n in the following discussion) is called the set of homogene-
ous vectors. The same vector notations will be used to denote its elements, but their
homogeneous nature must always be kept in mind. In case of doubt, the notation
[(a 1,a 2, �9 �9 �9 an)] T will also be used to denote the homogeneous vector generated by
(a 1 ,a2 , . . . ,an)TUAR n.

The theorem which is analogous to 2.13 is as follows.

Theorem 2.14. If O, Aa, A2 and E are elements of /PE 2, so that no
three of them would be collinear (they are of a general position), then
there exists a unique one-to-one correspondence between the points of
h ~ 2 and the elements of hOR 3 so that the following relations

o ~ [(0 ,0 ,1)] r

A1 (--> [(1 ,0 ,0)] T

A 2 ~-> [(0 ,1 ,0)] r

E ~-> [(1 ,1 ,1)] T

(2.11)

hold.

18

For a projective space, one more point (A 3) is necessary; the requirement is not only
that there should be no three collinear points but also that there should not be four
coplanar points. The mapping is then performed between/PE 3 and/PR 4 and (2.11)
becomes:

o , - , [(o , 0 , o , 1)] r

A 1 <--, [(1,0,0,0)] r

A2 o [(0,1,0,0)1 r (2.12)

A 3 o [(0,0,1,0)] r

E ,--, [(1,1,1,1)] r

Traditionally, the coordinate components of the homogeneous vectors are denoted
either by subscripted Latin characters or by using the letter w for the last coordinate
eg of the form [(x,y,w)]. The exact proofs of the theorems 2.13 and 2.14 would go
far beyond the scope of the present thesis; the interested reader should consult, for
example, [Kerd66].

The exact relationships between the Cartesian coordinates and the homogene-
ous ones play an essential role in the following sections. Indeed, the geometric
environment which is the usual starting point for any graphics system is a Euclidean
one together with some coordinate system defined on E2 or E3; a coordinate system
which would be effective in some sense for the object which is to be described. This
Euclidean environment has to be treated, however, as a projective one by the graph-
ics system; there is therefore an extension to be made (described in the previous sec-
tion) which would embed this plane or space into a projective plane or space respec-
tively. This process is performed by adding ideal points to E2 or E3 to result in
/PE 2 o r / P E 3 respectively. The question is, which homogeneous coordinate system to
use so that the relationship between the Cartesian and the homogeneous coordinates
of a Euclidean (that is affine) point would be as simple as possible? This is done as
follows.

Theorem 2.15. Suppose that a Cartesian coordinate system has been
chosen on E2 (for the sake of simplicity the planar situation will be ex-
amined in detail first). Let the points O,A 1,A e and E be defined as fol-
lows.

�9 Let O be the origin of the Cartesian system;

�9 Let A 1 be the ideal point of the x axis;

�9 Let A 2 be the ideal point of the y axis;

�9 LetE be the affine point with coordinates (1,1) T

then, if the Cartesian coordinates of a point P are denoted by (pl,P2) r
the following relation holds:

If P~.a~ 2, the homogeneous coordinates of P are given by [(Pl,P2,1)] r.

19

Furthermore, if Q is an ideal point of haE 2, it can be described by the
line QvO. With the help of such a line the following relationship also
holds:

If R E Q v O , the homogeneous coordinates of Q are given by
[(rl,r2,O)] T.

IA2

C
�9 �9 �9 ,.,""�9

. . . x -R

�9
,,�9149

.�9149149

�9149149

E 2 E
X ..- '"
,.. ,-'"

, , , - " "
)(
E1

Figure 2.3.

It is fairly straightforward to see that the relations listed in theorem 2.15 do define a
one-to-one mapping o f /PE 2 and the set of homogeneous vectors. Taking into
account the uniqueness statement formulated in theorem 2.14, the validity of
theorem 2.15 follows easily. II

Theorem 2.15 also means that in this coordinate system ideal points can be
uniquely characterised by having the last coordinate value being zero. This also
leads to the following formula (well known in computer graphics, see also
figure 2.3):

If P~IPE a, P is affine and a homogeneous coordinate system has been
chosen for g~E z as described above, the formula

[0 71,P2,P3)] T ~ 071/P3,P2/P3) T (2.13)

will give the Cartesian coordinate values of P (the fact that P is affine is
equivalent to the fact that P3 ~ 0) . In the computer graphics literature
this step is usually called the "projective division ' ' t .

It has to be stressed that such a unique characterisation of an ideal point by its

tThe terms "perspect ive divis ion" or "w-d iv ide" are also in use.

20

coordinate values is possible only in this coordinate system. It is perfectly possible
to choose another homogeneous coordinate system where this characterisation is not
valid any more s. Just as in the case of Cartesian coordinate systems, it is a fairly
widespread approach, when trying to prove some theorem in projective geometry, to
choose a coordinate system which fits the original problem itself (this approach is
particularly fruitful when dealing with conics).

Homogeneous coordinates also provide a way of characterising lines (on
h~ 2) and planes (on/pE3). In the case of Cartesian coordinates, a line can be ex-
pressed by the equation:

axl + bx2 + c = 0 (2.14)

with appropriate constants a,b and c. By using the identification procedure for
Cartesian versus homogeneous coordinates, this equation could be rewritten for
homogeneous coordinates as follows:

axl + bx2 + cx3 -- 0 (2.15)

It is also clear that if the values a,b and c are multiplied by any non-zero real
number, equation (2.15) would still remain valid. This means that [(a,b,c)]r~_lPR 3
gives an adequate description of a line. In other words, by using homogeneous coor-
dinates, not only points but also lines can be assigned a homogeneous vector, which
could just be called the homogeneous coordinates of a line (and the points of the line
can be described by (2.15)). In case of/PE 3 planes can be described similarly (but
not lines).

It can be proven that the above characterisation of lines/planes does not
depend on the special choice of the homogeneous coordinate system used to
derive (2.15). The fact that lines/planes can be described by homogeneous coordi-
nates just like points leads to an elegant symmetry of all the formulae involving
intersection points, generated lines etc.; they will be presented later. This similarity,
which is referred to as the duality principle of projective geometry has, in fact, a
much deeper background. By looking at the axioms of h~ 2 (or respectively of
ff~E3), there is a similarity of the behaviour of points and lines: if the words/terms
"point" are exchanged with "line", and "intersection points of lines" with "lines
generated by points", valid statements will result. Consequently, this fact is also
true not only for the axioms but for all statements derived from them. By making
use of this duality principle a number of formulae can be derived easily and one
might also get a clue for finding additional and useful formulae (see for example
[Arok89]).

The use of homogeneous coordinates has been an accepted practice in com-
puter graphics for a very long time; their description can be found in all "classical"

tin fact, the whole approach might also be turned upside down. Indeed, if an arbitrary homogene-
ous coordinate system is given on n,~ or n,~, one could define the ideal points of this coordinate
system to be the points with the last coordinate value being zero and all other ones being affine.

21

textbooks ([Newm79], [Fole84], [Salm87], [Fole90] and others) and more sys-
tematic descriptions can also be found in [Reis81] or [Bez83]. In most of these cases
however, homogeneous coordinates are presented as being some kind of neat (one
could even say "tricky") way of describing points so as to have a unified descrip-
tion of the effect of different transformations. While the usability of homogeneous
coordinates even in 2D graphics is undeniable, it is important to realise that their use
can be traced back to much more fundamental mathematical properties of projective
geometry, which, in turn, plays a basic role in 3D graphics.

2.5. Isomorphic Models of Projective Planes and Projective Spaces

The use of homogeneous coordinates provides a means of "visualising" a projec-
tive plane (and to a smaller extent a projective space). The idea is to give some kind
of an intuitively manageable surface in Euclidean geometry which would, in some
sense, be a good model for a projective environment.

A homogeneous coordinate (that is an equivalence class) can be viewed as a
line in a higher dimensional Euclidean space. That is, an element of ~ R 3 can be
identified with a line in fl~3 crossing the origin t. This fact is clear from the
definition of a homogeneous coordinate.

W

pomt ~ x

Figure 2.4.

2.5.1. The Riemann Sphere

The Riemann sphere (figure 2.4; also called the spherical model of a projective
plane) is the unit sphere around the origin of/R 3 where all diametrically opposite
points are identified. Each point in IPE z is represented by a poins of the Riemann
sphere, and lines of /PE z are represented by the great circles on the sphere (again,

tMore precisely, the origin should be removed from the line to get the exact identification.

22

with opposite points identified). The ideal line is represented by the great circle
defined by w=0. With this mapping of IPE 2 onto the Riemann sphere, the latter
becomes isomorphic to/PE 2. The model also shows the remarkable identity of an
affine line and the ideal line.

The Riemann sphere is, although intuitively very helpful, not really of use in
the forthcoming. The reason is that the identification of a sphere point with the
corresponding affine point of/PE 2, and also with its Cartesian coordinates, leads to
disagreeable formulae. It is, however, a very helpful tool to get new ideas; indeed,
as opposed to the so called "straight model" of the projective plane (presented in
the next section) the full plane, including the ideal line, is modelled by it.

The Riemann sphere can be generalised for projective space as well; one
should take a unit sphere in JR 4 around the origin However, because of the
difficulties of visualising a four dimensional space, this version of the Riemann
sphere is not really useful.

2.5.2. Embedding into ~3/j~4 (the Straight Model)

The second, and more widespread model of a projective plane (the so-called
straight model) is shown in figure 2.5. By using the identification of Cartesian and
homogeneous coordinates, all affine points (that is the points of E 2) may be
represented by points of H (that is the plane w---l). This is clearly nothing else than a
pictorial representation of the fact that homogeneous coordinates describe lines in a
higher dimensional space. From a purely mathematical point of view, the drawback
of this model is the fact that only the affine points can be represented so clearly. On
the other hand, as far as computer graphics is concerned, the real issue is always to
see how affine points are transformed; ideal points are just disagreeable but neces-
sary additions to them. In this sense, the fact that the straight model shows only the
affine points so clearly may well be an advantage rather than a disadvantage.

On the straight model ideal points are represented by homogeneous coordi-
nates with the last coordinate value being zero. This means that ideal points are
represented by lines running in the plane x-y, crossing the origin and having there-
fore no intersection points with 17 (see figure 2.5 again).

The fact of having chosen II to represent the projective points was, although a
direct representation of the Cartesian-homogeneous identification, intentional: as
said above, the fact that ideal points are so well separated from the affine ones might
be helpful. Clearly, any plane could have been chosen equally well, like the plane tlJ
in figure 2.6. In this case the ideal points do become Euclidean points on �9 but, on
the other hand, some of the affme points cannot be represented properly.

Like the Riemann sphere, this model works analogously for/pE3: one should
take the w = 1 hyperspace in ~4 to model/PE 3. Of course, the same problem arises:
it is not possible to visualise properly the four dimensional space. This is the reason
why figures 2.5 or 2.6 will be used in all cases when a pictorial representation will
be necessary even if the real problems to be solved will be in hPE 3 rather than in
j~OE 2 .

23

affine" point

w Y

X

Figure 2.5.

_.t•,•affine" point , w

k

", i y

X

Figure 2.6.

There is one common point which has to be stressed in all forms of the
straight model. In all these cases the projective environment has been embedded into
a Euclidean environment again (with some restrictions). The significant difference
is, however, that a Euclidean space of higher dimension was necessary. This will
have an importance in what follows: by having first embedded the original
Euclidean environment into a projective one and, in a second step, having
re-embedded it into a Euclidean space of a higher dimension, many of the problems
can be restated in a "classical" Euclidean way. This fact has never been really

24

exploited in classical projective geometry; indeed, the problems arising for
mathematicians are of a different nature. However, for computer graphics, this
approach (exploited first in [Herm87]) has led to significant simplifications of a
number of problems. Examples will be seen in later chapters.

W

X

Figure 2.7.

The straight model also provides a way to represent all affine lines or planes
(see figure 2.7). Let uU_IPR 3 (or, for/PE 3, uU_IPR 4) be the homogeneous representa-
tion (that is the coordinates) of the line L As an Euclidean vector, u will also deter-
mine a plane in ~3 (resp. a hyperspace in ~R4), namely the one containing the origin
and whose normal vector is u. This plane (hyperspace) will intersect 17 in a line
(resp. a plane) if l is affine; the formula describing a line in homogeneous coordi-
nates (that is (2.15)) simply proves that this intersection line/plane will just be l
itself. In other words, each affine line can be viewed as a plane (or a hyperspace)
crossing the origin in JR 3 (resp. ~4) if the straight model is used.

2.6. Some Basic Calculation Formulae

In what follows, a number of formulae (for the intersection of lines etc.) will be
presented; these formulae will be used later. This is by no means an exhaustive list
of all possible calculation methods offered by homogeneous coordinates; the reader
should refer to the projective geometry textbooks and primarily to [Penn86] for
further examples.

25

2.6.1. Formulae for the Projective Plane

If u~IPR 3 and v~lIaR 3 represent two lines, the homogeneous coordinates of
u ̂ v are given by the following (formal) determinant:

u ^v = det
Ul U2 U3
V1 1:2 1:3
el ez ea

(2.16)

where el, ez and e3 denote the vectors (1,0,0) r, (0,1,0) r and (0,0,1) r respectively.

I f p ~ P R 3 and q~IPR 3 represent two points, the homogeneous coordinates of
p vq are given by the following (formal) determinant:

p vq = det
P l P2 P3
ql q2 q3
el e2 e3

(2.17)

To describe p vq, a parametric equation is sometimes more suitable than the
description with homogeneous coordinates. The following formula is also true:

p v q = { Lp + ~ / } (2.18)

Z,~Oor ~t~O

The previous formulae may be used for slightly more complex calculations;
for example to find the intersection point of two lines, knowing two points on each
of them (a repetitive application of (2.17) and then (2.16) will do).

It is also important to know that in the case of hOE 2 the coordinates of some
special points are known "by default". As examples, at least two distinct ideal
points are known by their coordinates (eg [(1,0,0)] ~r and [(0,1,0)]r), the homogene-
ous coordinate of the ideal line is also known (it could be calculated by using (2.17)
and the two distinct ideal points but it is also clear that [(0,0,1)] r should be the
result).

It can be of interest to see what the ideal point of a given line is, provided that
two of its affine points, say p@IPR 3 and q~_IPR 3, are given. This can easily be cal-
culated if the "straight model" is made use of: indeed, the direction of a line paral-
lel to H and the (Euclidean!) line p'vq' is to be found. However, i fp and q are con-
sidered to be Euclidean, the vector from q' to p ' can be calculated by:

P 1/P31 Iql/q3]

Clearly, the homogeneous coordinates generated by (2.19) will give the ideal point
ofp vq (see also figure 2.8).

26

q

/

~w

X

Figure 2.8.

2.6.2. Formulae for the Projective Space
If u ~ R 4, v~lPR 4 and w~llaR 4 represent three planes, the homogeneous

coordinates of u ^v AW are given by the following (formal) determinant:

Ul U2 U3 U4

UaVAW=det Vl V2 V3 V4 (2.20)
W1 W2 W3 W4

el e2 e3 e4

where el, e 2 e 3 and e 4 denote the vectors (1,0,0,0) T, (0,1,0,01"), (0,0,1,0) T and
(0,0,0,1) ~ respectively. If all subdeterminants in (2.20) are zero, the planes meet in
a line; this is a singular case.

I f p ~ l P R 4, q ~ P R 4 and r~_IPR 4 represent three points, the homogeneous coor-
dinates o f p vq vr are given by the following (formal) determinant:

P l P2 P3 P4

p v q v q =det ql q2 q3 q4 (2.21)
r l r2 r3 r4

el e2 e3 e4

It is also worth mentioning that formula (2.18) remains valid in ~ E 3 as well,
although the fundamental symmetry among formulae is now between points and
planes instead of points and lines.

In /PE 3 at least three distinct and non-collinear ideal points are known by
their coordinates (eg [(1,0,0,0)] r, [(0,1,0,0)] r, [(0,0,1,0)]r). The homogeneous
vector [(0,0,0,1)] r gives the coordinates of the ideal plane.

If three non-collinear points of a plane II are known, the homogeneous

27

representation of two ideal points of rI can be calculated analogously to (2.19). By
using (2.18), the parametric representation of the ideal line on rI can also be
described.

2.7. Collinearities

In his already cited work, the Erlanger Programm, F. Klein has proposed the
classification of different branches of geometry based on a class of transformations
which would leave some part of the geometric structure invariant. Although the
usual geometry textbooks do not follow this rigorous classification, to describe the
properties of a geometry the description of an appropriate class of transformation
might be very important.

In the case of projective geometry the geometrical structure is fully deter-
mined by lines, the intersection of lines and of the lines generated by points. It is
therefore natural to accept the following definition to describe a basic set of transfor-
mations:

Definition 2.5. A transformation T: ~E 2--->IPE 2 (or T:/PE 3---~hOE 3) is
said to be a collinearity if for each three collinear points P,Q,R~PE z
(or P, Q,R ~IPE 3 respectively) the points T (P), T (Q), T (R) are also col-
linear.

Collinearities (also called projective transformations or projective mappings) play a
significant role in projective geometry. These transformations map lines onto lines
(according to definition 2.5), they map the intersection point of two lines onto the
intersection point again and, finally, they also map the lines generated by points onto
the line generated by the images of the points. In case of /PE 3, planes are also
mapped onto planes as well as the intersection of planes onto the intersection of
planes.

The theoretical importance of collinearities can be well understood from the
fact that they keep invariant all properties used and described by the axioms of pro-
jective geometry. Indeed, all axioms are specified with the help of points, lines and
intersections, properties which are invariant to projective mappings. The practical
importance of these mappings is also high: "familiar" transformations like rota-
tions, translations or scalings as well as central projections are all collinearities. Care
should be taken, however, with the last example. Central projections are collineari-
ties in the projective sense whereas they are not necessarily ones in the Euclidean
sense; this was exactly the problem which had led to the use of this theory. Those
readers who are familiar with the three dimensional graphics standards like
GKS-3D, PHIGS ([ISO88], [ISO89], [ISO89a]), or related packages like PEX
([ISO88b], [Clif88]) can also realise that the notion of projective transformations
encapsulates all possible transformations described in these documents, like model-
ling transformations and viewing. These examples will be detailed in what follows.

For practical and also theoretical purposes a very important sub-class of col-
linearities is the class of affine transformations. Its definition is as follows.

28

Definition 2.6. A collinearity is said to be an affine transformation if
the images of all affine points remain affine. For non-singular transfor-
mations this also means that the images of all ideal points remain ideal.

Clearly, affine transformations are "closer" to Euclidean geometry than projective
transformations in general; they leave the "dual" structure of a projective
plane/space (ie the division among ideal and affine points) essentially intact. Among
the examples cited above, rotations, translations and scalings are clearly affine while
central projections are not.

A line (for/PE 2) or a plane (for/PE 3) is called the vanishing line~plane of the
transformation if it is transformed onto the ideal line/plane respectively. A transfor-
mation is affine if and only if its vanishing line/plane is the ideal one.

One very important issue in projective geometry is to find the projective
invariant features of geometric primitives or constructions. Projective invariance
means that the given construction and/or the geometric features related to a given
primitive would remain unchanged if a projective transformation were applied
(more specific examples will be given later). Likewise, one could speak about af]ine
invariance, related to features invariant for affine transformations.

Projective and affine invariance are not only of theoretical interest. In the
case of computer graphics algorithms, one of the clues for a simplification or an
improvement might be to find the projective/affine invariant part of them. As an
example (and there will be much more later) one might think of the fact that a
number of graphics primitives may be described in a very compact form with the
help of some points only (eg conics), but for the final rendering some kind of a
linear approximation of the primitive is necessary. It is of great importance to find
projective/affine invariant representations of these primitives; such representations
allow the postponement of the linear approximation along the graphics output pipe-
line, resulting therefore in faster rendering and better approximations.

The existence and uniqueness of collinearities is provided by the following
theorem.

Theorem 2.16. If I-[and qJ are two projective planes (which may be
identical), PiEFI and Pi'E~ (i=1,...,4) are points in FI and tIJ respec-
tively such that no three of them are collinear, then there exists one and
only one collinearity T: FI--,qJ for which T(Pi)=Pi'. For projective
spaces five points are needed instead of four with the additional require-
ment that no four points may be coplanar.

Here again, the proof of this theorem would go beyond the scope of this thesis; the
interested reader should consult for example [Ker666], [Coxe49] or [Penn86].

This theorem seems to have a theoretical value only, as far as computer
graphics are concerned, but this is not absolutely true. It happens quite often that
several, at first glance very different, methods are created to calculate an effective
projective transformation. Theorem 2.16 provides a way to check whether the dif-
ferent approaches do generate the same mapping or not: only the images of four/five

29

points have to be checked and the theorem ensures th e uniqueness of the projective
mapping provided that the images of these four/five points coincide.

2.7.1. Representation of Collinearities

As with projective points it is obviously of paramount importance to find some kind
of numerical representation of collinearities. The corresponding theorem (which is
one of the most important theorems in projective geometry) is as follows.

Theorem 2.17. If H and qJ are two projective planes (which may be
identical) with a homogeneous coordinate system chosen on them and
T: I-I-->q~ is a collinearity, then there exists a 3x3 matrix T which
describes the transformation as follows. If x ~ I P R 3 represents the point
XE[I then

[Tx]G_/PR 3 (2.22)

gives the homogeneous coordinates of T(X). Furthermore, T is uniquely
defined in a homogeneous sense; that is, if T and T' both fulfil (2.22),
then there exists a non-zero real number ~. for which T -- ?~T --7.

In other words, the transformation can be described by a matrix-vector multiplica-
tion. For h~ 3, the same theorem applies, with the obvious difference that the
matrices involved are 4• rather than 3• In both cases, the singularity of the
transformation is equivalent to the singularity of the corresponding matrix.

The opposite statement is also true, namely that formula (2.22) defines a col-
linearity for all 3x3 (respectively 4x4) matrices. Proving this statement is not partic-
ularly difficult (see the formula described in the previous chapter on the parametric
equation of a line). However, proving theorem 2.17 is much more complicated; see
for example [Kerd66] or [Fisc85] for the detailed proof.

Clearly, theorem 2.17 has the same importance for computer graphics as the
existence of homogeneous coordinates, and for the same reasons: it becomes feasi-
ble to manage the collinearities numerically.

If the homogeneous coordinate system is generated out of a Cartesian one
(following the method described in a previous chapter), the matrix representation
gives also an easy way to decide whether a transformation is affine or not. Namely:

30

Theorem 2.18. If T is a non-singular projective transformation of ~ E 2
to/PE 2 and T is its matrix representation, T is affine if and only if T is of
the form:

tl, 1 tl,2 tl,3]

?J
where ~. is a non-zero real number.

In case of a transformation in the projective space, the corresponding
form is

tl,1 tl,2 tl,3 tl,41
t2,1 t2,2 t2,3 t2,41

t01 t3 '200 ~ t3,3 t 4]' (2.24)

Theorem 2.18 is very easy to prove: spatial ideal points are uniquely characterised
by the fact that their last coordinate value is zero, in other words, they are of the
form [(a,13,3',0)] where cx,15 and 3' are arbitrary real numbers with at least one of
them being non-zero. The fact that the transformation T is affine means therefore
that

t4,1~ + t4,2~ + t4,33 , + t4,40 = 0 (2.25)

for all possible non all-zero choices of cx, 15 and 3'. This means that
t4,1 = t4, 2 = t4, 3 = 0 should hold; the value of t4, 4 must however be non-zero, to
ensure non-singularity. �9

The reader may recognise the so-called segment transformations defined in
GKS, GKS-3D, CGI etc. ([ISO85], [ISO88], [ISO88a]). However, the modelling
transformation of PHIGS, PHIGS PLUS or PEX ([ISO89], [ISO89a], [ISO88b]) are
not necessarily affine ones; indeed, the specification in these documents allows the
user to give a general 4x4 matrix, without specifying any special features for the last
row of it. This fact has severe algorithmic consequences on the so called modelling
clip feature of these latter systems; more about that later. It is, however, strange that
the GKSM specification in both the official GKS and the GKS-3D documents
([ISO85], [ISO88]) permit full 3x3 (resp. 4x4) matrices for segment transforma-
tions; this is clearly a mistake in the specification, as it would require the ability to
handle a full, not necessarily affine transformation which is in contradiction with the
rest of the specifications.

The different affine transformations used in computer graphics (rotations,
scalings, shearings and translations) and their matrix representations are well
described in a number of computer graphics textbooks (see all the already cited

31

references) and it makes no particular sense to repeat these descriptions here ~. In
fact, the uniformity in description offered by the use of matrices was one of the rea-
sons why homogeneous coordinates have become widespread in computer graphics
even for 2D problems; it is a pity that even the newest textbooks on 3D graphics
(like [Watt89]) do not explain why their use is mandatory when using projective
transformations.

2.7.2. Viewing and Modelling Transformation

The main target of 3D systems is, after all, to render three dimensional objects on a
two dimensional surface, which is the display screen or a plotter output. For that
purpose, each such system has an internal mechanism which is usually called view-
/ng. The most widespread approach to viewing is what is called the synthetic camera
model in computer graphics literature and which is shown on figure 2.9. The idea is
to project objects in a three dimensional frustrum onto the view plane; the frustrum
(called the view volume) also serves as a clipping volume in space.

viewpoint

Figure 2.9.

The situation shown in figure 2.9 is usually referred to as "central projection"
as opposed to the case where the the viewpoint is an ideal point, in which case the
projection becomes a "parallel projection". In projective geometry terms, there is
no difference between these two versions although, of course, the computational
demands of a central projection are much greater than of a parallel one.

tCare should be taken, however, when using the different textbooks. Following the differences in
conventions regarding operator-argument versus argument--operator notations in algebraic for-
mulae, some of the textbooks might use vector-matrix multiplication rather than the convention
adopted here. In such cases, the described matrices should be transposed to generate the appropri-
ate version.

32

Early 3D graphics systems have effectively performed the projections as
shown in the figure. This involved, however, two disagreeable consequences:

�9 clipping against the frustrum involves clipping against arbitrary planes in ~3;
this step is algorithmically demanding and

�9 performing the Hidden Line and/or Hidden Surface Removal in such a case is
quite complicated as well.

As a result, in all newer systems (as well as in all 3D Graphics Standards or
proposed Standards) the projection is done by first performing a special projective
transformation in space (that is in /PE 3) which transforms the view volume onto a
sub-cube of the unit cube and which transforms the viewpoint onto the ideal point
of the z axis of ~3 (see figure 2.10). Having performed this transformation the pro-
jection itself becomes simply the projection onto the x -y plane, the clipping against
a view volume is reduced to a clipping against planes parallel to the base axes and,
finally, the Hidden Line/Hidden Surface removal can be performed by applying
appropriate algorithms which use exclusively the relative magnitude of the z coordi-
nate values of points (see for example [Mudu86] for an overview of such algo-
rithms).

viewpoint

J

~ Z

. J Y

.-" ~

. ! / i"

!1 . :) !...

Figure 2.10.

view volume

view plane

"x

The theorem about the existence and the uniqueness of a projective transfor-
mation (theorem 2.16) ensures that a mapping of the view volume onto the
sub-cube of the unit cube uniquely exists. In general, this mapping will be
non-affine (more precisely, the affinity of the transformation is equivalent to a
parallel projection). There are several methods for the calculation of this transforma-
tion (also called view transformation); textbooks or tutorials like [Fole84], [Watt90],
[Herm91], [Fole90] or others all describe the necessary steps and K. Singleton has
also given a good and detailed overview of the GKS-3D/PHIGS cases ([Sing86]).

33

In this latter work, a description of the usual classification of the projections them-
selves is also given (oblique, isometric, 2-point perspective etc.); all these different
mappings produce different visual effects on the screen, but their mathematical
backgrounds are all the same. It is unnecessary to repeat all these formulae here; the
reader is referred to the cited works (or alternative ones).

It has to be stressed that the ISO 3D documents do not state that the view
transformation should be of the format described above. Not all projective transfor-
mations transform such a view frustrum onto a regular cube; there might be more
complicated ones as well (eg the planes describing the view volume might not be
parallel to the view plane). The user of a GKS-3D/PHIGS system has the possibility
to specify any kind of 4• matrix as a view transformation and the system should be
able to deal with it. The process described above is just offered as a utility (via the
so-called utility functions of the specifications).

In PHIGS (and PHIGS PLUS), the viewing pipeline of the system includes yet
another transformation which is called the modelling transformation. This transfor-
mation is primarily aimed at the use of convenient local coordinate systems for
describing objects in 3D; by specifying the modelling transformation the appropriate
coordinate transformation can be performed by the graphics system itself (in this
sense, this transformation is the generalisation of the so called normalisation
transformation of the GKS and GKS-3D specifications, [ISO85], [ISO88a]). How-
ever, to achieve some special effects (like the image of a projection modelled by
three dimensional objects) this transformation is to be specified by a full 4• matrix,
allowing therefore a general, not necessarily affine transformation.

The view transformation and the modelling transformation are the two, not
necessarily affine, transformations arising in 3D computer graphics systems. In
what follows, no special attention will be paid to their usual use in practice and their
format; as described above, the 3D systems at hand must be able to handle these
transformations in all their generality.

2.7.3. Description of Collinearities Based on the Straight Model

The straight model of the projective plane and/or space also permits the visual
representation of the effects of a projective transformation. This is important
because just as the straight model creates a strong link between ~ E 2 and fl~3
(respectively between/irE 3 and/R4), the visualisation to be described creates a link
between projective transformation and the linear transformation of fl?3 and fl~4
respectively. This is of no particular interest in traditional projective geometry and it
is therefore never described in the previously cited projective geometry textbooks;
however, for the purposes of computer graphics where the linearity of some tradi-
tional problems has importance, its use has proven to be extremely useful (see
[Herm87], [Herm88], [Herin91], [Hfibl90]).

As in the case of the projective points and lines of IPE z, projective transfor-
mations described acting on/PE 2 can be visualised easily. It is worth recalling (see
also figure 2.11) that in the straight model ~ E z is identified with the points in ~3 on

34

~w Y

w =1

Figure 2.11.

the plane w -= 1 (denoted by 17 on figure 2.11). A projective transformation T is
represented by a matrix T. This matrix T also generates a traditional linear transfor-
mation T' in/R 3 using the matrix-vector multiplication. This transformation will
map 17 onto another plane of ~3 which has, in general, an arbitrary position in
space. This plane is denoted by tlJ on the figure. (In fact, tlJ can also be considered
as an alternative straight model of h~ To get back to the more usual w ~- 1 model,
tlJ has to be projected centrally (through the origin) back onto H; this is, in fact, the
so-called projective division.

What can be said therefore, in view of figure 2.11, is as follows. A transfor-
mation T of /PE 2 can be modelled by a two-stage process. First, 17 is mapped by
the linear transformation T' (of ~3) onto tlJ and, secondly, the resulting plane tlJ is
projected back onto 1I by a central projection through the origin. The first step might
be called the linear part of the transformation while the second step is traditionally
denoted as the projective division. This simple fact has far-reaching practical conse-
quences; in fact, the whole of the next chapter will be based, in some sense, on this
observation.

Clearly, T is affine if and only if W is parallel to H (on figure 2.11). Further-
more, the usual description of the affine transformation (that is where T4, 4 = 1)
results in II=qJ.

In the case of haE 3, 17 and qJ are three dimensional subspaces of JR 4, also
called hyperspaces. With this difference, the whole description remains valid for
haE 3 as well.

35

2.8. Division Ratio and Cross Ratio

As stated before, the notion of line segments has no meaning in projective geometry
any more. Likewise, the distance between two points also becomes an unclear
notion; indeed, the distance is usually defined in terms of the generated line seg-
ment. Furthermore, even if the distance could be defined at least in restricted cases
(eg by excluding ideal points), the projective transformation does not retain these
values. It is to find some kind of a stable numerical value that the notion of double
ratio has been introduced in projective geometry; in a number of cases, its use is
necessary to prove some of the important statements of the theory. Furthermore, as
will be presented later, the double ratio can also be a very useful tool for the pur-
poses of computer graphics, that is the reason why it is presented here.

The division ratio and the double ratio will be defined in terms of affine and
ideal points, that is making use of the construction which has led to a projective
plane and/or projective space. A mathematically "pure" definition (that is based on
the axiomatic system only) would also be possible, but it would be more abstract
and more complicated as well (see eg [Coxe74]). For the purposes of computer
graphics, the more "pragmatic" approach is acceptable.

At first, the notion of division ratio has to be defined as follows.

Definition 2.7. Let A, B and C be three different collinear affme points
on/PE 2 or hOE 3. The division ratio of the points A, B and C (denoted by
(ABC)) is defined to be the following (non-zero) real number:

AC
(ABC) - __ (2.26)

CB

where AC and CB mean the directed Euclidean distances of the two
points (that is AC = - CA).

If the point C tends to infinity, the limit of the corresponding division ratio
(with the points A and B remaining fixed) will be -1; consequently, it seems to be
feasible to extend (2.26) to the case when the point C is an ideal point, namely let

(ABC) = -1 (2.27)

in this case.

With the help of the division ratio the double ratio (also called sometimes the
cross ratio) of four collinear points may be defined as follows.

Definition 2.8. Let A, B, C and D be four different collinear points of
~ E z or hOE 3 not all four being ideal. The double ratio of the four points
(denoted by (ABCD)) is the real number defined by:

(ABCD) = (ABC)
(ABD) (2.28)

36

Clearly, when all four points are affine (i.e. none of them is ideal), the double
ratio may also be expressed with the help of directed distances, namely:

AC DB (ABCD) - 1 (2.29)
CB AD

The double ratio has a number of remarkable properties. Some of them will be
cited here, which are necessary for later purposes; the corresponding proofs may be
found for example in Penna and Patterson ([Penn86]), in Fischer ([Fisc85]) or in any
other standard textbook on projective geometry t.

First of all, the double ratio is a one-to-one mapping of the points of the line
and the (non-zero) real numbers. Namely, the following is true:

Theorem 2.19. Given three different collinear points on the projective
plane, denoted by A, B and C, if x is an arbitrary non-zero real number,
then there exists one and only one point D on the line determined by
A, B and C, for which the following equation holds:

(ABCD) -- x (2.30)

The second property has a particular importance for computer graphics (and,
in fact, it is one of the most important results in projective geometry). The descrip-
tion of this property requires first a definition:

Definition 2.9. The projective invariance of the double ratio is defined
as follows. If A, B, C and D are four different arbitrarily chosen col-
linear points of the plane (or space) and T is an arbitrary projective
transformation, then the following property should be valid:

(ABCD) = (T (A)T (B)T (C)T (D)) (2.31)

The projective invariance of the division ratio means that for each three
points A,B and C the relation

(ABC) = (r(A)r(B)r(C)) (2.32)

holds.

The affine invariance of the double ratio and the division ratio can be defined simi-
larly; in this case T should be affine.

tOne should be careful again, however, when consulting the literature; in some cases, following
different local traditions, the definition of the double ratio may slightly differ from the one given
here (e.g. by an additive constant, the order of the directed distances in the formulae etc.).

37

With this definition at hand, the following theorem holds:

Theorem 2.20. The double ratio is projective invariant, the division ra-
tio is affine invariant.

See for example [Fisc85] or [Penn86] for a detailed proof.

Theorem 2.20 also shows that the value of the double ratio is independent of
the construction of IPE2/~E 3. Although this has not been explicitly stated up to now,
the Euclidean analogy works here perfectly, and the change of homogeneous coordi-
nate system on//DE 2 or/PE 3 can be described by a matrix-vector multiplication,
using, of course, a homogeneous matrix. In other words, this is analogous to the use
of a projective transformation which, according to theorem 2.20, leaves the value of
the double ratio unchanged.

It should be remarked that a stronger statement regarding invariance of the
division ratio is not true. That is, the the division ratio is not projective invariant.

Penna and Patterson in [Penn86] give some methods to calculate the exact
value of the double ratio for four given collinear points in/PE 2. Without going into
details, the idea is to project the points onto the main coordinate axes (which can be
done, in fact, by replacing one of the coordinate values by 0) and calculate the dou-
ble ratio of the resulting four points. Taking into account that the projection keeps
the value of the double ratio, this is clearly a valid approach.

D

D

D

a) (ABCD) > 0 b) (ABCD) < 0

Figure 2.12.

In some cases, however, not the exact value but only the sign of the double
ratio is of interest. Indeed, it is easy to prove (using formula (2.29), see also
figure 2.12) that if for the points A, B, C and D the value of (ABCD) is negative, the
(affine) line segments AB and CD "cut" (overlap) one another while that is not the
case if the value of (ABCD) is positive (see figure 2.12). The importance of this fact
is that as an arbitrary projective transformation keeps the value of the double ratio,
this "segment cutting" property is invariant for projective transformations.

38

A a

B b

P

C

Figure 2.13.

Theorem 2.20 permits the assignment of a double ratio to four lines of /PE 2

which have one common intersection point (such a configuration will be referred to
as a "bunch of lines"). Figure 2.13 shows how this can be done. If a, b, c and d are
the four lines intersecting at P, let us take any line 1 not containing P. If IAa=A,
l^b=B etc., the following definition can be given:

(abcd) -~ (ABCD) (2.33)

The fact that this assignment can be done is by itself is not very surprising; indeed, a
bunch of lines (that is four lines intersecting at one point) is the dual form of four
points lying on the same line. The definition is not dependent upon the choice of the
line l: if another line, say l' were taken, the central projection with P as a centre
would map l onto l', mapping the corresponding intersection points onto one
another; consequently, according to theorem 2.20, the definition in (2.33) is indeed
correct. This also means that the "segment cutting" property has also its counter-
part for such a configuration, although it should rather be called "domain cutting"
in this case.

Formula (2.33) also fills a "hole" in the definition of the double ratio. If four
collinear points A,B,C and D are all ideal, there has been no definition given up to
now for the value of (ABCD). However, four ideal points generate four lines by
choosing an arbitrary point P on hUE2; formula (2.33) gives then the value of
(ABCD). Using the theorem on the existence of a projective transformation

39

(theorem 2.16), if a different point Q is chosen instead of P, there exists a projective
transformation which would transform the corresponding lines onto one another; as
the double ratio is projective invariant for lines also, this definition holds.

The invariance of the double ratio provides a method to prove a number of
so-called permutation formulae on double ratio. Two of them are as follows:

Theorem 2.21. IfA,B,C and D are four different collinear points, then
the following equalities hold:

(ABCD)(ABDC) -- 1

and

(2.34)

(ABCD) -~ (CDAB) (2.35)

~ 0o

'

D' C~

l'

Figure 2.14.

The proof for these formulae is very simple: it is enough to prove the case where
none of the points A,B,C or D is ideal. If this is not the case, it is possible to choose
four appropriate affine points A ' ,B' ,C' and D' and a projective transformation (actu-
ally a central projection) which would map one set of points onto the other. Fig-
ure 2.14 shows the case when all four points are ideal (and projected onto the line l')
and figure 2.15 is the case when only one of the points is ideal (and projected onto
the line l' again). The points being collinear, there are no other alternatives. If the
equations are true for the points A ', B' , C' and D', they are also true forA, B, C and

40

D because of the invariance of the double ratio. Finally, to prove that the equations
are true for the purely affine case is simply a matter of algebraic exercise, based on
the definition of the double ratio. �9

f4

B C

D|

Figure 2.15.

For hOE 3, a double ratio can be assigned to each four coplanar lines intersect-
ing in one point. Furthermore, if the planes II, ~ , ~ and O are such that they inter-
sect in one common line, the value of the double ratio (I-l~cI, O) can be defined as
well, using formula (2.33); this also means that the "domain cutting" property is
also valid in this case.

In [Kram89] G. Krammer introduced the notion of conic sectors, which is an
interesting application of the double ratio. In what follows, conic sectors will be
defined for IPE2; in case of IPE 3, planes should be taken instead of lines to arrive at
the same definitions.

If two lines, say I and n, are given on/PE 2, these lines will cut/PE 2 into two
disjoint subareas. The definition is as follows.

Definition 2.10. If P,Q~IPE 2 are given, let X (resp I0 denote the inter-
section points (PvQ)^l (resp. (PvQ)An). In case X =Y, the points P and
Q are said to be in the same conic sector. IfX~Y, P and Q are said to be
in the same conic sector if and only if the following inequality holds:

(POX) ") > 0 (2.36)

See also figure 2.16. There might be some special cases for conic sectors. If l and n
are parallel in the Euclidean sense (that is their intersection point is an ideal point),
the corresponding conic sector is shown in figure 2.17a). If, finally, I is affine but n
is the ideal line, the two conic sectors are the two half-planes! (see figure 2.17b).

The interesting thing about conic sectors is the fact that conic sectors are
transformed into conic sectors by projective transformations. Indeed, projective
transformations map intersection points onto intersection points; that is, if T is the
transformation in use then, using the notation of figure 2.16:

41

~P

x a
XQ i

Figure 2.16.

J

n O r

a) b)

Figure 2.17.

(T(P)vT(Q))^T(I) = T(X)
(T(P)vT(Q))AT(n) --- T(Y) (2.37)

furthermore, the projective transformation also keeps the double ratio, that is

(PQXY) = (T (P)T (Q)T (X)T (Y)) (2.38)

in other words, the sign of the double ratio will also remain unchanged.

In Euclidean geometry, convex polygons or convex polyhedra can be
described by the intersection of a finite number of half planes/spaces. Conic sectors
may be considered as the generalisation for the projective case of half-spaces (or
half-planes); in other words, onecan speak about projective polygons as the inter-
section of a finite number of conic sectors. The importance of this approach will
become clear later.

42

2.9. Projective Theory of Conics

2.9.1. Introduction

Besides line segments and polygons, conics also occur frequently in computer
graphics. They are used in geometric design, they are frequently implemented as
GDPs (Generalized Drawing Primitives) in various graphics packages and some are
included in the basic set of output primitives of ISO documents (e.g. CGI,
[ISO88a]). Among the three main classes of conics, namely ellipses, parabolae and
hyperbolae, the use of ellipses (first of all circles) is the most widespread. Circles
and circular arcs are used in business graphics for charts, in mechanical engineering
for rounded corners, for holes etc. Circular arcs may also be used to interpolate
curves (see for example Sabin in [Sabi77]). Although the role of parabolae and hy-
perbolae is not so important, they cannot be ignored either. On the one hand they do
appear in practical applications (for example there are proposals to use parabolic
arcs for curve approximation like the so-called double-quadratic curves in V~[rady in
[V~ra84] or [V~ra85]) but, principally, these curves appear automatically when dis-
torting an ellipse with a projective mapping.

Projective geometry gives a unified framework for handling all kinds of con-
ics. This might sound surprising at first glance, as projective geometry is considered
to be a theory primarily concerned with lines and their behaviour. However, if one
thinks of the well-known fact that the conics appear as the planar intersections of
cones, which is very much like the figure of a central projection, it becomes more
plausible that projective geometry has this descriptive power for conics.

What is the real problem as far as computer graphics is concerned, in handling
these curves? Mathematically, (planar) conics are described by a second order poly-
nomial of the form:

al, lx21 + a2,2x22 + 2al ,2xlx2 + 2ax,aX1 + 2a2,3x2 + a3,3 = 0 (2.39)

While this formula is appropriate to perform all calculations which are neces-
sary in a modelling system (see for example Fraux and Pratt [Faux79]) it is inade-
quate to draw the corresponding conic. Indeed, practically all graphics devices
available today are designed to render (in hardware/firmware) line segments; in
other words, the "ideal" mathematical curve must be approximated by an appropri-
ate polyline or polygon. To achieve a reasonable appearance, this approximation
must be quite dense; for example the number of approximation points to render a
circle properly must be at least 100, but an approximation with 360 points (that is
one point for each degree) may also be necessary.

It is not an easy task to generate these points properly. Appropriate approxi-
mation formulae or equations are necessary; some examples will be presented later.
Some of these formulae (especially those describing ellipses) are already known to
the graphics community, whereas some others are relatively unknown. Furthermore,
having these formulae at hand does not solve all problems. An implementor has to

43

give an answer to the following question: where in the graphics output pipeline is
the approximation effectively performed?

The approach usually chosen is to approximate the curve with a
polygon/polyline before performing a transformation in the pipeline. Most of the
formulae described in different textbooks and used in practice are not projective
invariant, that is the data generating these formulae change their geometrical nature
when applying a projective transformation. Therefore, the curves are approximated
beforehand, the resulting polygons/polylines are transformed and rendered follow-
ing already well established methods.

There are, however, some problems with this approach. First of all, there is a
loss in speed and storage. As mentioned already, the number of generated points
tends to be relatively large; all these points have to be transformed, that is a
matrix-vector multiplication has to be applied and, in the case of a projective and
non-affine transformation, an additional projective division must also be performed.
By applying some alternative methods presented later (primarily in chapter 5), a
speed improvement of at least 25% can be achieved. This figure might not seem
very impressive at a first glance but one should never forget that computer graphics
is (ideally) interested in real-time effects where a 20%-25% improvement might be
of real significance.

A widespread approach to overcome this difficulty is to use the so-called
rational B-splines to describe conics. Second order rational B-splines can describe
any kind of conic and this is done in a more or less projective-invariant manner (see
eg [Faux79], [Ti1183], [Pieg87], [Fari88]). Beside the fact that B-Splines are com-
putationally expensive (see all the calculation formulae in [Bart85] or [Bart87]), this
approach leads still to another common problem: the quality of the approximation.

Speed is not the only issue (and having all these super-fast computers invad-
ing the market, this argument might be less and less important). However, when
approximating for example a circle with 360 points, one gets a fairly regular
geometrical ordering of the points which, if displayed directly, will produce an
acceptably smooth shape. However, if a transformation is applied against this set of
points, this "regularity" will be lost. Some of the line segments will become much
longer than others; in these areas the resulting polyline will have a "jagged" effect
whereas on some other parts of the curve the density of the points will be unneces-
sarily high. It is very difficult to keep track of these distortions which may be, in the
case of a more complicated projective transformation, very noticeable. The only
way of reducing this effect is to postpone the approximation step as "far" as possi-
ble and to produce the resulting polyline after the transformations instead of prior to
it.

The real difficulty with this approach is the fact that a non-affine projective
transformation will "destroy" a number of geometrical characteristics of the points.
As an example remember that the centre of an ellipse might not be the centre any
more; furthermore, the image of an ellipse is not even an ellipse in some cases; it
may become a hyperbola or a parabola. Consequently, a thorough investigation of

44

the nature of conics is necessary, using the tools of projective geometry. This is why
this part of the theory has also been included in the present study.

2.9.2. General Theory of Conics

2.9.2.1. The 2D Case

As usual, planar conics will be treated first; some of the ideas will then be general-
ised for space as well.

In a Euclidean environment, a conic is described by the equation (2.39). By
defining the symmetric matrix A =(ai, j)3j=l and by using homogeneous coordinates
instead of Euclidean ones (with the usual identification mechanism), the equation
has its counterpart for projective environments as well, namely:

3
ai, j x i x j = 0 (2 .40)

i,j =1

Finally, formula (2.40) can be abbreviated by the so called bilinear form, that is:

xAx -- 0 (2.41)

The notation of formula (2.41) will be used throughout the whole chapter. In the
whole section A will be considered to be a non-singular matrix, that is det(A)~ 0
(some of the theorems presented later are not valid for singular cases; on the other
hand, the corresponding "curves" in this case are lines, points or just the empty
set).

In fact, (2.41) can be used in a somewhat more general way to define the
notion of conjugate points. This definition is as follows:

Definition 2.11. The points x,y~lPR 3 o n the projective plane are said
to be conjugate points with respect to the conic represented by the sym-
metric matrix A if and only if the following equation holds:

xAy = 0 (2.42)

(A being symmetric, xAy -- yA rx = yAx holds). We could also say that the points of
the curve may be characterised by the fact that they are auto-conjugate.

The notion of conjugate points has a number of nice properties. Indeed, the
following facts are true (their proofs may be deduced from the definitions or they
may be found in the textbooks cited above):

Theorem 2.22. If xEIPR 3 is a fixed point, the set of all points yC_IPR 3
which are conjugate to x with respect to a conic represented by the sym-
metric matrix A form a line of the projective plane. This line is called
the polar of x; it may be represented by the homogeneous vector Ax.

Theorem 2.23. If l is a line in the projective plane, then there is one
and only one point whose polar with respect to a conic represented by

45

/
(polar of v) ~(, ,

(polar of u) _ x-'X- - - 7-----
(pole of/) ' , /

/

", ~ (~olar of x)

",/\ u

Figure 2.18.

the symmetric matrix A is l; this point is called the pole of l. The pole
may also be characterised as follows: it is the (unique) intersection
point of all the polars generated by the points on t (see also figure 2.18).

Theorem 2.24. If x ~ l P R 3 is the homogeneous vector of a point on the
projective plane, then x belongs to its own polar if and only if x is a
point of the conic itself. In this case, the polar of x will be tangential to
the conic at the point x and the homogeneous representation of this
tangential line is Ax.

Definition 2.12. The pole of the ideal line is called the centre of the
curve; for ellipses and hyperbolae, this coincides with the traditional,
Euclidean definition of the centre of these curves.

Two lines ll and l 2 a r e said to form a conjugate pair of lines if the pole of 11
belongs to l 2 and, conversely, the pole of l 2 belongs to ll. One may speak of a pair
of conjugate chords as well as of a pair of conjugate diameters, denoting a pair of
conjugate lines which are chords (resp. diameters) of the conic (diameter is a chord
containing the centre).

All these definitions are, unfortunately, rather abstract and a certain time is
needed to get used to them and to get an intuitive feeling as far as their geometrical
meaning is concerned. Figure 2.19 shows an example which might help in using
these definitions. The line l has two intersection points with the conic, P and Q. The
polars of these points are the two tangents la and l 2 respectively. In view of what
has been said before, the intersection point of these lines, that is R, is the pole of the

46

Figure 2.19.

line I. This procedure is the usual way of generating the pole of a line, provided the
line has two intersection points with the curve (which is not always the case). It can
also be remarked that if the centre of the curve is denoted by C (like in the figure),
the line R vC will intersect the line segment PQ in its middle point. Also, the pole of
the lin R vC will be on/, that is a pair of conjugate lines have been created (see for
example [Ker~66] for a proof of these features).

The importance of these definitions becomes clearer when the behaviour of
conics in relationship to projective transformations is examined. If the matrix of the
transformation is denoted by T, and if a conic is represented by the symmetric
matrix A, then for all x,y~lPR3:

xAy = xr(Ay) = = xT(T-1T)r (AT-1Ty) = (2.43)

xrTT (T-1)r (AT -1Ty) = (Tx)r ((T-1)rAT-1)(Ty)

Now, if the notation

T (A) = (T-1)T A (T-1) (2.44)

is applied, then (2.44) can be simplified to (Tx)T(A)(Ty). In other words, the image
of a conic under the effect of a projective transformation remains a conic and, furth-
ermore, formula (2.44) gives an easy way to calculate the matrix of the image.
Also, the property of conjugation is projective invariant. The pole-polar relationship
also remains valid across the transformation. However, the image of a centre is not
necessarily a centre: although it is true that the image of the centre will still be the
pole of the image of the ideal line, it is not necessarily the case that the image of the
ideal line will still be the ideal line (it is however affine invariant).

The regularity of the matrix A has an interesting consequence, which is as fol-
lows.

47

Theorem 2.25. I fp, q~_lPR 3, p,q,~O are such that

pAp -- qAq = pAq -- 0

then p--q (where the equality is meant in homogeneous sense).

Let u = Ap and v = Aq. The vectors u and v are usual three dimensional vectors, that
is u,v~__lR 3. None of them is the zero vector, as det(A)~O. If u and v are equal in the
homogeneous sense, then p---q follows (again in the homogeneous sense). If this is
not the case, then, from the premises of the theorem, p as a regular three dimen-
sional vector is perpendicular to both u and v. In other words, p is perpendicular to
the plane u vv. However, the same is true for q and this is possible only if there
exists a LU.~ such thatp---kq. �9

The mutual relationship of a conic and a line is of particular interest. Namely:

Theorem 2.26. The number of intersections of a line and a conic may
be0, 1 or2.

Although this fact is well-known in projective geometry, it is worth presenting the
proof of this theorem here as well. The reason is that the proof gives an effective
way of calculating the (possible) intersection points and this is a useful feature in
what follows. It will also be necessary to make use of the result of theorem 2.25.

The line to intersect with can be described by (see (2.18)):

p vq = { kp + ~tq } (2.45)

~ 0 o r ~ 0

where p and q are two points on the line. Two values for ~. and ~ are searched for
which

(Z,p + (Z.p + = 0 (2.46)

holds. In fact, because of the homogeneous nature of the formula, one is not
interested in the exact values of ~. and ~t but only in their relative ratio k/ix. Equa-
tion (2.46) can be also rewritten by:

pAp~, 2 + 2pAq~,ix + qAq~t 2 = 0 (2.47)

First of all, pAp and qAq cannot be both zero. Indeed, this would mean

2pAq ~.ix = 0 (2.48)

for all possible choices of ~. and IX, that is pAq --0 would also hold; however,
according to theorem 2.25, this is not possible (p and q are considered to be different
points of/pE2). If pAp ~ 0, ix ~ 0 may be considered; if this were not the case, then
~. = 0 would also hold, which is impossible. Similarly, if qAq ~ 0 then ~. ~ 0. Let us
consider the first case; that is the equation can be divided by ix2 to get

pAp(k/ lx) 2 + 2pAq(~./~t) + qAq -- 0 (2.49)

48

clearly, this equation (in L/ix) may have 0, 1 or 2 solutions; by solving it one also
gets an explicit value for the (possible) intersection point(s). �9

The relationship between lines and conics has a very important consequence,
as the theorem can be applied to a special case to get a simple means of
classification for conics. Namely:

Theorem 2.27. The number of ideal points belonging to a conic may
be 0, 1 or 2. (The set of ideal points being the ideal line, this is just the
special case of the previous statement). If this number is 0, the curve is
an ellipse (or a circle); if it is 1, the curve is a parabola with the axis
determining its ideal point; and if it is 2, the curve is a hyperbola, with
the two asymptotes determining the two ideal points.

Theorem 2.27 (and the previously cited features) are of particular importance for
computer graphics. Some of the consequences are:

�9 The tangent of a curve remains a tangent and a chord remains a chord after
transformation: the intersection points of lines and curves are auto-conjugate
points and the conjugation is a projective invariant property.

�9 Each class of conics is affine invariant. In other words, the affine image of an
ellipse will be an ellipse, the affine image of a parabola will be a parabola etc.
In the case of parabolae for example, the ideal line is tangential to the curve;
the image of a tangent being still a tangent and the image of the ideal line
being still the ideal line, the image curve has only one ideal point. In other
words, the image of the curve has still one ideal point only, which means,
according to theorem 2.27, that the image is a parabola. The same reasoning
holds for ellipses and hyperbolae as well.

�9 By using straightforward and simple calculations it is easy to decide from the
matrix of a curve which class the curve belongs to: the way theorem 2.26 was
proven gives also a way to calculate the intersection points (if any), and also
to calculate their number. All what is required, is to use the homogeneous
coordinate values of two ideal points (see 2.6.1 for IPE 2 and 2.6.2 f o r / p E 3) .

p,

Figure 2.20.

Let this section be concluded by yet another calculation formula for planar

49

conics which will be useful later. The task is as follows: ifp, q~_.lPR 3 are two points,
A is a symmetric matrix representing a conic and, furthermore, s~ IPR 3 is a point on
the conic, compute the intersection of the tangent at s and pvq (see figure 2.20).
This could be done reusing already known formulae but an alternative (and compu-
tationally more attractive) method is as follows. Once again, appropriate L and ~t
numbers are to be found so that:

+ q)As -- 0 (2.50)

taking into account that As gives the homogeneous representation of the tangential
line at s. That is:

LpAs + ~ A s = 0 (2.51)

Again, ifpAs ~ 0 then ~ ~ 0, that is we can divide; the result is:

= -qAs /pAs (2.52)

2.9.2.2. The 3D Case

"f%e notion of conics may be generaliscd for projective spaces as well; the only
difference is that the symmetric matrix in usc should bc 4x4 instead of 3x3. These
conics are the so-called quadratic surfaces (hyperboloids, paraboloids, hyperbolic
paraboloids ctc.). Their classification is much more complicated than in thc case of
planar curves; however, they form again a class of surfaces which is invariant to
projective transformations (the way theorem (2.44) has been deduccd was indcpen-
dent of dimensions). Many of these quadratic surfaces arc rarely used directly in
computer graphics, cxcept some of the symmctric rotation surfaces. In such cases,
thc rational B-spline formulation for these surfaces is the widely accepted approach
(sce again [Ti1183], [Picg87], [Fari88] and also [Klein89]).

As quadratic surfaces appear in very special cases only, no further investiga-
tion will be prcsented here. Instead, this section will concentrate on what will hap-
pen to planar quadratic curves in a 3D environment; taking into account their useful-
ness in practice, it is worth examining this special case more thoroughly.

One way of handling planar conics in space is to find a vector representation
of a conic curve, that is an equation which describes the points of the curve as a
function of some vcctors and some additional real parameters. Such a formula
would be useful if it were at Icast affine invariant, that is if the transformation of the
vectors of the equation were enough to describe the transformed curve. Such an
affine invariant formula can bc found for all three classes of the curves; while the
formula dcscribing an ellipse has been known for quite a long time, the correspond-
ing formulae for parabolae and hyperbolae had to bc reconstructed from different
mathematical bits and pieces (these formulae were never of a real interest to
mathematicians, that is why they are not usually presented anywhcre). This has been
done in [Herm89a] and will also be presented in a later chapter.

To perform some computations, however, a more complicated approach is

50

also necessary which is as follows. The intersection of a plane and a quadratic sur-
face leads to a planar conic on the plane. If the plane happens to be the plane x3 = 0,
this can be easily seen by just putting a 0 to all relevant places of the equation of the
surface; the result is a second order equation for the remaining coordinate values. If
the plane is of a general position, it can always be transformed into the plane x3 --- 0
by using an orthogonal transformation. These intersection curves are from now on
the main focus of interest. Also, it is easy to associate a quadratic surface with a
planar conic: one has to construct a generalised cylinder (it might also be called a
sweep surface). This means that the curve should be moved along a line not con-
tained by the plane of the conic (see figure 2.21). In the simplest case, when the
conic lies in the x - y plane, it is also very simple to give the equation of such a sur-
face. IrA is a 3x3 matrix then the matrix describing the corresponding surface may
be:

I al, al, 2 0 al,31

ac=[ao I a2'2 0 a 0 0 0'3]

L a3,l a3'2 0 a3,3J
(2.53)

If the plane is not the x - y plane, an affine transformation and 2.21 should be
applied; concrete examples will be given in chapter 4 (see also [Herm89a]). Notice
should be taken of the fact that the matrix Ac is singular; however, its rank is 3 (that
is it contains a 3x3 non-singular submatrix). In fact, it can be shown that in case of
3D, if the matrix of a quadratic surface is singular but its rank is 3, it is either the
matrix of a (generalised) cylinder or that of a cone (there is no difference in a pro-
jective sense between a cylinder and a cone: the cylinder is a cone whose focal point
is ideal). For the proof of this theorem the interested reader should consult for exam-
ple [Ker666].

Using (2.53), a three dimensional surface can be assigned to each planar
conic. Using then (2.44), the image of this surface under the effect of a transforma-
tion can be described. As a next step some characteristic data of the intersection of
the surface and a plane should be calculated; indeed, what a computer graphics sys-
tem is really interested in is not the whole surface but only the planar cut of it. To
use all the formulae of the previous section, the following are needed:

�9 Ifp, q~.lPR 4 are two points in theplane I-I andA is a 4x4 symmetric matrix
representing a quadratic surface, compute the number of intersection points
and the eventual intersection points themselves o f p vq and the (planar section
of) the surface.

The same calculations as the one presented for the two dimensional case can be
adapted to 3D as well. Care should be taken, however, that in this case it is possible
that the intersection is a line. Theorem 2.25 is not valid in/PE 3 any more (the argu-
ments used to prove it were very much bound to the nature of E3); in other words, it
is generally possible that a quadratic surface would contain a whole line (see

51

Z

i
i
i

Figure 2.21.

X

figure 2.21 or, to choose a regular case, the well known saddle surface). But this
situation is equivalent to the fact that pAp = qAq = pAq -- 0, and this can be checked
easily. In particular, if FI is the plane containing the original conic and A is the
matrix of the transformed cylinder, by taking two ideal points of A (1I), the exact
classification of the planar section can be done.

�9 If p,q~___lPR 4 are two points in 1-I and A is a symmetric matrix representing a
quadratic surface, compute the pole of p vq according to the planar section of
the surface.

Similarly to the two dimensional case Ap and Aq represent a (spatial) polar of p and
q respectively. The difference is that the polar is now a plane instead of a line. How-
ever, calculating (Ap)^(Aq)^II, leads to the two dimensional pole on II (see s~c-
tion 2.6.2 for all the necessary formulae).

52

�9 I fp , qC_lPR 4 are two points in I-I, A is a symmetric matrix representing a qua-
dratic surface and, furthermore, sEFI is a point on the planar intersection of
the surface, compute the intersection of the tangent at s and p vq.

Essentially the same formulae can be used as in (2.52). Indeed, the tangential plane
of A is given by As and the intersection of this plane with I-I will give the tangent in
II.

As presented later, these formulae (together with the ones listed in 2.6.2) will
make it possible to generalise all two dimensional results into 3D. Examples for that
will be presented later.

3. Practical Use of Four Dimensional Geometry

3.1. The W-Wraparound Problem

3.1.1. Introduction

Non-affine projective transformations map some affine (that is Euclidean) points
onto ideal ones. This is the difference between non-affine and affine projective
transformations. What will be the visible effect of this difference on the screen?

It is worth concentrating first on the simplest geometric primitive in use in
computer graphics, that is a line segment. It has been shown, in section 2.7.3, that a
projective transformation can be viewed as a two-stage process: first a linear
transformation and secondly the projective division. In figure 3.1, which shows, as
usual, the simpler two dimensional case, the line segment PQ on 17 is transformed
by the linear part of the transformation onto the line segment P'Q' of tIJ and, in a
second step, it is projected back onto the plane 17 by the projective division. How-
ever, as shown in the figure, something interesting occurs: the projection of the line
segment P'Q' is not the line segment P"Q", but the complement of it, that is the
union of the two half-lines determined by P" and Q" respectively.

Y

X

Figure 3.1.

The reason for this is that the line segment P'Q' intersects the w--0 plane.
This means, in projective geometric terms, that the image of the line segment PQ
will contain an ideal point, that is it will not be the line segment P"Q". Figure 3.2
shows this effect for the usual plane-to-plane central projection which was the

54

starting point of the discussion. Finally, figure 3.3 shows a realistic situation with a
schematic view of the synthetic camera model: here again, the line segment PQ is
mapped onto two half-lines, generated by P" and Q" respectively. This last figure
is also interesting because it shows in practice when the "danger" occurs: each line
which intersects the vanishing plane of the projective transformation (which is, in
the case of figure 3.3, the plane parallel to the view plane and containing the view
reference point) will produce this strange result. In practical terms: if the model to
be visualised is placed "around" the view reference point (eg an architectural CAD
program which allows the view reference point to be put in the middle of a room),
this situation will occur.

�9 "... C

Figure 3.2.

The two half-lines generated by the projections have been given the name
external line segments by Blinn and Newell in [Blin78]; this refers to the fact that
the image of the line segment is, in projective terms, the set of projective points con-
mining the two half-lines plus the ideal point of the line P"vQ" which "glues" the
two half-lines together. Abi-Ezzi and Wozny have used the notation of
W-wraparound in their recent paper ([Abie90]), a notation which can be considered
as being more intuitive than the (although more widespread) notion of external lines.
Both notations will be used in this thesis.

As the previous analysis on the appearance of external lines shows, the
W-wraparound is a completely normal and well describable effect of projective
geometry. It is therefore disappointing that this problem has not been widely
addressed by the computer graphics textbooks. In fact, none of the traditional works
on computer graphics ([Newm79], [Fole84], [Salm87] or even the brand new
[Watt89]) mention the existence of the problem at all. It is therefore not surprising
that a number of commercially available 3D graphics systems fail to handle the
problem correctly; at the time of writing, some of these systems would just draw the
line segment P"Q" as the image of PQ. The description given above explains why

55

P

I ~"""""~'-.......... elce point

" ~"~"""""""""""" ""'i'......

~ lane

Figure 3.3.

this may happen without being noticed: as long as a very traditional synthetic cam-
era model is used, and the object to be visualised tends to be more or less within the
view volume (that is far away from the view reference point and hence from the
vanishing plane) no problem will occur; the system will work perfectly.

Precisely handling the W-wraparound in a 3D system implementation is how-
ever a necessity. As mentioned before, if the system is used for the visualisation of
objects which are very "close" to the observer, the wraparound might occur (see
figure 3.3 again). The visual effect on the screen will be the appearance of, at least
at a first glance, inexplicable line segments on the screen. Knowing the projective
geometrical background, one may realise that these line segments are the "comple-
mentary" ones; the effect on the screen is, however, very disturbing. If, by chance,
some of the objects to be visualised happen to have some points on the vanishing
plane itself, the objects will seem to "b low-up" on the screen (or the program will
even fail). This is also a method to check whether an actual implementation is han-
dling the problem properly: one has to put simple objects into the 3D scene and
make a program which "moves" the view reference point of the projection among
the objects. In a number of commercial PHIGS implementations, for example, such
a simple test program will produce irregular lines on the screen. This also means,
that a proper algorithm to handle the W-wraparound is necessary for a proper
implementation of the 3D output pipeline.

Just as the references to the W-wraparounds are missing from the usual text-
books, not too much has been published about the means to manage it properly. In
fact, the paper of J.F. Blinn and M.E. Newell, published 1978 ([Blinn78]) was about
the only known method for a fairly long time. In this paper, Blinn and Newell

56

reformulate the clipping against the view volume for homogeneous coordinates,
making use of some results published even earlier in [Suth74]. The problem is that
the method presented in [Blinn78] had been (admittedly) developed with exclusively
the synthetic camera model in mind and failed to be usable for a general case. How-
ever, for a long time, this model was practically the only one in use, and therefore
this approach fulfilled the requirements and there seemed to be no need for any
further development.

The appearance of the ISO 3D standards (or standard proposals), that is first
GKS-3D ([ISO88]) and then PHIGS and its derivatives ([ISO89], [ISO88b],
[ISO89a]) together with the first development projects aiming at the implementation
of these specifications gave a new impulse to the solution of these problems. It was
in 1987 that the so-called W-clip was first published; it was in use in two indepen-
dent and parallel developments in Europe. One was the implementation of the full
GKS-3D standard by the firm Insotec Consult GmbH in Munich under the name of
GKSI (this is the implementation in which the author participated, see also
[Herin87] t) while the other one was the so-called K R T 3 project, which aimed at a
PHIGS implementation at the University of Manchester ([Howa87], [Hubb87]).
Both of them came to the same results, although in case of GKSI the far-reaching
consequences of the basic approach in use were much more exploited than in case of
the K R T 3 project (more examples of that will be presented later in this chapter).
However, strictly for the problem of external lines, the two approaches were essen-
tially the same. (As far as one can draw consequences out of the reference list of
other publications, the idea has also been reused since then by other PHIGS and
PHIGS PLUS implementations, see for example [OBar89] or [Abie90]). It was in
1989 that Krammer published (in [Kram89]) an alternative approach, called the
UW-clip (see later); presumably this method had been used for a PHIGS implemen-
tation called IXPHIGS and realised at the Computer and Automation Institute of
Budapest, described also in an earlier paper ([G6r688]).

3.1.2. The W-Clip

It is difficult to understand why the W-clip method was published in 1987 only;
once the underlying projective geometry principles of the transformation process are
really understood, the method seems to be just trivial. The only explanation seems to
be the lack of projective geometry in the usual computer graphics curriculum, that is
most of the implementors were not aware of the existence of the theory, let alone the
details of it.

Figure 3.1 gives a clue of what can be done in 2D. The reason for the appear-
ance of external lines is the fact that the image of the line segment PQ includes an
ideal point as well, which disappears when displaying the affine points. However,
this situation can be described in fully Euclidean terms as well: it is equivalent to the

~The name of this implementation has been recently changed to "DIGI-GKS" as a result of the
fact that the firm DIGIDATA mbH has acquired the program, marketing it primarily in Germany.

57

fact that the line segment P'Q' intersects (in tlJ) the w--0 plane. In fact, these are the
points in JR 3 which represent (in homogeneous form) the ideal points of /PE 2. The
possible solution comes as a result of this observation: before performing the projec-
tive division, a traditional clip has to be applied to the line segment P'Q' to get rid
of the potentially dangerous points. Clipping (that is cutting the invisible part of a
geometric primitive or) is a very well described algorithm in computer graphics for
simple clipping areas like half-planes or half-spaces; in other words, performing
this clip means making use of a number of already existing algorithms (listed in
numerous textbooks or tutorials like [Mudu86]). To be on the safe side, the effective
clipping should be made for the half-planes w =-e and w,=-~, where e is a small posi-
tive real number.

The three dimensional case is similar, tlJ is now a three dimensional
sub-space (that is a hyperspace) of JR4; otherwise the analogy to the 2D case is
complete. Of course, one should check whether the clipping algorithms in use to
perform the w~,e as well as the w<-e clip are applicable in 4D as well; however, all
such algorithms use as an elementary calculation step the fact that a line segment
PQ can be described by the formula

tP + (1 - t)Q 0 ,: t ,: 1 (3.1)

and that a plane in 3D (or a line in 2D) can be described in Cartesian coordinates by
the equation

{x :xrn + a -- 0} (3.2)

where n is the normal vector of the plane/line and ot is essentially the distance of the
plane/line measured from the origin. Using these formulae, the (eventual) intersec-
tion point of the line segment and a plane can be calculated easily and hence the
clipping problem becomes a programming problem rather than an algorithmic one
(the program should keep lists of points which are "outside" or "inside" etc).

Formulae in 4D are not really different. Formula (3.1) still describes a line
segment in ~4 and a hyperspace can be described by formula (3.2), with the param-
eters having the same meaning as in 3D or 2D. Consequently, all the traditional clip-
ping algorithms can be adapted without additional difficulties for the four dimen-
sional space as well.

The above process has been given the name W-clip. The W-clip is definable
for all graphics primitives and not for line segments only, in spite of the fact that
these have been used to clarify the way the whole approach can be introduced. The
same clipping can be done (and, in fact, should be done) for polygons or for more
complicated geometric primitives, although most of the algorithms use, in practice,
line clipping algorithms internally (for example to clip on the edges to determine the
clipped part of the polygon).

It should be clear by now that the real clue to the usability of the W-clip is the
fact that a projective transformation can be viewed as a two-stage process: first the
linear part has to be performed and then the projective division. Nothing prevents

58

the implementor of the transformation from inserting something between these two
steps and this is exactly what is done in the W-clip. Also, by using this intermediate
stage, a number of calculations can be performed in the usual Euclidean environ-
ment; the only additional price to be paid is that four dimensional rather than three
dimensional geometry should be used t.

The W-clip, as described above, is a two-stage clip: a separate clip has to be
performed against the w>e and the w<-e half-spaces. As clipping is a relatively
time-consuming operation, it is of course an important question to see whether one
of the two clips can be avoided to reduce the complexity of the W-clip.

First of all, no W-clip is necessary in the case of an affine viewing (that is a
parallel projection). This fact is trivially true from the definition of an affine
transformation; furthermore, by inspecting the last row of the transformation matrix
it can be determined whether the viewing in use is affine or not.

If the implementation is designed for the GKS-3D pipeline then, conceptu-
ally, there is a clip called the normalisation clip before viewing. This clip is essen-
tially a traditional clip against a cube which is enclosed in the [0,1] 3 c u b e of a? 3.
The implementor might choose to perform this clip prior to viewing (although, by
taking the normalisation clip to be a special case of the modelling clip, this step can
be postponed after the viewing as well, see chapter 4). The net result is that all
points have as Cartesian (and hence homogeneous) coordinates non-negative
values. It is trivial, therefore, that the following statement is valid:

Theorem 3.1. If T=(Ti, j)ay=l is the view matrix and all points to be
transformed have non-negative coordinates only (eg in case of a
GKS-3D implementation performing the normalisation clip prior to
viewing) and the following relations are true:

T4, 4 > 0 and T4, j > 0 (1 < j < 3) or

T4, 4 < 0 a n d T4,] < 0 (1 < j < 3) (3.3)

then only one half of the W-clip is necessary (w>e for the first case and
w<-e for the second one) t.

Clearly, the conditions ensure that all the points in qJ which are of interest will have
a w >0 (resp. w <0) coordinate value in ~4. �9

A much more important and more interesting optimisation case is as follows.
In both basic 3D standards as well as in most 3D systems in general, viewing itself
is followed by yet another clipping step, usually termed "workstation clip". Its

tEven this fact can be eased: what happens is that most of the algorithms which should be per-
formed are defined for primitives within Itl, that is a three dimensional subspace o f ~ ' , where the
three dimensional geometry is locally still valid.
SCare should be taken, however, when using this optimisation: in GKS-3D, the user has the op-
tion of switching the normalisation clip off, which means that the first premise of 3.1 is not valid
any more.

59

~W

workstation clipping
:' cube

Y

�9 " i ' : j
,�9 f

inverse image

Figure 3.4.

purpose is to confine the output to one specific area of the visible screen by specify-
ing a "regular" cube (that is a cube with sides parallel to the main axes). This cube
is usually defined by giving its two diagonally opposite vertices (and, in fact, is the
intersection of the so-called workstation window and the view viewport). This cube
will be called the workstation clipping cube in the following discussion. The idea is
to project the eight vertices of this cube back onto tlJ by the inverse mapping of the
projective division (see figure 3.4; of course, being the analogous case for 2D, there
are only four vertices in the figure instead of the eight ones for 3D) and to see
whether all inverse images are on the same side of the w =0 hyperspace or not.
Clearly, if they are, then the convex body determined in tlJ (which is a three dimen-
sional subspace of ~4) will lie completely on the same side of w =-0 and, further-
more, this convex body will be the inverse image of the workstation clipping cube.
This means that the other side of w--0 can be disregarded; any primitive clipped to it
would be cut in a later step by the workstation clip anyway. One must be cautious,
however: in some cases it might happen that the inverse image of one of the vertices
is not on tlJ (the projecting line is parallel to ttJ or, in other words, the inverse image
is an ideal point of the hyperspace ttr). If this is the case, this particular optimisation
step cannot be used.

The question now becomes how to describe the inverse of the projective divi-
sion. Here again, the two dimensional analogy might help. First, a vector which is

60

, W

: Y

Figure 3.5.

perpendicular to tlJ is necessary. In the 3D case, a possibility is to take three
non-coUinear (Euclidean) points on tlJ (these can be found by transforming three
non-collinear points of H by the projective transformation in use); these points are
denoted by p, q and r. Clearly

n = ~ ' - r-')x('~- r -~) (3.4)

will be perpendicular to tp.

If the point u = (u l , u 2 , 1) T is on the plane H, the points on the projecting ray
(in fact, the homogeneous coordinates) can be described by

tu = (tu 1, tu 2, t) t~_~ (3.5)

Finding the intersection u' of this ray with tlJ means finding a t~.~ where:

tuTn = rTn (3.6)

which gives the inverse of the projective division.

The only problem when generalising this procedure for 4D is to find an analo-
gous formula for (3.4). The main point in using (3.4) is that the outer product has the
property of being perpendicular to both of its multiplicands. This is what has to be
generalised for higher dimensions.

In the case of 4D not three but four points on tp will be necessary which are

61

of a general position, that is no three of them are collinear. If these points are
denoted by p, q, r and s, it is necessary to find a vector which is perpendicular to all
three vectors ~ " - r-'), (~ '- r--r ~) and ('~-r-'). In the 3D case, the outer product of two
vectors a ,b~lR 3 can be calculated by:

axb = det
al a2 a3
bl be b3
el e2 e3

(3.7)

It is a trivial algebraic calculation to show that if a,b,c~_~ 4 and the outer (or vector)
product of these vectors is defined by:

a x b x c -- det

al a2 a3 a4
bl b2 b3 b4
c1 c2 c3 c4
el e2 e3 e4

(3.8)

then the resulting vector will be perpendicular to a, b and c. Therefore, by the sub-
stitution of formula (3.8) into (3.4), the inverse of the projective division can be cal-
culated easily. It has also to be stressed, that this calculation only requires to be per-
formed once for a given transformation and workstation clipping cube, and it is not
dependent on the output primitive being treated.

It is interesting and deserves a detour to examine how useful this optimisation
really is. In other words, it is valid to ask how frequently wilt formula (3.6) lead to
positive and practical results for the workstation clipping cube.

The value of rrn can be considered as being positive; if this were not the
case, -n could be taken instead (the case when rrn =0 has been deliberately.disre-
garded as a very special case). This means, that the test which has to be performed
can also be formulated as follows: is it true that for all vertices ui of the workstation
clipping cube the values of

uiTn (3.9)

are of equal sign? In fact, in (3.6) only the sign and not the exact value of t is really
of interest in deciding whether to use both halves of the W-clip or not.

In the usual Euclidean environment (both in fl~3 and JR 4) formula (3.9) is
equivalent to the question whether all ui vertices are in the same half-space deter-
mined by the hyperspace W', where W' is the plane/hyperspace in ~3/~4 which
crosses the origin and whose normal vector is parallel to n (see figure 3.6). As all
vertices ui are points of 17 as well, this can be reformulated by saying that (3.9) is
equivalent to the question whether all ui vertices are in the same half-space of I-I
determined by HAW'. In other words, the following statement has been proven:

62

Figure 3.6.

Theorem 3.2. The W-clip optimisation based on the inverse projection
of the workstation clipping cube leads to reducing the number of clip-
ping steps if and only if the cube is not intersected by the plane 1-I^tI J't.

But what is exactly H^tlJ'? Looking at figure 3.6 it is clear that if T is the transfor-
mation in use then:

F i a t ' = T (~ (3.10)

that is, this plane is the image of the Meal plane. Thus, theorem 3.2 says that the
optimisation step will lead to a positive result if and only if the image of the ideal
plane does not intersect the workstation clipping cube.

Let have a look at the traditional synthetic camera model. If the front and back
clipping planes of the view frustrum are denoted by Q1 and f~2, and the vanishing
plane of the transformation T is O (remember that this plane is parallel to ~1 and ff~2
and crosses the view reference point), then the planes f~l, f~2, O and//form a bunch
of planes which have as a common intersection line an ideal line (the first three
planes are indeed parallel). Furthermore, the domain cutting property applied to
these planes says that:

tThis also means that an alternative way of performing the optlmisation would be to check this
fact directly; however, the necessary formulae involved would be of the same complexity.

63

(~']1~"~20~) > 0 (3.11)

Consequently:

(T (f] I) T (f ~ 2) T (O) T (g)) > 0 (3.12)

T(QI) and T(t22) will be the two parallel planes with z- -max and z--min for the
workstation clipping cube, T(O) will be (by definition) the ideal plane and, finally,
T(//) is the plane which is used in the formulation of theorem 3.2. Furthermore, the
domain cutting property (and formula (3.12)) says that T(//) does not intersect the
workstation clipping cube. In other words the following statement has been proven:

Theorem 3.3. If T is the transformation corresponding to the synthetic
camera model, the W-clip optimisation based on the inverse image of
the workstation clipping cube will enable the reduction of the number
of clipping steps.

3.1.3. The UW-Clip

The UW-clip, introduced by Krammer in [Kram89] uses a completely different
approach for handling the W-wraparound problem. His aim is to find an appropriate
clipping area in t~ 3 which can be used before the effective viewing to remove poten-
tially dangerous points from the output primitives. This approach will be presented
here with slightly modified arguments for its description.

The basic idea is very close to the one used in proving theorem 3.3. The van-
ishing plane of the transformation T (denoted again by O) generates a bunch of
planes in/PE 3: the set of all planes parallel to O plus H itself. All these planes have a
common intersecting line (which, belonging also to tr, is an ideal line). The transfor-
mation T maps this bunch of planes onto a bunch of planes again; this latter consists
of parallel planes (in a Euclidean sense). Indeed, as the image of O is the ideal
plane, the intersection of the images is an ideal line, which is equivalent to the fact
that the planes are parallel.

Figure 3.7 shows the analogous situation in 2D using lines instead of planes. It
is also straightforward to find the (Euclidean) equation for all planes in the bunch of
image planes: the images of the points [(1,0,0,0)] T, [(0,1,0,0)] r and [(0,0,1,0)] T
can be used to describe the homogeneous coordinates of ~'=T(g) (see for-
mula (2.21)), and these homogeneous coordinates result in the series of equations of
the form

ax + by + cz + ~ = 0 (3.13)

where ct serves to differentiate among the different elements of the bunch of planes.

The planes U' and V' are chosen from this bunch so that the stripe U'V' con-
tains the workstation clipping cube (see again figure 3.7). These planes, being ele-
ments of the bunch described by (3.13), can be transformed by T -1 onto two planes
U and V which are parallel to O. The planes U and V determine a conic sector in

64

. y " i

, . 0 0
. - ' " ' ' H

.,,�9

" ~ V

X

T

workstation clipping cube
_ "'".......

y --.. O'
"- ~

Figure 3.7.

LPE 3. As far as the affine points are concerned, one of the two sectors is the stripe
defined by U and V and the other is its complement.

Conic sectors are mapped onto conic sectors; therefore either the UV stripe or
its complement is mapped by T onto the stripe U'V'. Using essentially the same
arguments as for theorem 3.3 the following can be proven:

Theorem 3.4. If n' does not intersect the workstation clipping cube, the
image of the stripe UV will be U'V', its complement otherwise. Addi-
tionally, if the first situation is encountered (that is U' does not intersect
the workstation clipping cube), it is also true that O does not intersect
the stripe UV. On the other hand, if/T does intersect the U'V' stripe, O
will be part of the stripe UV.

Suppose that U' does not intersect the workstation clipping cube (as in figure 3.7). If
f2' is an arbitrary line which is parallel with U' and V' and, furthermore, it intersects
the workstation clipping cube, the following holds:

(B'~'U'V') < 0 (3.14)

Consequently,

(n~UV) < 0 (3.15)

which is possible if and only if Q runs within the strip UV. As far as the second
statement is concerned, ifH' is disjoint from the stripe U'V', then

(O'B'U'V') > 0 (3.16)

(O' is the ideal plane), that is

(o / / u v) > o (3.17)

which is possible if and only if the plane O does not intersect the strip UV. �9

65

The UW-clip consists therefore in determining the planes U and V and in per-
forming a clip in ~3, prior to the transformation itself, against either the stripe UV
or against the complement of it. Which of the two possibilities is to be chosen is
decided by theorem 3.4. This algorithm is indeed correct; if, say, the image of the
UV stripe is the U'V' stripe, then all affine points in this stripe will be mapped onto
affine points again (O being the collection of the points which are mapped onto ideal
onest).

3.1.4. Comparison of the W-Clip and the UW-Clip

Mathematically speaking (that is from a mathematician's point of view) the
UW-clip is much more elegant. Although no mathematician can ever define prop-
erly what the "elegance" or the "beauty" of a mathematical theorem, proof or con-
struction really means, all of them have an indescribable feeling for it; the fact that
the UW-clip makes use of a clean projective geometrical construction only instead
of a mixture of projective and Euclidean geometry (as the case for the W-dip)
makes it more conform to a traditional mathematical approach. However, program-
mers are more concerned about efficiency and other practical problems and there-
fore such an argument is less significant in this case.

It is difficult to give an exact algorithmic comparison of the two methods.
They seem to be of similar algorithmic complexity and it is therefore the actual
computing environment which might influence the final choice. As stated previ-
ously, both algorithms have been implemented in the course of independent
development projects, resulting in competing products. There has been no opportun-
ity to perform any tests to compare them in an objective way.

The UW-clip has the undeniable advantage of performing a clip prior to the
transformation itself and, in consequence, eventually reducing the amount of
matrix-vector multiplication to be done. For a fully software-based implemen,~ation
this fact may have great importance, the matrix-vector multiplication being a com-
putationally demanding step. However, the clips themselves are generally more
complex than in case of the W-clip: while in the case of a UW-clip two planes in
~3 are to be used, the position of which may be arbitrary in space, for the W-clip
the planes involved (w--e and w---e) are very simple to handle. This also means that
the latter is much easier to implement both in software and eventually in special
hardware. As an example, a simplified version of the W-clip has been implemented
by the author on special graphics hardware based on dataflow techniques
([Hage90]); as the hardware used had a very simple instruction set, it would not
have been possible to implement a full UW-clip on it, due to the lack of necessary
instructions t. Also, the real value of avoiding a larger number of matrix-vector

tThe graphics machine described in [Hage90] uses 3D triangles as basic primitives to approxi-
mate 3D surfaces. Due to the lack of a division instruction, the triangles could not be clipped; in-
stead, all those triangles which had a change in sign for the w values of their vertices were just
disregarded in the rendering process.

66

multiplications depends on the actual environment: it is quite frequent nowadays to
have special hardware or firmware to perform this operation (see again [Hage90])
which makes it therefore relatively "cheap", so that its simplicity might become a
decisive argument in favour of the W-clip.

The UW-clip depends quite heavily on the existence of a workstation clip-
ping cube whereas in case of the W-clip this is just the source of a possible optimi-
sation. Credit should be given to the fact that practically all 3D systems define such
a cube somewhere in the pipeline, which makes the UW-clip also fairly general.

Probably the greatest advantage of the W--clip is that it has created interest in
the possible advantages of using the four dimensional space for the purposes of
computer graphics and this has resulted in a series of new approaches. A number of
these (namely the implementation of cell array, new pattern filling and stroke text
generation algorithms) have also become an integral part of the commercial
GKS-3D implementation GKSI/DIGI-GKS mentioned before, while others have
been tried out in experimental cases only; however, all of them make use of the fact
that the clipping step (which may destroy a number of regular features of the output
primitives) is performed relatively late in the pipeline. This is what will be presented
in what follows.

3.2. Linear Primitives in IR 4

3.2.1. Cell Array

One of the output primitives which is a source of many implementation problems for
graphics standards is the cell array. The reason for the difficulties is that in its case
speed is of an overall importance; if not implemented efficiently the primitive be-
comes virtually unusable. While this statement is of course true for all primitives,
for cell arrays one has to deal with large (in the range of hundreds times hundreds)
arrays of coloured cells; in other words, even a slight change for the worse or for the
better in the implementation algorithms might sum to a very significant change
when using the primitive in practice.

The idea of a cell array is very simple. It is essentially the general form of a
pixel image, that is of an image consisting of a series of individual cells, each of
them being assigned an appropriate colour. It is one of the rare output primitives
which have been added to all the ISO graphics standards to include raster-like pic-
tures. It is, at least theoretically, a potentially very powerful primitive: for example,
it allows the user of the graphics package to include digitised pictures into the output
stream together with the geometric primitives. However, it is exactly this feature
which makes it difficult to implement: the number of pixels might be huge, so that
even if the primitive can be rendered by a series of simple individual steps, the large
number of such steps may required significant amounts of processing time.

Acell array is defined in the coordinate space in use prior to any transforma-
tion (that is in world coordinate space in GKS, modelling coordinate space in
PHIGS) by determining the corners of a rectangular array, traditionally denoted by

67

Q

P R

X

Figure 3.8.

P, Q and R t. The edges of the parallelogram are then divided by equal steps into a
number of sub-parallelograms where the number of divisions has to be specified by
the user. The result is a regular grid, as shown in figure 3.8. Finally, each
sub-parallelogram is assigned a colour. To ensure compatibility with the remaining
output primitives, a cell array is subject to all the transformations defined in the out-
put pipeline; that is the grid shown in figure 3.8 can be distorted before being
displayed on the screen.

As already mentioned, the difficulty is that the number of subdivisions can be
very high which results in a very large number of internal sub-parallelograms. Con-
ceptually, each of these sub-parallelograms has to be transformed individually and
displayed on the screen as some kind of small polygon to be filled by a given colour.

---, ...In a 3D system, the points P, Q and R are, of course, points in ~3. The vectors
R - P and Q - P determine a plane in ~3; the cell array is (conceptually) a pixel
image on this plane. In the course of the output pipeline, this parallelogram in space
is transformed by the viewing transformation in use to result in distorted pictures, as
for example the one shown in figure 3.9.

The distortions shown in figure 3.9 are the real source of the algorithmic
difficulties. In a 2D system, the maximum possible distortion produced by the
transformations is the creation of parallelograms instead of rectangles: the

t ln the case of GKS/PHIGS, only a rectangular array is allowed, whereas in CGI ([ISO88a]) a
general parallelogram can also be defined.

68

a ~

~ R ' x

Figure 3.9.

transformations used in such a case are always affine, that is parallelograms will be
transformed into parallelograms (the edges, which have an ideal intersection point
on the original image, will still have ideal intersections after the transformation, that
is the image must be a parallelogram). Furthermore, the equal subdivision of the
edges will still remain an equal subdivision afterwards (affine transformations main-
tain the division ratio!). Consequently, an implementation may refrain from
transforming all internal sub-parallelograms: it is perfectly feasible to transform the
points P, Q and R only and apply the division procedure only afterwards.

All of these arguments are far from true in the case of a non-affine transfor-
mation. The image of the parallelogram may become a general quadrilateral and the
internal subdivision will also be distorted. In other words, it is not possible to
transform just the points P, Q and R; these data do not contain enough information
any more to reconstruct the image of the original parallelogram after the transforma-
tion.

What can be done? The usual approach is to say that the implementation is
simply forced to construct the appropriate parallelogram in space prior to the
transformation: this is the only way to achieve the projective distortions like that in
figure 3.9. This means, in practice, that this primitive becomes too slow to use. In
spite of this, almost all implementations follow this approach. Fortunately, there are
ways to overcome this problem, even several. One of them will presented in what
follows (and has originally been presented in [Herm87]), while another will be
presented in chapter 5 (based on results originally published in [Herm89]).

The first solution is based on the same concepts as the W-clip and is illus-
trated (again in 2D) in figure 3.10. The idea is as follows. If the transformation in

use is denoted by T, its linear part (that is the first step in performing the

69

W

Figure 3,10.

transformation) is a linear transformation in ~4 (~3 on figure 3.10). It can also be
considered as being an affine transformation which transforms the hyperspace H
onto W. This affine transformation maps the points P, Q and R onto the points P', Q'
and R'. Furthermore, being affine, it will also automatically map the parallelogram
determined by P, Q and R onto the parallelogram defined by P', Q' and R' (see the
previous considerations). In other words, only the projective division is responsible
for the distortion of the final image.

The way of handling a cell array is therefore based on the idea of performing
the subdivision of the hyperspace tlJ after having performed the matrix-vector mul-
tiplications on the points P, Q and R but before the projective division. Based on the
nature of projective transformations, the result will be the same.

Performing the calculations in 4D does not create any difficulties. To get the
internal subdivision points the (4 dimensional) vector equations must be used:

-P + i dist(PR) (-if-P--') (1 <i <n-1) (3.18)
n

for the internal subdivision point on the edge PR and

-~ + j dist(Pa)j(-~ _ -~) (1 ,~ j < m -1) (3.19)
m

70

on the other side. n and m are the number of internal subdivisions. The only "four
dimensional" feature in these formulae is how to calculate the distance of two
points, however

dist(PR) = (Pi - R i) 2 (3.20)

is valid in 4D as well.

The resulting sub-parallelograms are then handled separately, at least logi-
cally speaking (in programming practice, one can reduce the number of divisions by
making use of the shared points). Before performing the projective division, that is
to get back onto 17, the W-clip has to be performed for each individual quadrilateral
to avoid the appearance of ideal points in the results. Some additional techniques are
available to ease this step as well: if, for example, all vertices of the full parallelo-
gram are on one side of the w--0 plane, then no W-clip is necessary at all. Indeed
the parallelogram is a convex set of~4; that is if all four vertices are in either w >0
or in w <0, the image of the whole parallelogram is also automatically disjoint from
ideal points. If this pre-test fails, the test can still be done for each individual
sub-parallelogram again.

Clearly, this approach is significantly faster than the "straightforward"
method: no matrix-vector multiplications have to be done on the internal points. Its
importance lies also in the fact that it proves the usability of a general approach: by
making use of the two-stage characteristics of a projective transformation, a number
of algorithms can be performed in 4D rather than in 3D without altering the result
but with a significant gain in speed. Some of the problems are very similar to the cell
array whilst some of them need additional considerations.

3.2.2. Pattern Filling

In case of pattern filling of a polygon, a rectangular pattern is defined in very much
the same way as a cell array with the further complication that the pattern is defined
on the plane of the polygon. This generated pattern is then extruded through the
polygon itself. The result is what is called a polygon filled with a pattern interior
style (for further details of the specification, the reader should refer to the relevant
and already cited ISO documents). Pattern filling is similar to cell array, as far as
the difficulties related to projective transformations are concerned.

The problem is similar: the pattern can be distorted by the projective transformation,
and therefore, to achieve a true three dimensional effect, the pattern filling itself
cannot be performed simply after the full projective transformation. However, the
pattern can be reconstructed, just like the case of a cell array, in four dimensional
space, using formulae (3.18) and (3.19) respectively. The difference is that the
indices i and j in these formulae may run (conceptually) from - ~ to ~. Hence, it is
now a natural idea to perform the pattern filling process using 4D data instead of 3D
to try to improve the traditional approach.

71

............. T'Q" i ..

P ; ~R

Figure 3.11.

R I . .

. . .? ~: .~ ..

.............. :: ". -.. i'~ :~.:.'"'Q

Figure 3.12.

Care should be taken, however, when generalising the procedure of pattern
filling; the question is whether the pattern filling itself can be done or not in 4D. In
other words, do the traditional approaches to perform pattern filling apply in the four
dimensional case? If yes, is it worthwhile to do it?

One of the usual algorithms to perform pattern filling is by using yet another

72

(temporary) transformation, which is a coordinate transformation (of Cartesian coor-
dinates). A local coordinate system is chosen, which has as its main axes the two
main edges of the pattern parallelogram (P'Q' and P'R' on figure 3.12) and which
would therefore transform the problem back into a regular situation shown in 3.11.

How this transformation has to be chosen is a standard procedure in linear
algebra. If a = Q - P and b -- R - P, then let the matrix M be as follows:

1

a2 b2 0

M = a3 b3 1 (3.21)

a 4 b 4 0

Clearly, Mel=a, Me2=b, Mea=e3 and, finally, Me4=e4. Consequently, M -1 will be
the necessary coordinate transformation. Once this transformation has been per-
formed, the pattern filling itself (ie clipping the sub-parallelograms against the
polygon etc) becomes a fairly "classical" procedure to be performed, based on
well-documented algorithms. The resulting clipped quadrilaterals are transformed
again by M.

The necessity of using this additional transformation is, however, not very
attractive; it is therefore worth examining whether it eventually spoils the advan-
tages of the whole 4D approach.

To answer this question the necessary steps are listed for pattern filling. For
the 4D case they are as follows.

/) The polygon is transformed, using matrix M -1 (M is the matrix of for-
mula (3.21)). The result is a local two dimensional environment, like that in
figure 3.11.

ii) The sub-parallelograms of the defined patterns are clipped against the
(transformed) polygon to generate a series of small polygons.

iii) Each polygon is transformed by M and rendered on the output medium.

When the procedure is performed in 3D, the points generated in step iii) must still be
transformed by the full viewing transformation, that is instead of the three dimen-
sional counterpart of M the transformation TM should be used, where T is the view-
ing transformation. For a 4D version, T has already been (conceptually) applied, so
M alone is needed. Consequently, the algorithmic difference between the 3D and
the 4D version can be described by the fact that the matrix to be used is different: M
is a relatively sparse matrix in 4D and, furthermore, the third and the fourth columns
can be disregarded, whereas no assumption can be made on the form of TM. In the
course of the development of the already mentioned GKSI system, both versions
have been implemented to compare the results. The improvement of the 4D version
was very clear: a speed increase between 25% to 30% (depending on the pattern
size, of course) has been achieved on an Apollo DN3000 Workstation (the measure-
ment data were related to the whole output, including the drawing itself; comparing

73

the quadrilateral calculations only, the result might have been even better).

It has to be stressed that the above described method is not the only one avail-
able to perform pattern filling. By doing calculations in tlJ, the limits in the indices i
and j from formulae (3.18) and (3.19) can be found directly as well. What has to be
examined is whether the whole polygon is in one half-space of the (three dimen-
sional) hyperspace tlJ by making also use of the fact that the polygon and the
corresponding pattern are in the same plane (by definition). These calculations can
be made: the analogous three dimensional calculations can be generalised easily for
4D. Once a finite part of the whole pattern array has been found, pattern filling is
reduced to traditional clipping again: as mentioned before, this problem (which is
usually based on performing a line segment intersection calculation) can be done in
4D as well. The resulting formulae are, however, quite complicated and computa-
tionally demanding; in fact, the result is comparable to the approach based on coor-
dinate transformation.

3.2.3. STROKE Characters

The last problem falling into the same category is the generation of STROKE (or
high precision) characters.

When implementing STROKE characters in a general graphics system, the
characters themselves are usually described internally on some kind of grid, or in-
teger valued Cartesian coordinate system. The exact resolution of this grid is depen-
dent on the environment and is usually hidden from the user of the graphics system.
However, this number exists (it has typically a value around 100). Let us consider
for thc time being that this value is k (both vcrtically and horizontally).

Figure 3.13.

Furthermore, text drawn in stroke precision is defined as a succession of
planar character boxes (all boxes lying on the same plane in space). For the sake of
simplicity, only the situation where these boxes are of the same size is considered.
These two regular grids (the succession of character boxes and the character
description grid) form a larger grid on the whole text extent parallelogram, which
has a resolution of k in the "vertical" direction (as a result of the character descrip-
tion) and a resolution km in the "horizontal" direction, where m is the number of
characters in the text. The grid generated for the string " A H A " is presented in

74

figure 3.13; to avoid confusion, however, a much coarser grid is shown, with a value
of k =8 instead of the order of 100.

The problem is therefore very much the same as in the case of cell array and
pattern filling: the regular grid is distorted by the transformation to achieve the
visual appearance of figure 3.13. The problem being the same, the same solution can
also be applied; in contrast to the case of pattern filling no additional difficulties for
the generation of characters arise. Using formulae (3.18) and (3.19) the whole grid
of figure 3.13 can be reconstructed on the hyperspace tlJ and this grid is subse-
quently used to generate the characters themselves.

3.3. Conics

3.3.1. Introduction

Some of the problems concerning conics have already been presented in an earlier
chapter. Essentially, each conic has to be replaced somewhere along the output pipe-
line by an appropriate polygon or polyline to approximate the complete curve or an
arc of it. The number of points in the approximating polygon or polyline is relatively
large; consequently and for obvious reasons, it is very important to postpone this re-
placement to reduce processing time.

Conics are not linear primitives like cell arrays, patterns or STROKE charac-
ters; in other words the ideas presented concerning these latter primitives cannot be
mechanically reused. However the basic approach, that is to perform some of the
necessary algorithms after the linear part of the view transformation but before the
projective division does work for conics as well; this will be presented in the present
chapter.

What is necessary is to have an affine invariant description for each class of
conics; the linear part of the transformation being an affine transformation of two
hyperplanes of ~74, such a description may provide the necessary tool needed to
postpone the generation of the approximating polygon/polyline into 4D. In general,
the approach will be as follows.

Suppose for each class of conics (that is for ellipses, hyperbolae and parabo-
lae) there exists a set of points C1, C2,... ,Cn, (called the set of characteristic
points of the conic) and a general function ~b so that the following two statements are
true:

O The conic (denoted by C) can be described with the help of the function q~:

C -- { r ,Cn,t) : t~__/C/R } (3.22)

where I is a finite parameter interval of D? (usually [0,2n]). In other words, if
the characteristic points are fixed, ~ is a function which maps the interval I
into ~?n and the image of I is the conic itself.

75

�9 The function q is affine invariant. This means that if T is an affine transforma-
tion, then the following is true:

T (C) = { r . . . , T (C n) , t) : t ~ C ~ } (3.23)

This means that the characteristic points effectively characterise the curve (at least
in the affine sense): by transforming the characteristic points only, the transformed
curve becomes fully describable. It has to be stressed that the choice of the charac-
teristic points as well as the exact formulae describing 9 depend on the class of the
curve: the way to construct ~ will be similar for all three cases but not the resulting
formulae.

If such formulae and possible choices for characteristic points exist, then the
generation of the curve can be postponed to 4D. For each curve the characteristic
points C1,C2,... , C n are transformed by the linear part of the transformation
resulting in the set of characteristic points C ' 1 , C ' 2 , �9 �9 �9 C ' ~ in the hyperspace u2; in
fact, these points generate a two dimensional subplane of ~R 4 (and hence of tt r)
which is the plane of the conic. The approximation of the curve can be done by
choosing a discrete (but arbitrarily dense) subset of the parameter interval I; denot-
ing these parameter values by tl, t2 , . . . , t~, the points t p (C ' I , C ' 2 , . . . , C ' ~ , t i) will
generate the necessary linear approximation of the curve. It is a very essential factor
of the whole procedure that r should be independent of the actualdimension_~in
fact, q will always be a vector equation, involving vectors like C2-C 1 and C3-C 1).
This method of curve generation is very powerful: just as in the case of cell array,
the number of points for which the matrix-vector multiplication is to be performed
can be significantly reduced, without losing the quality of the approximation.

A third, but also very important constraint for d~ should be as follows:

�9 q should be easily invertible. This means that if a point P on the curve is
given, it should be possible to generate the value of x~_./so that:

P = 0 (C 1 , C 2 , . . . , C~,'e) (3.24)

This feature is very important to describe a r c s ; indeed, by giving three points of a
conic arc, applying (3.24) means that the arc can be described as an appropriate
subinterval of I.

The different functions q for the different classes of conics will now be
presented. The formula describing an ellipse is not new; in fact, it has been used pre-
viously in the CGI functional description ([ISO88a]). The corresponding formulae
for parabolae and hyperbolae were however nowhere mentioned in the literature in
their full generality; these had to be constructed based on some special (and already
known) forms of equations to describe these curves. This has originally been pub-
lished in [Hers89].

76

Two other general remarks are of interest. As shown in the next sections, all
functions ~ are of the form:

@(t) = @ l (t) (C k - C1) + d ~ 2 (t) (C l - C1) + C 1 (3.25)

where d~l and (~2 are rational trigonometric functions, depending exclusively on the
parameter t. These rational functions are not very friendly to calculate, so one possi-
ble objection to the general approach described above is that the complexity of these
functions may jeopardise the advantages gained by the four dimensional approach.
However, these functions do not depend on the actual curve; in other words, the
values of these function for a subdivision of the parameter interval can be calculated
in advance, stored in a look-up table and reused at run-time without loss of
efficiency.

Another general remark is that for all classes of curves, as a "by-product" ,
the general form of their matrix will also be generated. This fact does not neces-
sarily have an importance as far as the four dimensional approach is concerned, but
will be important later.

3.3.2. Affine Invariant Formulae

3.3.2.1. Ellipses

The simplest ellipse is a unit circle. There is also a well known parametric equation
to describe the points of the circle, namely:

(cos(t),sin (t)) r (0 < t < 2~) (3.26)

The matrix describing the circle (as a conic) is also very simple, namely

A -- 1 (3.27)

0

The geometric features of the circle should be described in an affine invariant
manner. Looking at figure 3.15 and comparing it with 3.14, one can deduce that the
pole of the X axis is in the ideal point of the Y axis, that is [(0,1,0)] r. Conversely,
the pole of the Y axis is (1,0,0) r, that is the ideal point of the X axis. (See also the
description of the pole-polar relationships in the case of an external point of the
curve in the previous chapter). In other words, the two coordinate axes form a con-
jugate pair of lines, more exactly a conjugate diameter pair (in other words, the radii
CQ and CR form a pair of conjugate radii).

An affine transformation keeps the conjugate diameters (it keeps conjugation
because it is a projective transformation and it keeps the centre because it is affine).
Let T be the transformation which transforms the circle on figure 3.14 into the
ellipse of figure 3.15 by C---,C', Q--,Q' and R--,R'. The result will be an ellipse (the
ideal line does not change) and the lines C'Q' and C'R' will be a pair of conjugate

77

i
I
I

i

I
I

t
I
i

I

' R ',

ff

P

S
11

a

12

Figure 3.14.

ep," ,,"
,* ,.Qt

Figure 3.15.

radii. The matrix of the transformation is also straightforward:
u'=Q'-C' andv'=R'-C',

[ul' vl' Cl' 1
 :lu:v2 7j o

by denoting

(3.28)

This fact is also true conversely: knowing a pair of conjugate diameters of an
ellipse, this conjugate diameter pair will define an affine transformation of the
form (3.28) which will transform the unit circle into the given ellipse. The

78

transformation in (3.28) can be combined with the parametric equation in (3.26) to
produce the parametric equation of the ellipse, that is (by using a vector equation to
simplify the formulae):

d~(t) = cos (t)u' + sin (t)v ' + C' (0 < t < 2rt) (3.29)

This formula is the one which has been adopted by the CGI Standard Proposal
to describe an ellipse. Clearly, formula (3.29) is the kind of parametric equation
described in the introduction; the characteristic set of points consists of the centre
and the endpoints of two conjugate radii.

Knowing the characteristic points, the matrix (3.28) can be described easily.
Furthermore, by applying formula (2.44), the matrix of the ellipse can also be esta-
blished by using

(T -1) rA(T -1) (3.30)

If a curve in space has to be described instead of a planar one, the same
method can be applied; instead of A, one should take Ac, that is:

0 1 0 0
Ac-- 0 0 0 (3.31)

0 0 0

For the three dimensional counterpart of T, an additional vector is also neces-
sary, namely w' = u ' xv ' - C' (that is, the normal of the plane of the curve should be
used for the third difference vector). The transformation T should be such that the
normal of the plane containing the curve should be transformed onto such a normal
vector again; that is the vector (0,0,1) should be transformed to u'• The resulting
matrix (which replaces (3.28) for 3D) is:

Ul t 1:1 r W1 t Gir 1
/

u2' v2' w2' C2'/

Tc-- U3, V3, W3, C3'// (3.32)

lJ 0 0 0

Using A~ and T~, the matrix of a generalised cylinder is described in space,
which describes the ellipse in space; however, the vector equation (3.29) will
automatically remain valid.

79

3.3.2.2. Hyperbolae

The case of the hyperbola is quite similar to that of an ellipse; only the resulting for-
mulae will be a little bit more complicated. The starting point is again a simple hy-
perbola, which is the one described by the equation xZ-y 2 = 1 (figure 3.16).

A parametric equation may also be given for that curve:

(1/cos(t),tan(t)) r (0 < t .~ 2z~) (3.33)

This parametric equation is given for example in [Penn86] without proof. However,
it is not particularly known and it might be interesting to make a small detour to see
how the validity of this equation may be proven. Let M be the projective (and
non-affine) transformation for which the following relations hold (described in the
homogeneous coordinates oflPE z generated by the Cartesian ones):

[(1,0,1)] ---, [(1,0,1)]

[(0,1,1)1 ~ [(1,1,0)1
[(-1,0,1)] --, [(-1,0,1)1 (3.34)

[(0,-1,1)] ---, [(1,-I,0)]

R.

Figure 3.16.

M transforms a unit circle onto the hyperbola of figure 3.16, by transforming
the point R (of figure 3.14) onto the ideal point of the hyperbola asymptote CvH,
and the point S of figure 3.14 onto the ideal point of the other hyperbola asymptote.
These relations might be checked easily by applying the matrix-vector

"' S'"
," n t ,'

G?J' Rt . . '?

multiplication. The image of the circle will be the hyperbola of figure 3.16, The
matrix of M can also be established without too much difficulty:

M -- 1 (3.35)

0

will do. Applying this matrix to the equation (3.26), the result is (3.33) (the singular-
ities correspond to the ideal points of the curve). The matrix of this basic hyperbola
is again very simple, namely: 10!]

A = 0 - 1 (3.36)

0 0

80

Figure 3.17.

Here again, the two main axes form a conjugate diameter pair, just as in the
case of a circle. The significant difference is the exact geometrical description of the
points R and S of figure 3.16. As one can see from the figure, the points E,F,G,H are
the intersection points of the two asymptotes and the tangents of the curve at P and
Q respectively. The asymptotes themselves are also tangential lines; in fact, they are
the two tangents at the two ideal points of the conic. Finally, the points R and S may
be generated as the intersection points of the Y axis and the lines G vH and E vF
respectively.

An affine transformation (in fact, all projective transformations) transforms

81

tangents into tangents. In other words, an arbitrary affine transformation will
transform the configuration of figure 3.16 into a configuration like the one of
figure 3.17; C will be transformed into C', P into P ' etc. The important fact is that
the construction described for R and S uses affine invariant properties only, that is
the image of S will be S' (respectively, R will be transformed into R'). Defining
therefore an affme transformation which transforms figure 3.16 into figure 3.17 by
C---,C', Q---~Q' and R - - , R ' (whose matrix will be given by formula (3.28) again!),
the parametric equation of the hyperbola is:

1
~(t) - - - u ' + tan (t)v ' + C ' (0 < t < 2~t) (3.37)

cos(t)

(where u' and v ' have the same meaning as in case of an ellipse).

Knowing the centre and the points marked by P , Q , R , S in the figure, the
parametric equation of the hyperbola can be reconstructed; in other words, this set
of points might be considered as being the characteristic set of points for a hyper-
bola.

Care should be taken when using (3.37) to render the curve; the points tend to
infinity, that is overflow may occur. However, these overflows correspond to
"infinite points", that is an upper limit using the the largest machine representable
floating point number can be used to avoid run-time problems t.

The three dimensional case can be treated analogously to the two dimensional
one.

3.3.2.3. Parabolae

Again, a simple parabola is taken as a starting point, namely the one described by
the equation x 2 = y (figure 3.18). A parametric equation can also be given for that
c a r v e :

cos (t) 1 + sin (t) (0 < t < 2~) (3.38)
1 - s iC(t) ' 1 - sin (t) J

The singularity corresponds to the ideal point of the curve. The interval for the
parameter t might be changed; in formula (3.38) the approximation will begin at
(1,1), will "go around" through (-1,1) and (0,0). Choosing (for example) the inter-
val -~ /2 < t~ 3~/2 would give a more symmetrical arrangement.

Just as in the case of hyperbolae, the equation is known (and can be found in
[Penn86] again without proof). The validity of it can also be shown with the same

~An alternative and somewhat better known equation for the hyperbola would have been:

q (t) = ch (t) u ' *- sh (t) v ' + C '

using the so called hyperbolic cosine and hyperbolic sine functions. However, in this case the parameter t
is defined on the infinite interval 0 g t ~ +~, which would be computationally unstable.

82

technique as for the hyperbolae: let M be the projective (and non-affine) transfor-
mation for which the following relations hold (described in the homogeneous coor-
dinates of hOE2 generated by the Cartesian ones):

[(1,0,1)] --, [(1,1,1)]

[(0,1,1)] ~ [(0,1,0)]
[(-1,0,1)] --, [(-1,1,1)] (3.39)

[(0,-1,1)] --, [(0,0,1)]

R

C

Figure 3.18.

M transforms a unit circle onto the parabola of figure 3.18, by transforming
the point R (of figure 3.14) onto the ideal point of the parabola. The image of the cir-
cle will be the parabola of figure 3.18. The matrix of M can also be established
without too much difficulty:

M -- (3.40)

will do. Applying this matrix to equation (3.26), the result is (3.38). (the singularity
corresponds to the ideal point of the curve). The matrix of the curve is again very
simple, namely:

A = 0 0 - 2 (3.41)

0 -1 /2

83

The Y axis of the parabola is a diameter; in fact, the centre of the parabola is the
(only) ideal point of the curve. The line P Q is of course not a diameter in this case
(in contrast to ellipses and hyperbolae); it is, however, conjugate to the Y axis (in
figure 3.18, the pole of the Y axis is the intersection point of the ideal line and the X
axis, which is the direction of this latter one; this coincides with the direction of
P v Q) . It is also known that the point R will be the middle point of the line segment
P v Q .

Figure 3.19.

An affine transformation keeps conjugation and keeps also the property of
being the middle point of a line segment (this corresponds to the fact that an affine
transformation keeps the division ratio). This means that transforming the parabola
of figure 3.18 to the one of figure 3.19 would result in the points P ' , Q ' , R ' and C',
where the lines P' vQ' and the axis running through C' (which is the same as the line
C ' v R ') will be conjugate to one another. Furthermore, R' will be the middle point of
the line segment P 'Q ' .

The same methods as before can be therefore a_,ppli_ed. In this ca_.se, h__owever,
the meaning of u' and v' is different; indeed, u '= Q ' - R ' and v ' - - R ' - C ' . Using
these definitions the transformation described in (3.28) will transform the parabola
of figure 3.18 into the parabola of figure 3.19. The characteristic points are there-
fore P ' , R ' , Q ' and C'; the parametric equation is:

cos (t) , 1 + sin (t) v' C' (3.42)
r = 1 - sin (t) u + 1 - sin (t) +

(-~/2 < t -: 3~x/2)

one.
The three dimensional case can be treated analogously to the two dimensional

4. Modelling Clip

4.1. Problem Description

All graphics systems include some form of clipping, that is the specification of an
area on the plane or in space (depending on the dimension of the system) to which
the visible output is confined. In older systems or functional specifications (Core,
GKS, GKS-3D, CGI etc.) this clipping area was defined to be a rectangle or a cube;
furthermore, the vertices were also required to be parallel to the main axes of the
Cartesian coordinate system. In some cases, the user had the option to define more
than one such clipping rectangle or cube (for example in case of GKS-3D one may
define the Normalisation Clipping Volume, the Projection Viewport and the Works-
tation Window) and the actual implementation had the possibility to merge these
volumes as far as practicable.

There is an extensive literature available on how to perform this clip for line
segments, convex and non-convex polygons etc. The usual approach makes use of
the convexity of the clipping body. Primitives are clipped against the half-spaces
describing the volume itself in a pipeline fashion: they are clipped against the first
half-space, the output of this step is clipped against the second one and so on. The
advantage of this approach is that it helps a really parallel implementation by putting
one clipping step into a separate process or processor. This approach goes back to as
far as 1974 ([Suth74]) but there have been no really widespread new approaches
ever since. The reader may find a description of the different methods in most of the
usual and already cited textbooks or tutorials.

The clipping problem itself, though being relatively simple from a mathemati-
cal point of view (at least for simple primitives), plays a very important role in
realising efficient implementations. Indeed, all output primitives have to be clipped
at some point in the output pipeline. This means that even if the clipping step is sim-
ple, an inefficient realisation of it may slow down an otherwise very well imple-
mented graphics system. It is no surprise that clipping against a rectangle was one of
the first graphics functions (apart from the drawing functions themselves, of course)
to be implemented on silicon.

The appearance of PHIGS as a widespread standard proposal has created a
new clipping problem or, to be more exact, has raised the need for a more general
form of clipping. Traditionally, clipping was designed primarily to " c u t " some part
of the image generated for an object when placing it onto the screen (or the plotter)
rather than to cut some part of the object itself in a more arbitrary way. The intro-
duction of arbitrary clipping planes allows a user to select parts of a model for
display. These planes define a more general volume in space (or, in 2D, an area of a
plane, although PHIGS being a 3D standard, the specifications are all for the 3D
case) which serves as a clipping volume and which is independent of the viewing
step. This is known as a modelling clip.

With a modelling clip the user has the possibility of defining an arbitrary
number of half-spaces the intersection of which forms a convex (not necessarily

86

bounded) body; this body is called the modelling clipping volume. All primitives
are trimmed to the interior of this volume and only those parts of the primitives
inside the volume are potentially visible on the screen. Furthermore, when travers-
ing the geometric structures to be rendered on screen, a new current clipping volume
can be created by combining the old clipping volume and a modelling clipping
volume to yield a new current clipping volume. In this case "combining" is defined
as a set-theoretic function (ie intersection, difference, union) applied to the incom-
ing clipping volume and the convex body. Thus, the current clipping body can be a
complicated, non convex and not even connected area in space.

There are basically two problems arising from the modelling clip. First, the
possibility of using set-theoretic combination for the construction of a current clip-
ping volume leads to the use of shielding; shielding is the opposite of clipping in the
sense that the part of a primitive which is not in the clipping volume is to be
accepted. The effect of this is to augment the number of output primitives, making
the efficiency of the whole graphics pipeline even more dependent on the clipping
step itself. Furthermore, it is also a non-trivial programming problem to keep track
of all the combinations of convex bodies which comprise the current clipping
volume as well as their effects on the output primitives.

The difficulties involved in implementing the full modelling clip as described
above were recognised by the ISO/IEC SC21 Working Group working on the
PHIGS proposal. While in some earlier versions of PHIGS (up to 1987) all the 16
set-theoretic combinations were mandatory, this is not the case any more in the
actual version ([ISO89]) where only the intersection is demanded; the choice of sup-
porting all possible combinations is left to the implementor. It must be remarked,
however, that having the full specification in hand/s very useful indeed: a number
of necessary effects cannot be created otherwise. O'Bara and Abi-Ezzi give some
nice examples in [OBar89]. In other words, a really prestigious implementation
should probably choose to implement all of the possible combinations t.

The programming problem described above has been solved elegantly by
O'Bara and Abi-Ezzi by using the so-called CCV-Filters (see [OBar89]). As this
filtering problem does not involve projective geometrical aspects, it is not described
here; the reader is referred to the article itself. The important consequence of this
result is that one can concentrate on the geometric clipping/shielding against convex
bodies only; the CCV-Filters provide a solution for the final modelling clip itself
based on the output of the individual convex body clips (and the way these
CCV-Filters work does not involve geometrical calculations any more).

The other problem concerning modelling clip is as follows. As far as the
effective clipping is concerned, at first glance it does not seem to be particularly
difficult: the fact of having an intersection of half-spaces suggests that clipping may
be performed by a series of clips against half-spaces: the output of one step should

t in fact, very few commercial PHIGS implementations have implemented the modelling clip
even in its simplest version. This also indicates the difficulties involved.

87

be used as an input for the next one. In PHIGS, however, the real problem arises as
a result of the fact that the modelling clip is to be performed after the so called
(composite) modelling transformation, which is a projective transformation (that is,
defined by a 4x4 matrix). Using the notations of PHIGS, the modelling transforma-
tion transforms the Modelling Coordinate System (MC) into the Worm Coordinate
Space (WC).

The data defining a half-space (that is a point and a normal vector) are
defined by the application program in MC. The half-space itself is to be transformed
by the modelling transformation to define an appropriate point-set in WC, and the
modelling clip has to be performed against this set. This is how the process is
described and defined in the PHIGS document. The half-spaces have to be
transformed by a projective and (in general) non-affine transformation, and it is the
use of such transformations which may lead to mathematical problems. Indeed, the
notion of half-space has no meaning any more in projective space; what will be the
image of a half-space? Clearly, the problem of W-wraparound, described earlier
for line segments, arises very seriously in this case as well.

It is a natural idea to think that the whole modelling clip might be performed
in MC rather than in WC; this would avoid problems. Unfortunately, this is not pos-
sible. The reason for this restriction lies in the structure model of PHIGS. In fact, the
current modelling transformation and the current modelling clip volume itself is sub-
ject to eventual changes as a result of structure traversal. And, as stated in PHIGS:

"... when one of these structure elements t is encountered during struc-
ture traversal, each half-space specified is transformed by the current
composite modelling transformation. The resulting clipping volume is
not affected by subsequent transformation encountered during structure
traversal." [ISO89].

That is, if the current transformation is changed during structure traversal, the
transformation used to transform the output primitives and the one having been used
for the (modelling) clipping volume are not the same any more. In other words, if
the clipping were performed in MC, the clipping volume itself should be
transformed from one environment to the other, which would lead to a projective
transformation again.

Clearly, the real source of the problems is the fact that the modelling transfor-
mation is allowed to be a non-affine transformation as well. If it were restricted to
be an affme transformation (that is a combination of rotation, translation, scaling and
shearing), no problem would occur and the modelling clip could be performed on
the " top" of the pipeline prior to any kind of transformation (although, as presented
later, this is not necessarily the optimal solution!) This question had been at the
source of a number of discussions when describing the PHIGS Functional
Specification and has also been misunderstood by a number of authors (for example,

~That is structure elements defining half-spaces.

88

the otherwise very important paper of O'Bara and Abi-Ezzi cited above fails to han-
dle this problem correctly). The reason why the full specification has been finally
adopted was that there are some effects which cannot be rendered properly without
the use of a fully projective transformation: a typical example is when the user
wants to model a projective environment! t In spite of that it remains valid that the
modelling transformation will most probably be an affme transformation instead of a
fully projective one.

There is however a more subtle reason why the use of a fully projective
transformation is advantageous in all cases even if the modelling transformations
themselves were restricted to be affine. If there was a way to perform the modelling
clip properly, that is after a general projective transformation, this would enable the
possibility to merge the modelling transformation with the viewing itself, resulting
therefore in one single transformation in the output pipeline (this will be detailed
later). That is, instead of using two transformations (in other words two times a
vector-matrix multiplication) one would suffice. Additionally, performing clipping
before the transformation would have a number of side-effects. For example, as
mentioned before, clipping (and shielding) has the disagreeable effect of eventually
augmenting the number of points and output primitives. In other cases clipping of
the primitives might not be very simple: for example, if an implementation chooses
to approximate conics after the linear part of the transformation, as described in the
previous chapter, it becomes necessary to perform the clipping after the transforma-
tion (that is after the generation of the approximating polygon). Indeed, clipping of a
conic is not an easy operation. In other words it does make the output pipeline
implementation more effective if the modelling clip is done after the transformation
rather than before (provided of course that the clipping does not become too compli-
cated) even if the modelling transformation itself may be considered as being affine.

With these facts in mind, the modelling clip problem can be described in rela-
tion to the output pipeline in a somewhat more precise and general way (addition-
ally, this formulation may be used for environments which are different from
PHIGS, like PEX [Clif88], [ISO88b]):

�9 A list of half-spaces is defined in the three dimensional Euclidean space,

�9 the half-spaces (or the intersection of the half-spaces) are transformed by a
projective, not necessarily affme transformation to form a clipping volume;

�9 all output primitives should be clipped after a transformation (which is not
necessarily the one used for the transformation of the clipping volume)
against the (transformed) clipping volume.

Figure 4.1 illustrates that there is a real problem to deal with. The figure shows one
possible effect of the W-wraparound problem as far as the image of a half-space (on
the figure a half-plane) is concerned. A line l on the plane lI is transformed onto the

tFor example, the user might want to describe an object as well as the projected image of an ob-
ject, which must be done independently of the viewing itself.

89

W

Y

X

Figure 4.1.

line l' of the plane tlJ. The corresponding half-plane will still be transformed onto a
half-plane of qJ. However, when performing the projective division, the image of l'
will be l" and the image of the half-plane will be a more complicated area on H.
(To avoid confusion, the line 1 is not in figure 4.1). The separating line between the
two areas on H (shown in the figure) is the one which is cut by a plane parallel to tp
and crossing the origin.

As mentioned before, though contained in the different versions of the PHIGS
specification, no actual implementation existed for the modelling clip for a long
time. It was in the paper of Herman and Reviczky ([Herm88]) that the mathematical
and algorithmic problems generated by the modelling clip were identified for the
first time and this article provided also the first known solution t. Another approach
has been proposed one year later by Krammer in his already cited paper [Kram89]
and, finally, the paper of Hfibl and Herman ([Hiibl90]) has provided with additional
details. This last paper may be considered as giving a final mathematical description
of the modelling clip as a whole. What will be presented in this chapter is the mix-
ture of these three papers; the author knows of no other published results on the
mathematics of the modelling clip.

The solution of Krammer is very simple once the underlying projective
geometrical principles are understood. As described in chapter 2, the notion of a
conic sector might be considered as the generalisation of a half-space. A convex

tAlthough, unfortunately, it fails to handle properly the fully general case.

90

body, being the intersection of a certain number of half-spaces, is also the intersec-
tion of a number of conic sectors: indeed, each half-space can be considered as a
conic sector with one of the generating planes being the ideal plane. Consequently,
the image of the convex body is the intersection of all these conic sectors. The
modelling clip can therefore be performed after the transformation by performing a
clip against these conic sectors.

~.....
\

_

t H t

Figure 4.2.

This is probably the cleanest way to describe the modelling clip effect with
the terminology of projective geometry and it gives a clear means to implement the
clipping itself in a graphics system (this has been done in the IXPHIGS implementa-
tion described in [G6r688]). Figure 4.2 shows however the drawbacks of this
approach (in 2D). The lines I and n generate a convex (unbounded) area. Using//,
the two half-planes are to be considered as conic sectors. The transformation T
transforms the ideal line onto hi', which is considered now to be an affine line. l is
mapped onto l' and n is mapped onto n'. The conic sectors are now "real" conic
sectors and not half-spaces; consequently, the intersection of the conic sector I'//'
and n'hi' might generate the two unbounded areas shown in the figure. In other
words, the conic sector approach may augment the number of clips to be considered
and this might slow down the modelling clip substantially (on the figure, the number
of half-space clips becomes 5 instead of the original 2). It is therefore necessary to

91

try to reduce this number whenever possible. Unfortunately, this "duplicating"
effect cannot be avoided when a fully general solution is sought. But, when trying
for example to perform the modelling clip in 4D, some important special cases can
be described when this problem does not occur.

4.2. Solutions in 4D

The background for the 4D solution is the same as used throughout chapter 3: try to
transfer the problem onto the four dimensional Euclidean space. As seen before, this
approach has the advantage of still keeping the Euclidean nature and properties of
all the objects involved.

A special case examined first is when the transformations applied to the
current modelling clipping body and the one transforming the output primitives
themselves are the same. This is the most probable case in practice: the modelling
clipping body is usually used to " c u t " some parts of the primitive to be visualised;
the most natural way of describing this "cutting" volume is to use the same model-
ling transformation.

The method is then as follows:

i) transform all half-spaces by the linear part of the transformation (that is by
the matrix-vector multiplication);

ii) transform all output primitives by the linear part of the transformation;

iii) perform a clip against the images of the half-spaces in a "pipeline" fashion;
this step hasto be done in ~R4;

iv) perform the projective division on the (clipped) output primitives.

The real question is of course how to do steps/) and iii). For that purpose, it suffices
to concentrate on what the image of one single half-space will be and how these
steps may be performed in this case, since the modelling clip body is built up of
such half-spaces. The ideas will be presented with figures showing, as usual, the
two dimensional analogy.

Points lying in one half-space (or half-plane) are characterised by the boun-
dary plane/line. This boundary is usually specified by giving its Euclidean normal n,
pointing toward the selected area, and one point of the boundary itself. Using the
notations of figure 4.3, the boundary will be denoted by l and the half-space (resp.
half-plane) by IIt, n or simply li1 t.

1 being a plane/line in projective sense as well, it has homogeneous coordi-
nates u; furthermore, these homogeneous coordinates determine an Euclidean plane
(resp. line) in] ~ 4 / ~ 3 by using the homogeneous coordinates as a vector parallel to
the normal of this plane. This plane (denoted by Q on the figure, see also
chapter 2.5) also determines a half-space in] ~ 4 / ~ 3 denoted by ~n~. Clearly:

tin fact, ~3 t should be used but because of using the straight model of ~E 2 on all figures it is
better to keep to this notation.

92

~nf~

u

w Y

x

Figure 4.3.

l = FI ^ Q (4.1)

and, furthermore:

Fit = 17 f3 ~ (4.2)

Applying the linear part of the projective transformation, this linear part will
be an affine transformation of J~4 /~ l~ 3 . An affine transformation will turn a
half-space/half-plane into a half-space or a half-plane respectively. As usual H,
which is the straight model of/iDE 3 or hOE2, will be mapped onto qJ; at the same
time, the plane fl will be mapped onto the plane O.

| will still cross the origin. By denoting the image of l by l', the following re-
lations also hold (see figure 4.4; neither t) nor I are shown in the figure to avoid con-
fusion)):

l' -- qJ A O (4.3)

and

tlJ v = tIJ f')/R~o (4.4)

The original goal of the modelling clip is to clip the primitives (which are all
part of II) against the half-space I-It, n. Obviously, l-I t is mapped onto tY t,; further-
more, relations (4.2) and (4.4) mean that it is possible to postpone this clipping. The
primitives can be transformed by the matrix-vector multiplication to result in some
geometric primitives in/R 4 (/R 3 on the figures) and then clip them against/Rno. This
latter step is nothing other than a normal clip using a hyperspace as a boundary; as
described in relation to the W-clip, it does not create any particular complications to

93

?-'.'S..?.S.?..../ ~ x : '

Figure 4.4.

perform this clip in four dimensions.

To perform the above described steps numerically, a vector which is parallel
to the normal vector of O should be found in iR a. There are several ways of doing
this. The approach proposed in [Herin88] was to choose three non-collinear points
on l, plus a point E in 171, transform these points and use the general form of the
outer product (already used in case of the W-clip optimisation) to determine a vec-
tor perpendicular to O. The image of E should then determine the sign of the outer
product. In reaction to this paper, Zachrisen has proposed an alternative and more
elegant way of calculating this vector in [Zach89]. His approach is as follows. Sup-
pose that T is the projective transformation in use, n is the (three dimensional) nor-
mal vector describing I and p is a point of l. The points of IIt," c a n be described as
follows:

3
171,n = { X~---~3 : ~xini + (X > 0 } (4.5)

i=1

where r This also means, however, that in homogeneous coordinates the
vector:

u = [(n 1,n2,n3,~)] (4.6)

will be the homogeneous coordinates of 1 or, in other words, this will be a vector
parallel to the normal vector of g2.

O is the image of Q after the linear transformation T. It is a well-known for-
mula of linear algebra that the image can be characterised by the vector:

94

u' --- (T-1)Tu (4.7)

In other words, (4.7) gives a vector parallel to the normal vector of O.

In the special case described here the modelling clip can be solved without
duplicating the number of necessary clips at the price of performing the clipping
steps themselves in 4D. As seen before, however, all usual (3D) clipping algorithms
can be generalised for 4D as well without any additional complication; although the
calculations must then be performed for a fourth coordinate component as well, tills
is still less than performing yet another clipping step for each element in 3D.

The reason why this approach cannot be extended to a general case is that the
tlJ-s (to use the usual notations) become different if the transformations are
changed. If no statement can be given about the mutual relationships of the transfor-
mation used for the current clipping body and the one used for the primitives them-
selves, it becomes very comp!Acated to describe what the mutual spatial relationships
of the two qJ-s can be.

In practical circumstances however the situation is not so bad. Remember that
the output pipeline of a typical 3D system (like PHIGS) is schematically as follows:

!
Modelling M ~ Modelling |

Transformation ~ I Clip

J Viewing
J Workstation
f Transformation

and, in fact, the transformation which is really in use is T=VM, that is first the
modelling and then the viewing transformation respectively. The real advantage of
combining the modelling clip with a general projective transformation is the fact
that the output pipeline can then be rearranged as follows:

Composite
>[Transformation

T = V ~ ~ Modelling
Clip

Workstation
> Transformation

7>

which means, in practice, that only one matrix-vector multiplication has to be used
instead of two.

The main problem using the four dimensional approach is that in reality the
M-s can change relatively frequently; that is, there might be an M1 used for the
current clipping volume and another M2 for the primitives themselves. In the case
of PHIGS, V can also change (the user may use structure elements, called "set view

95

index" which change the actual view transformation in use). In most of the practical
cases, however, the change of this latter transformation is not really frequent; in
some 3D packages, like for example Dor~ ([Arde87]), it is even confined to a group
of output primitives (more or less the equivalent of a PHIGS structure). One may
therefore suppose that for a large number of objects V is always the same. In other
words, the difference between the transformations TI=VM1 and T2=VM2 is fully
described by the differences between M 1 and M2.

As said before, the specification of PHIGS allows an arbitrary 4x4 matrix for
M, that is an arbitrary projective transformation can be used. It is also true, however,
that in most of the practical cases M will be affine; indeed, the primary use of this
transformation is to move and eventually scale the objects to be visualised. Further-
more, going again beyond pure PHIGS and considering other general 3D systems,
this restriction might just be part of a functional specification. As an example: the
output pipeline of GKS-3D may be regarded as a special case of the one of PHIGS:
the segment and normalisation transformations of GKS-3D are special (and affineI)
modelling transformations and the normalisation clip may be regarded as a special
modelling clip.

Whether a transformation is affine or not can be detected very easily by
inspecting the last row of its matrix. Apart from a multiplicative constant, if affine,
this last row will always take the form of (0,0,0,1). It is however clear that for such
a transformation M:

M(1-I) = FI (4.8)

so that the last coordinate value of any point of M(1-I) is still 1. Taking the two
modelling transformations M1 and M2, the following also holds:

W = VMI([I) = VM2(['[) (4.9)

In other words, the use of a four dimensional clip for the modelling clip is still valid
in this case. Clearly, this means that the four dimensional clip can be applied for
most of the practical cases, even if it fails to cover the fully general one.

4.3. A General Solution

In order to see exactly what has to be done for a fully general solution, a closer look
at the image of a half-plane is necessary. In what follows, the conic sector approach
of Krammer will be re-stated in an analytic form; as a result, the modelling clip will
be performed after the full projective transformation (and not only the linear part of
i0.

The main result presented in this section is the following. If nU_.9? 4 is an arbi-
trary non-zero vector, it defines a half-space in the Euclidean space 1/73 by using
the following formula:

3
{n} = { x ~ 3 : ~,nixi + n4 > 0} (4.10)

i=l

96

The notation {hi,n2} will also be used to denote {nl}N{n2}. The following
theorem will be proved:

Theorem 4.1. Let M be a projective transformation, u the homogene-
ous vector describing a half-plane and v =(O, O, O,1) the vector describ-
ing the ideal plane. Let u' and v' be the vectors describing the image of
these planes, that is (applying formulae (4.7)):

u' -- (M-m)ru (4.11)

and

v' =(M-1)rv (4.12)

Then the affine part of the image of the half-space is (see also
figure 4.5):

{u',v'} U {-u ' , -v ' } (4.13)

Figure 4.5.

Theorem 4.1 describes, in fact, a conic sector in analytical form. By induction, the
following statement is also true:

Theorem 4.2. If a convex body is determined by the set of homogene-
ous vectors u I, �9 �9 �9 uk, the image of the convex body under the effect
of a projective transformation will be:

{ u ' l , . . . , U'k,V'} U {-u' l -U'k,--V'} (4.14)

This result is the analytic reformulation of the conic sector intersection method of
Krammer; however, it gives more insight into the expected result. Indeed,
theorem 4.2 means that the image of a convex body will be the union of two (dis-
joint) convex bodies described by (4.14). This result has been proven first in
[Hiibl90].

Theorem 4.2 might be surprising at first glance. Knowing that a half-space
might be mapped onto a real conic sector duplicating the convex areas, one might
expect that the final outcome for a whole convex body becomes more complicated.
It is therefore worth examining a more intuitive picture of this description. Using the

1,V

97

Figure 4.6.

usual straight model, figure 4.6 shows what happens to a simple convex body (in
this case a triangle). The original convex body (not shown on the picture) is
transformed onto C; C being the affine image of C, it is a convex body on tlJ. By
performing the projective division, this convex body is projected onto C' and C";
the effect is the usual W-wraparound problem in case of a whole convex body.

Figure 4.7 shows also that one of the two convex bodies in 4.2 can also be
empty: indeed, if C is fully on the w>0 or the w<0 side of qJ, this will be the case.

The proof of the theorems is as follows. Ifp~_/PE 3 is a point of the half-space
defined by u and the coordinates o f p are such thatp4--1, the following holds:

pru > 0 (4.15)

Equation (4.7) also means that if p'=Mp, the corresponding four dimensional
vectors p ' and u' fulfil the following relation as well:

4
p'Tu' ~n'.U'. = ,~,r ~ ~ > 0 (4.16)

i=1

This is, in fact, what has been used in the previous section for the four dimensional
approach.

Let consider first p'4>0. In this case, formula (4.16) can be divided by P'4
leading to:

3 r ~.~P i ,
, ~ 7 u i 4" U' 4 > 0 (4.17)
i = I F 4

W

98

Figure 4.7.

This means, in other words, that the affine image of p will become an element of
{u'}.

Ifp '4<0, the final affine image will be an element of { -u ' }. Finally, p being
an affine point originally, the same line of arguments can be followed for v instead
of u. Combining the formulae leads to the desired results. �9

It is now clear how the modelling clip can be implemented effectively. The
two convex bodies described in theorem 4.2 give the image of the modelling clip
body; all clipping against these bodies can therefore be done after the full projective
transformation. It is, of course, a natural and also important question to find out
whether both bodies exist or not or whether the clip against both of them is neces-
sary or not.

First of all, if M is affine, either v' or -v ' will be equal to (0,0,0,-1). Conse-
quently, the corresponding convex body will be empty.

An obvious check a system may and should make is similar to the one used
for the optimisation of the W-clip: it should be checked to see if the workstation
clipping cube is disjoint with one of the two convex bodies. This can be done, obvi-
ously, by checking whether the workstation clipping cube is fully within one of the
half-spaces listed in theorem 4.2. If yes, the other clipping body (if it exists at all)
can be disregarded. The best candidate for that purpose is v' o r -v ' : indeed, the
boundary plane of these half-spaces is the image of the ideal plane. On the other
hand, it has been shown that in the case of a synthetic camera model, the image of
the ideal plane will be disjoint of the workstation clipping cube; in other words, the
cube will be disjoint with either {v'} or {-v'}. The synthetic camera model being
one of the most important viewing models in practice, this fact is very significant.

99

It is a question of debate whether the four dimensional clip or the one
described in the present section is more advantageous (besides that this latter one
covers the problem in full generality). There does not seem to be much difference in
the computational demands of the respective methods, although no actual com-
parison has been done; the choice seems to be rather a question of taste. It is also
dependent on the features used in general: if an implementation chooses to use the
general approach described in chapter 3 to handle cell array, STROKE characters
etc, it becomes attractive to incorporate the modelling clip as well into the four
dimensional environment. Credit should be given to the four dimensional approach
anyway, being historically the first attempt to give a solution for the problems of
modelling clip.

5. Projective Algorithms

5.1. Introduction

The algorithms and methods which will be presented in this chapter are radically
different from those of the previous ones. Whereas the basic idea behind all methods
up to now was to try to reformulate the problems arising for four dimensional space
(with the exception of the modelling clip body description), in this chapter the prob-
lems will be described in purely projective terms. In other words, in chapters 2 and 3
the idea was to get "back" into an Euclidean environment via the use of four
dimensional geometry (and hence making use of all traditional methods already in
use in computer graphics), whereas in the present chapter the problems will be
described in purely projective geometrical terms. This is the reason why all these
algorithms may be called "projective" algorithms.

There are several reasons why this is of interest. First of all, the methods
which will be described will give a projective invariant formulation of some primi-
tives. This also means that the implementor of a 3D graphics system might have a
choice when implementing for example cell array: instead of generating the cells in
4D (as described previously), the projective invariant description of the cell array
may be also used, which means that a number of points are transformed by the fu//
projective transformation, and, as a next step and making use of these (transformed)
points, the full cell array is generated directly on the projective plane. This
approach is similar to what has been done for the description of conics in chapter 3;
the difference is that instead of affine invariance, projective invariance is sought.

The advantage of using this approach might be algorithmic; in the 4D
approach there are three additional divisions to be done on all generated points (eg
on the polynomial approximation of a conic). In some environments, however, divi-
sion is not cheap at all and it might therefore be of interest to reduce their number.
Unfortunately, there has been no opportunity to make an effective comparison
between the clean four dimensional approaches and the ones described below;
whereas the four dimensional algorithms described in chapter 3 have become
integral part of a commercial product, the projective invariant methods could be
tried out on an experimental basis only.

Speed is however not the only issue. Some problems which might make a pro-
jective invariant formulation necessary come from a more theoretical standpoint,
which is as follows.

General purpose graphics systems and standards, like GKS, GKS-3D,
PHIGS, PHIGS PLUS, CGI or any of their ancestors like GINO-F ([Wood71]),
GPGS or Core ([GSPC77] and [GSPC79]), can be classifed rigorously as either 2D
or 3D systems. The notion of 2D systems means that the function definitions contain
graphics output primitives for two dimensions only; lines, markers, polygons etc
defined on a plane. These primitives may be fairly complicated, like STROKE preci-
sion characters or polygons with patterned interiors. However, the definitions of
these primitives reflect the planar nature of graphics: for example, patterns are

102

defined as a regular set of small parallelograms, dividing in turn a larger parallelo-
gram regularly etc.

3D systems usually contain the more or less obvious generalisations of the
two dimensional output primitives: polygons, text etc. are defined with three dimen-
sional coordinates together with more complicated primitives like for example
B-Spline or NURB t curves or surfaces in packages like PHIGS PLUS, HiRasp,
Dor6 etc. Furthermore, these systems contain different forms of viewing facilities;
the ultimate goal of these features is to project the three dimensional primitives onto
the display screen which is, at present, inherently two dimensional. In the course of
this process the system may also perform some kind of hidden surface and/or hidden
line removal.

It is relatively straightforward to find application areas which may use a two
dimensional package. A number of practical problems are basically planar: business
graphics, some areas of presentation graphics and even some CAD applications;
electronic design is a good example.

This is not the case for three dimensional systems. There are of course appli-
cation areas which are inherently 3D, like mechanical design or architecture. How-
ever, when realising these systems the implementors may find it more natural to use
a two dimensional general graphics system for their own purposes rather than a
three dimensional one. This contradiction is the result of the fact that a sophisticated
application program (eg a solid modeller) has to create some kind of internal
representation of the objects it wants to manipulate; an internal representation which
contains, among other things, a whole range of strictly geometrical data. Conse-
quently, it may happen (and, in fact, it does happen), that the application program
has the possibility to perform all viewing, hidden line/surface removal with a
significantly higher speed than by using a general 3D system. For that purpose, it
can make use of the sometimes rather detailed additional information which is
within the internal representation. Using a full three dimensional graphics system
would mean in this case the duplication of the viewing pipeline; a duplication which
might be expensive both in terms of efficiency and price.

The result of this is that such systems might find it more straightforward to use
a two dimensional environment instead of a three dimensional one. However, in this
case, one faces a disturbing problem: a number of complicated but at the same time
very useful features of these systems are not usable any more! In fact, primitives
like cell array, polygon filling with patterns, stroke precision characters are defined
in such a way that it is impossible to use them to generate the planar projection of
their three dimensional counterpart. As an example, it is not possible to generate
directly a picture like the one on figure 5.1 with a traditional two dimensional sys-
tem like GKS (texts may be deformed by affine transformations only, namely with
the help of the segment transformation). In other words, the application has to solve
for example the pattern filling of a polygon by itself, although this is clearly in

tNon-Uniform Rational B-Spline

103

Figure 5.1.

contradiction with the demand of using general purpose graphics systems whenever
it is possible to reduce development time and costs.

It might therefore be interesting to see whether it is possible to defme an
extension of the traditional two dimensional systems so as to cover the geometry of
the planar projections of the traditional three dimensional output primitives. This
means, in practice, defining projective invariant formulations for those primitives
which are the source of the problems.

The problem itself with some possible solutions (described in [Herm89] and
in [Herm89a] and presented later in this chapter) has also been raised at the interna-
tional study group of the ISO/IEC SC24 committee on the so-called New API
(Application Programmers' Interface), a study group which is examining a succes-
sor to GKS t. This is also the reason why the terminology "2.5D systems" was
used for those enlarged graphics systems (that is 2D systems with projectively
invariant specifications) although, unfortunately, this notation proved not to be a
very good choice (2.5D has a very different meaning in e.g. CAD literature). The
present chapter concentrates exclusively on the purely projective geometrical nature
of the problems arising. No attempt is made to give a formal specification of an
"extended" 2D system; this is the task of the ISO group and is beyond the scope of
this study. The mathematical algorithms presented here will however prove that
such a specification is feasible and implementable.

It has to be stressed that the usability of all the methods described in some of
what follows is underpinned by the general description of the modelling clip, given
in the previous chapter. The net result of this description is that the modelling clip
(which encapsulates for example the normalisation clip of GKS-3D) can be per-
formed after the full projective transformation. In other words, the results of
theorem 4.2 might be considered as a projective invariant description of the model-
ling clip. This fact is important: to take the example of the cell array, if the clip were
to be performed prior to the full transformation, the original parallelogram would be

tTo be precise, in [Herm89] only the starting point of a possible solution for the problems arising
in the case of for example cell arrays has been given; the proper handling of ideal points was not
presented there. In what follows, a full version will be given.

104

cut into a more general convex polygon, in which case the methods described would
not be usable any more. However, by putting the modelling clip at the end of the
pipeline, all internal cells (in the projective environment) can be generated without
regard for the clipping and, finally, all generated cells can be clipped individually.
Essentially, one can choose freely when to perform clipping and this choice may
depend on the primitive in question; this freedom has been made possible by the
consequences of theorem 4.2.

In what follows, the output primitives described in chapter 3, that is cell array,
pattern filling, STROKE characters (see figure 5.1) as well as conics will be recon-
sidered; these are typical examples of primitives which are time-consuming to gen-
erate and, at the same time, produce very significant distortions when using a projec-
tive transformation. Even the W-clip (or any analogous approach) will sometimes
be omitted: the aim is to describe these primitives so that singularities are handled
automatically. In all cases a p r o j e c t i v e invar ian t way of specifying the primitive will
be given; this specification will be a generalisation of the usual one.

5.2. Regular Subdivisions and Their Images

5.2.1. Regular Subdivision of Lines

The background for the projective distortions can, in a number of cases, be ex-
plained by the distortions created on a set of regular subdivision points. This means,
that a number of primitives can be described (prior to transformations) by the fol-
lowing data:

�9 two points P and Q defining a line segment and

�9 n -1 points A 1 , A n _ 1 on the line segment P Q so that:

1
A i A i + 1 = P A 1 = A . _ I Q = - -

n

Q a'

A j ~ r r An-1 I
p' A X i a l , A2, A3

a.) b.)

Figure 5.2.

(see also figure 5.2a). Indeed, this is the basic structure used by cell array, patterns
etc.

The projective distortion occurs because the points A 1 , . . . ,A,_I are not
necessarily mapped onto regular subdivision points (see figure 5.2b); this is

105

equivalent to the fact that the division ratio is not a projective invariant factor. The
images of these points are not absolutely random, however; in fact a fairly regular
structure can be found. This structure will be described in what follows, and will be
the clue of most of the results described later.

Although the division ratio is not projective invariant, the value of the double
ratio is kept by a projective transformation. It is therefore a natural idea to try to
describe the position of the points Ak' (figure 5.2b.)) using this value. What is
needed for that purpose is a more explicit formula for the double ratio of points.

Let P, Q, Ak and A i respectively denote four different affine collinear points
(the case when one of these points may be ideal will be dealt with later). To make
the presentation simpler, the points A k and A i are considered as elements of the line
segment PQ (see figure 5.2). The value of the double ratio for these points has been
defined (in chapter 2.8) by:

(PQAk)
(PQAkAi) - - - (5.1)

(PQAi)

where (PQAk) (resp. (PQAi)) denotes the division ratio, defined by:

PAk
(PQAk) - _ _ (5.2)

AkQ

by using directed distances in all formulae. The value of (PQAkAi) is denoted by Ol, k, i

and it is considered as known.

Formulae (5.1) and (5.2) lead to the following:

1
t x ~ i - - (e Q A k) [_ ~ i] (5.3)

by substituting the value of AiQ:

PQ - PA i
o~k,i = (PQAk) (5.4)

PAi

that is:

ak, i PAi = (PQAk)P Q - (PQAk)PA i (5.5)

which leads to a final expression:

(PQAk)
PAl =

ak, i + (PQAk)
PQ (5.6)

This simple equation is the clue to the further results; it shows that if the value

106

of the double ratio is known from some external source, the point A i may be deter-
mined on the line with the help of the other point Ak and the (directed) distance of
the latter from P.

In case the points Ak and A i represent regular subdivision points of the line
segment P Q (like on figure 5.2), the value of the directed distances and of the divi-
sion ratio can be calculated easily. Indeed, if there are n subdivisions, then

i
PAl n i

(PQAi) - - - - - - - - - (5.7)
Ai Q n - i n - i

n

in other words,

k

(Ik , i = (P Q A k A i) _ n - k _ k (n - i) (5.8)
i i (n - k)

n - i

If the points P, Q, Ai, i =1, ...,n -1 are transformed by a projective transforma-
tion, mapping the point P onto P', Q onto Q' etc, the image points Ai ' - s will not
remain regular subdivision points. However, if the points are all on the line segment
P ' Q ' , the considerations leading to formula (5.6) remain valid and, furthermore:

(P 'Q 'Ak 'A i ') = (PQAkAi) = (~k,i (5.9)

which is one of the basic theorems on the mutual relationship of projective transfor-
mation and the double ratio. This means, in other words, that formula (5.8) can be
used to replace the value of ctk, i in formula (5.6):

(P ' a ' A k ')
P ' A i' = 'Q'Ak ' -P 'Q ' (5.1o)

(~k,i "1" (n)

It makes the formulae a little bit simpler if k=l; indeed, in this case (using ct i to
denote tXl,i):

n - i
r i (n-1) (5.11)

It is important to note that the values of (t i (or, equivalently, Ctk, i) are independent of
the effective geometrical position of the points P, P ' , Ai, A i' etc. In other words, if
the value of n is known, these values can be calculated in advance (this might be
very important in practice).

It is also easily verifiable that if

1
(P'Q 'A 1') - (5.12)

n - 1

(that is the point A 1' corresponds to the first regular subdivision point), all other

107

points will automatically be regular, that is formula (5.10) reduces to:

P'ai'-- t_p--~, (5.13)
n

which was of course to be expected, but it serves also to check the correctness of the
formulae.

Formula (5.10) (together with (5.8) or (5.11)) suggests a projective invariant
description of a line segment with regular subdivision points, the points P and Q, the
number of subdivisions n plus one additional subdivision point, for example A 1- The
formulae dictate that if these and only these points are transformed by the full
transformation, using formula(5.10) and the corresponding(5.8) or(5.11), the
image of all other subdivision points can be generated, and this is exactly what is
required ([Herm89]).

Although this approach is basically correct and this is what will be done in
general, one has to be a little bit cautious. The arguments presented above were
based on the assumption that A i is an element of the line segment PQ. Indeed, for-
mula (5.3) was transformed into (5.4) by using a substitution of the value AiQ. It is
easy to see, however, that ifAi happens to be on either side of P and Q (that is, out-
side the line segment PQ), this substitution is still valid, and that the final for-
mula (5.6) is still usable. This also means that the value of i in the formulae (that is
the index denoting the next point) is not necessarily confined to the range of
l<i<n -1; it can, theoretically, be extended beyond n. Furthermore, negative i values
are also usable; when evaluating the value of (PQAi) (see (5.7)) a negative i will
automatically give a negative value for (PQAi), which is exactly what is necessary
according to the definitions of the division ratio. In other words, formula (5.6) (with
the help of (5.8) and/or (5.11)) describes not only the subdivision points of the line
segment PQ but the extensions of these subdivision points in both directions of the
line.

P A-1 Q

Figure 5.3.

Also, if for example the value of PAk is negative (that is if Ak is for example
on the opposite side of P vis-a-vis the point Q), the formula is still correct (see
figure 5.3).

However, attention must be paid to the fact, that (5.6) might lead to

108

singularities; that is, ideal points also belonging to the line PvQ should be dealt
with. The appearance of this singularity is quite normal and it means that the situa-
tion when the line segment PQ becomes external should also be handled properly.
As stressed in the introduction, no W-clip is supposed at this point (although the
very fact that one of the points P, Q or Ak may be ideal must be and can be con-
sidered as known; this can be seen easily when performing the projective division).

P x __

Figure 5.4.

To see how this problem fits into the formulae above, the case when the whole
PvQ line is ideal might be disregarded for the time being. This means that at most
one point among P' , Q' andAi' is ideal. Also, the case when one of the points P ' or
Q' is ideal will be postponed until later. The fact that the image of the PQ line seg-
ment becomes "external" means in practice that the intersection of the line segment
PQ and the vanishing plane (or line) of the transformation intersects in an interior
point X of PQ. The transformation maps the point X onto an ideal one; consequently
the image of the line segment PQ will be the set-theoretic complement of the line
segment P'Q' (see figure 5.4). It is also clear that the position of A 1' (or, in general,
Ak') will be outside the line segment P'Q' (this is the result of the invariance of the
segment cutting property). This is also true conversely: the very fact that A k' is not
on the line segment P'Q' means that a W-wraparound has been in effect.

The initial position ofA k' can be found easily; there exists a value x for which

A k' ffi "raP' + (1 - -t)Q' (5.14)

109

and:

x < 0

0 < x < l

1 < ~

Ak' is on the half line of P '

Ak' is on line segment P 'Q '

Ak' is on the half line of Q'

(5.15)

In the situation shown in figure 5.4 the application of formula (5.6) will gen-
erate automatically the images of the subdivision point which will, in this case, go
away from P'; at a certain time a singularity occurs and the points will afterwards
appear on the half line generated by Q'. This is clear from the formulae: the value of
P'A i' will be negative for a while then it will " jump" onto a (usually very large)
positive number. Using negative indices one may also generate the "internal"
points, as in figure 5.3. The exact interval AI'AI+ 1' where the effective wraparound
occurs can also be found as a "by-product" of the formulae in use (this by-product
will, however, be very important later).

The fact that formula (5.6) has a singularity means also that the values gen-
erated by the formula (which describe the directed distances from P) can be very
large and can therefore exceed the largest floating point number which can be
managed by the computing environment. This is however not a real practical prob-
lem; all graphics output generation has to be clipped ultimately by the workstation
clipping cube and therefore such a large number will be disregarded anyway. The
two steps can also be combined: once the generated A i' has exceeded the worksta-
tion clipping cube limits, this maximum value can just be stored. Furthermore, by
inspecting the formula (5.6) and knowing the limits of the workstation clipping
cube, the values of the indices where the corresponding points will be out of the lim-
its could be found very easily.

Precisely speaking what has been described before corresponds to what is
shown in figure 5.4. The point A k' can also be on the other side, that is on the
half-line generated by Q'. This case corresponds to the fact that the point X, which
is on the line segment PQ is also on the line segment PAk. This might be the source
of real problems, however: if this case occurs, the value of P'Ak' will be very large
and this might lead to serious calculation errors when using (5.6)! However, the
situation is absolutely symmetric; one could exchange the role of P with that of Q,
the role of Q with that of P and A~ with An_k to avoid problems. This is also what
has to be done ifAk' happens to be ideal.

One more case should be treated separately, namely when either P ' or Q' hap-
pens to be an ideal point. In this case, the original considerations leading to for-
mula (5.6) are not valid any more; a separate formula should be sought.

110

~ O 'oo

Figure 5.5.

Returning to the original arguments leading to (5.6), the value of (PQAkAi)
might still be considered as known (and is denoted again by ctk.i). In this case, how-
ever, Q is an ideal point. Using the permutation relations of the double ratio as well
as the original definition for ideal points (see chapter 2) the following holds:

AkP PA k
{2~k, i ---- (PQAkAi) ffi (AkAiPQ) ffi - (AkAiP) ffi - ~ - - - (5.16)

PAl PAi

that is, by using the formula derived above for C~k,i:

P ' a i ' - ~(-~- ---k.~p'A k' (5.17)
rt.n - t)

Clearly, formula (5.17) is the alternative for (5.10).

These results can now be summarised as follows. A line segment PQ is given
together with an integer n (that is with the subdivision points A 1, �9 �9 �9 ,An-l). Addi-
tionally, another integer k is also given, which should be k<n/2 (preferably, k is
equal to 1). If an arbitrary projective transformation is given, the Euclidean image of
the subdivision points can be generated using the following procedure:

/) The points P,Q,Ak,An_k are transformed, producing the (possibly ideal) points
P',Q',Ak' ,An-k' . If both P and Q are ideal, the whole line will be ideal and
therefore the image of the subdivision points cannot be represented on the
Euclidean plane.

ii) If Q' is ideal, then apply the following formula:

P,Ai , = i(n - k) P,Ak, (5.18)
k (n - i)

to generate theAi'-s.

If P ' is ideal, the same formula should be used by exchanging the roles of P '
with Q' and At' withA~_k'.

111

iii) If neither Q' nor P ' are ideal, find a value T for which:

A k ' = x P ' + (1 - ' Q Q ' (x < l)

"t If such a x does not exist, exchange the roles of P ' with Q' and Ak' wl h An_k
(in this case an appropriate x will exist). Then apply the following formula:

(P ' Q ' & ')
P'A~' = P ' O ' (5.19)

a, , i + (P ' Q ' A d)

where the value of (Ik, i is:

k (n - i)
ak'i = i (n - k)

Precisely speaking, the formulae above will give the directed distances between the
points P ' and Ai ' . To generate the points themselves, these distance values should be
combined with a unit vector parallel to the line P ' Q ' . Both formulae above involve a
multiplicative factor and the distance of two points; the equivalent vector equations
become therefore fairly straightforward. Thus, if case ii) described above is valid
then:

- - " , - - - " i (n - k) - - " --"
A i = P ' + k (n - i) (Ak' - P ') (5.20)

is the vectorial counterpart of (5.18), whereas

--, - - - , (P 'Q 'Ak ') ---, ---,
A i ' = P ' + (Q' - P ') (5.21)

r i + (P'Q'Ak')

corresponds to (5.19).

Some remarks are of interest. Clearly, whether both A k and An_ k a r e to be
transformed or not, depends on the problem of W-wraparound. If no wraparound
occurs (which can be found out by using a kind of "cheap" W-clip by just compar-
ing the w coordinates in 4D), one of the transformations is superfluous. An imple-
mentation might want to make use of that. Also, the simple fact that

T (5.22) (P ' Q ' A k ') - 1 - ' c

also holds in case of iii), might save some calculations.

Finally, both in steps ii) and iii), the roles of the points may be exchanged.
When actually implementing the method, care should be taken to use a correct
indexing of the results.

It is also clear that a step towards a more formal specification of an extended
2D system might be to define a line segment by the points P' ,Q ' ,Ak ' ,A , , _k ' , since
these points provide enough information (together with the values of n and k, of
course) to generate all other points.

112

5.2.2. Cell Array

A Cell Array is, in its geometric structure, a kind of a two dimensional regular sub-
division of a parallelogram; it is therefore natural to apply the method described pre-
viously to render it after the projective transformation.

The aim is to generate on the projective plane all the grid points, or at least
those of them which are affine. Figure 5.6 shows the original grid; figure 5.7 shows
one possible image of 5.6, which is also the simplest one.

A m - l ' l R A m , 1 A m , n - 1

Am_l, 0 ~'.-rO'--,---'.-'-*.'--~---.:-.--.:-.--~---:---'~-.--~--.-~.--.O'--.~ Am_l, n

. . . . , , , , . . . , . _ . . , , , , , , , ,

i i i i i i i i i i [i i , . - . . , , , . . . , - . . , , , , , , , ,

.... i---

A 1,0 ':;~'-'!'"!''~'"'4""i'"['"':-"'i'"'~'""!""--"""ff~'-~l A l,n
...... ~ : : i ! !] : i ~ i] (~ r

AI, I P Ao, I Ao,,-i

Figure 5.6.

The points which are to be transformed are shown in figure 5.6. Using the
method described in the previous chapter, first the images for the subdivision points
on the four edges on the parallelogram can be calculated. As a next step, the first
and the last column of the grid (that is the points A I,I',A 21 ' , . . . , A m - i j as well as
the points A 1 , n - i ' , A 2 , , - l ' , . . . ,Am-l,n-i') and, finally, each row can be generated
one after the other.

It must be stressed that, as stated before, the factors denoted by ak, i are all the
same for each "horizontal" as well as for each "vertical" line respectively. In
other words, once these factors have been calculated (in the first step), they can be
reused to shorten the calculations. Also, the choice between generating first the two
columns and then the rows rather than the other way round is arbitrary; theoretically
at least, there is no difference between the two choices as far as the generation of the
grid points is concerned.

Figure 5.7 shows the simplest (and most probable) case, in which no wra-
paround happens on the parallelogram during the projective transformation. In this
case not all the points listed before are to be transformed; the generation method for
the subdivision points can be used without the points A 0,n-l', Am,~_l', Am_l,0' etc. To
check whether a wraparound occurs can easily be done by comparing the w coordi-
nates of the vertices before projective division.

If a wraparound does occur, all points are necessary; however, using the
method for the generation of subdivision points in general, all possible images of the

113

R r S ~

-. :.,?.::... ~-.~:.
......... �9 ..::.::.,........ Q '

" . : r t
O n 1

AO,1 ~

Figure 5.7.

R '

p , Q'

Figure 5.8.

S'~o

regular grid are automatically generated. Figure 5.8 shows a case when S' becomes
an ideal point; in figure 5.9 both the line segments P'Q' and R'S' produce a
W-wraparound (in other words the vanishing plane intersects the line segments PQ
and RS) and, finally, the line QvS is fully on the vanishing plane on figure 5.10.

Precisely speaking, the generation described above produces the set of grid

114

points only. In the simple case where no wraparound is produced (figure 5.7) or
even if none of the interior points becomes ideal (eg figures 5.8 or 5.10) the gen-
erated grid points effectively determine the image of the corresponding cells. In
other words, after having determined the points:

Ap, q', Ap, q+l', Ap+l,q',mp+l,q+l'

these points may be considered as being the four vertices of a cell; by assigning a
given colour to it, it can be treated by the rest of the output pipeline as a solidly
filled quadrilateral.

%--:: R'

..-11......:~.--...---..4.:1::::::: s,"'".".~ii~i:::.:~i:;;;:;~ii!:i
/ :: - p , '."-.:.~:}~...... :-.~

Figure 5.9.

In the case, however, where the vanishing plane intersects the interior of the
parallelogram PQRS, this is no longer true. It may happen that (using the previous
notations) the line segment Ap, qSAp,q+l ' produces a W-wraparound, that is the image
of the corresponding cell is not the quadrilateral. Examples for this situation can be
seen in figure 5.9.

As described in the previous chapter, it is very easy to detect for a given line
segment which of the subdivision intervals would produce a singularity. Basically,
this happens when the sign of the directed distance P'A i' differs from the sign of
P'Ai+I'; it is therefore possible to find out which original cells would produce a
W-wraparound.

Two cases should be differentiated. The first one is when the vanishing plane
of the transformation intersects two parallel edges of the cell parallelogram (see
figure 5.11), say the edges PQ and RS. In this case the grid points on the image
should be generated in rows, that is the grid lines which originate from the line seg-
ments parallel to PQ should be calculated (remember that choosing this " row" or
the alternative "column" approach leads to the same results). As each
sub-parallelogram which intersects the vanishing plane will also intersect it on at
least one row (that is a "horizontal" edge), all quadrilaterals leading to a

115

Sle~

R p' , ~ ~ ~ .

a'|

Figure 5.10.

R Am,q, S
! i i i ' , i i i i ~ ! i i i

....... L,, , .~.,_..I.L-.. . : ,L..L..L.. ._.L.. . , . .L.. .-L-.. .L-.. . i- . . .-~

....... L._..L._...L_... .L... . .Lk... . .L... . ,L... . . .L... .J..L... .~L_.,L... . .L
! ! i i i ' , i i ! ! i i i i

....... i t _ ! !_ t ._ .~t t_ t_ . ! . . ._ . t ._ . . t . _ ! _ _ . t

....... i i . . - i i -4. i , ,~ - i - . i - . i . . - . . i - . . i - . . . - i
i ~ i i ! i ' , i i] i ~ i i

....... T U ! i - U I T - I - 7 - U U I - i

. ~ . ~ T ~ ~ . . . ~ . ~ - . ~ . ~ r . ~ . ~ r ~ . ~ r ; ~ ! . ~ . ~ . ~ ! . ~ . ~ . - ~ - . . ~ ! . - ~ . ~ - ~ . ~ ! i ! ! i i i i 4 ! i i i ! ! P Ao,p ", Q

Figure 5.11.

W-wraparound will be detected this way. Of course, if the vanishing plane inter-
sects the edges PR and SQ, the same approach should be used by taking columns
instead of rows.

If the vanishing plane intersects two adjacent edges (figure 5.12), the situation
is more awkward; if for example the intersection points are on the edge PQ and PR

116

R S

Aq, o
...... F T F T - F - I - F T T F - F T i

........ L.....L'.}~.....L..._.~..._..L......;.......L.....L.....b...L......L.....j.

........ L .LLL_iL-L_J . . L J . L J . L ~

P Ao,p " - , Q

Figure 5.12.

at the index p and q respectively, all grid points Ai, j' for which i,~p and jsq should
be generated in both column and row direction to find the possibly singular quadrila-
terals. Indeed, neither of the two directions may alone detect all cases.

To find out which of these two cases is actually valid is an easy task; it is a
by-product of the first step of the algorithm, when all grid points on the edges are
generated.

The final question is: what should happen with a singular quadrilateral? To
put it very pragmatically, in most cases such a quadrilateral could just be disre-
garded. The fact that an ideal point is involved means that there is a point on the
corresponding edge for which the directed distance involved in all formulae
becomes infinite. In other words, it will be so "far away" that with very high proba-
bility this quadrilateral will be outside the workstation clipping cube anyway. This
can be checked very easily: if all four vertices are outside the workstation clipping
cube, the image of the corresponding cell (whatever it looks like) will be outside as
well.

In case a more precise solution is sought, a standard recursive procedure will
produce the visible subparts. By putting n--->2n, m--->2m, it is possible to generate an
imaginary grid which would be twice as dense as the original one (on the original
image prior to the transformation); consequently, the quadrilateral can be divided
into four sub-areas repeatedly. However, this recursive part of the algorithm should
be present as a kind of a security measure only; it will hardly be used in practice. It
has to be stressed as well that, in fact, in most practical cases the singularity problem
does not occur at all.

When comparing the cell array generation in 4D with the one described here,
one can count the number of floating point operations needed to generate the next
point in the grid. In this case, the number of operations is slightly higher for the pro-
jective algorithm than for the 4D version described in chapter 2 (8 versus 7). In
other words, this method is not faster than the 4D approach.

117

The projective algorithm can also be compared to a purely planar projective
transformation of a cell array; in this case, the projective algorithm described here is
clearly superior in speed. An experimental implementation in C++ has shown a
speed improvement in the range of 20%-25% (depending on the size of the array);
an improvement which is primarily due to the fact that the number of floating point
operations has been reduced in case of the projective version. Taking into account
that the cell arrays can be quite large, this 20% gain can have a significant practical
importance.

The reason to look for a projective algorithm in the case of cell arrays was
however not exclusively speed; clearly, it also provides a way to define an extended
two dimensional graphics system in a compact way. It might also lead to some other
interesting applications; these will be presented in the chapter dealing with possible
directions of future research.

5.2.3. Pattern Filling

Pattern filling is very similar to drawing a cell array. A regular grid is defined, with
the difference that the basic pattern is duplicated in all directions to form a (concep-
tually) infinite grid.

A regular grid can be reproduced after the projective transformation: as
stressed in relation to the mapping of regular subdivision points, the indices for the
subdivision points Ai'-s may extend onto the whole set of natural numbers. Based
on this fact one way to perform the pattern filling is as follows.

p,

Figure 5.13.

118

Figure 5.13 shows a regular pattern, generated by a relatively small (that
is 3x3) pattern array. The main target is to find finite index intervals both in the PQ
and the PS directions so that the whole polygon should be contained within the (usu-
ally larger) regular grid determined by these intervals. In a more precise form this
means that four integer values io,il,jo,jl should be found so that the polygon itself
is contained by the sub-grid determined by the subdivision points

Ajo,io, Ajo,il, Ajl,io, Ajl,il"

In figure 5.13 the choice

i o = 4

il = 14

Jo = 0

Jl = 7

will do. If such intervals are found, the rest becomes quite simple: all quadrilaterals
determined by the intervals should be generated one after the other; the original
polygon should be clipped against these quadrilaterals t, and, finally, all clipped qua-
drilaterals are displayed using the appropriate colour determined by the pattern
specification.

To find such intervals does not seem very complicated either. If the half space
determined by P'vR' contains the polygon, then one can proceed in this direction as
long as this condition is still true, to find the value of i0; once this has been done,
further steps can be taken in the same direction to find the value of i 1. If not, the
steps have to be done "backwards" to find i0.

If this approach were feasible, the result would be quite appealing, even when
compared to the 4D algorithm described in chapter 2. Although the clipping step
itself is more complicated than the one described there (a general convex clipping
area should be used instead of a regular rectangle), a number of processing steps can
be avoided. In fact, the polygon can undergo all necessary clips needed by the
whole output pipeline (modelling clip, workstation clip) before being filled by a pat-
tern whereas in the 4D case each individually clipped quadrilateral still has to be
projected back onto the w =1 plane and clipped by at least the workstation clip (even
if the modelling clip is performed in 4D). As stressed before, clipping is a computa-
tionally expensive operation and therefore avoiding a clipping step can be very
advantageous.

In some cases the projective version of pattern filling may have even more
advantages; one example is the Hidden Line/Hidden Surface calculation. Although

tNot the other way round! Theoretically the quadrilaterals could be clipped against the polygon
as well, but whereas the quadrilaterals are convex polygons, the original polygon is not neces-
sarily one. On the other hand, clipping against a convex polygon is faster than against concave
ones.

119

the so-called Z-buffer algorithm is one of the most widespread approaches to solve
this problem nowadays, it is by no means the only and necessarily the best one.
Indeed, the Z-buffer method presupposes that the image is generated on some kind
of a pixel-based output device which is not always the case. A trivial example
would be the use of pen plotters, but even in the case of displays there are attempts
to produce pictures directly from a higher-level description and to by-pass the use
of pixel memory which has proven to be a bottleneck in a number of cases (see eg
[Ghar85] or [Hage87]). If this is the situation, the Hidden Line/Hidden Surface
problem must be solved with the help of some software algorithm
(Newell-Newell-Sancha or the like) by producing the visible part of the 2D projec-
tion for each polygon. The fact that this step can be done before using any pattern
filling at all if the projective algorithm presented here is used may be of importance.

However, care should be taken when applying the method described above; as
usual, the existence of singularities might lead to problems and should be handled
properly.

First of all, it must be supposed that the polygon itself does not contain singu-
larities any more. In other words, either the W-clip or the UW-clip should be con-
sidered as already done (in any other case, it would be too complicated to find out
the singular points within the polygon). Furthermore the fact that the workstation
clip can also be performed as the first step means that the polygon itself may be con-
sidered as bounded ~. This is clearly necessary to be able to close the polygon into a
finite part of the grid.

The fact that the original pattern array (like the cell array in the previous
chapter) might be intersected by the vanishing plane of the transformation is the
source of a number of complications, mainly for the indexing of the subdivision
points. Instead of transferring these complications to the pattern filling as well, it
seems much simpler to suppose that the basic pattern array does not intersect the
vanishing plane. Indeed, it has no effect on the final picture if the defining array is
translated into any of the two main directions; following the notations of figure 5.13,
the point Q' might play the role ofP ' , U' might be used as Q', V' as S' and finally S'
as R'. This translation of the pattern definition can be done very easily in 4D; if the
original parallelogram happens to intersect the plane w =0, it can be translated in a
given direction to avoid the intersection. This will not change the generated grid but
makes the indexing of the subdivision points simpler.

However, unclear situations may still arise, and to avoid them a more exact
description of the grid is necessary.

Figure 5.14 shows the (strongly distorted) image of a grid generated by a 3x4
pattern array, denoted by P', Q', R' and S'. The basic pattern is duplicated in all
directions. What happens is that a regular grid defined by the pattern is generated by

~Even if the original polygon is bounded, its projective image can still be unbounded, so this re-
mark is necessary.

120

.1 o"

X

~ i i , ' /

Figure 5.14.

all possible intersection points on the projective plane by two well-defined bunches
of lines. These bunches of lines have the common intersection points X and Y
respectively and the lines belonging to the respective bunches are governed by the
rule that their respective double ratio should be the values of aj, i of formula (5.8).
For a regular grid the points X and Y are the ideal points determined by the lines
P v Q and PvR respectively; such a bunch of lines is then transformed by the projec-
tive transformation into a more general configuration where the points X and Y are
not necessarily ideal points any morJ . Clearly, the line X v Y is the image of the
ideal line.

As seen on the figure, all pattern quadrilaterals "converge" in some sense
toward the points X and Y. By performing a more detailed analysis of the values of
ct i as well as of the value of PAi in formula (5.6), this fact can be described pre-
cisely, but all these details are not really of importance here r It is sufficient to say
that, based on the value of (P'Q'Ai') either the subdivision points starting from P ' in

tSuch configurations are also called "M6bius Nets" in projective geometry.
*Basically, the values of limb~, limP-~ as well as the change of sign of PA~ should be described in

more detail.

121

Figure 5.15.

direction U' (figure 5.15), or the ones in direction Q' will converge towards X
without leaving the half-plane defined by X v Y and P ' itself. Points in the other
direction will, after a certain number of steps, "swap" to the side of X v Y opposite
to P' . This also means, however, that if the polygon happens to be on the other side
of X v Y (like A1 in figure 5.15), the stepwise approximation described at the begin-
ning may never come to an end; indeed, in figure 5.15 there will be no index i0
which would give a lower bound for the polygon (the corresponding lines will never
"cross" XvY). There will be no problem, however, if the polygon is on the same
side as P' , Q', S' and R' (which is the case of A2t). Consequently, it has to be
secured that when performing the pattern filling itself, the polygon to be filled and
the defining pattern quadrilateral should be on the same side of XvY.

It is not particularly complicated, however, to achieve this. When performing
the W-clip, all primitives will be either on the w >0 or the w <0 side. It can be pro-
ven easily (see also figure 3.6) that one of these half-hyperspaces will be mapped
onto one half-plane of X v Y and the other half-hyperspace to the other one. The
only step to be done is to translate, if necessary, the defining pattern before projec-
tive division so that the whole pattern lies in the same half-hyperspace of w--0 as
the polygon itself (remember that in most of the practical cases, this will be true

tCleafly, neither the polygon nor the defining pattern quadrilateral will intersectxvY; indeed, the
original definition for these point sets does not include any ideal points.

122

automatically). As this translation has to be done anyway to avoid singularities (or at
least the necessity of it should be checked) this does not produce any additional
computational complications.

There is still another source of problems, but this is much more theoretical
than practical. As said before, one direction of the subdivision points will "con-
verge" towards the point X or Y, while the other side will "swap", after a certain
number of steps, to the other side of XvY. In figure 5.15, starting from P ' and going
towards positive indices will produce this latter effect. This also means that in a very
unlucky case there will be no upper bound i I generated for the polygon, even if it is,
like A2, on the right side of XvY. This will correspond to the already described situa-
tion when W-wraparound is produced by the next subdivision point generation.

Just as in the case of cell array, however, this problem is more theoretical than
practical and can be detected with a small number of steps (in contrast to the previ-
ous problem which might have lead to an infinite loop). It is theoretical, because the
problem will occur usually on very distant locations vis-a-vis the workstation clip-
ping cube. Just as with the cell array, an emergency measure can be to continue with
a more dense series of subdivision points to find an appropriate i 1; however, this
will hardly be necessary in practice.

With all these precautions the method described above to perform pattern
filling in a projective environment can be applied. Clearly, in a more formal
specification, a pattern should be described more or less like a cell array (with all
four vertices plus the internal"comers").

5.2.4. STROKE Characters

As previously stated, STROKE precision characters are defined on a regular grid as
well. In fact, the final image of a whole string is a superposition of two regular grids:
a relatively coarse one which corresponds to the character boxes themselves, and a
much finer one which constitutes the grid of the character description (see
figure 5.16).

Figure 5.16.

The reproduction of this grid may follow exactly the same method as
described earlier. In practice, a two-step process might be advantageous: by

123

generating the coarse grid first (that is the character boxes) a kind of a pre-clip can
be performed to see whether the character at hand is visible at all. Remember that a
good character description might consist of a relatively high number of points, so it
is worthwhile saving some clipping if possible.

Figure 5.17.

There are, however, two remarks which have to be made about character gen-
eration. The first (and usual) problem is how to handle singularities. Unfortunately,
for STROKE characters it is not possible to do this properly. The reason is that in
contrast to the previous problems, the (transformed) grid is not used "cell-based",
that is instead of handling the individually generated grid quadrilaterals, the usual
description of characters use the grid as a kind of special coordinate system, where a
line should be drawn between grid points. Figure 5.17 shows the problem arising.
The vanishing line of the transformation will cross the character box. The projective
generation of grid point will be able to detect that, say, a quadrilateral determined by
the grid points (1,2), (2,2), (2,3) and (1,3) will lead to singularity problems after the
transformation; this feature of the projective generation has already been used
before. However, the generation will not detect that the line connecting the point
(0,0) and (4,8) and being part of the description of the letter " A " will effectively
cross this quadrilateral. In other words, for each individual line such a test should be
performed. This is certainly possible, but not really necessary. Remember that a
character box intersecting the vanishing plane/line will be very distant anyway; it is
perfectly acceptable to just simply rule out these characters from the string (this is
not exactly what the STROKE character precision of the GKS-3D/PHIGS
specification demands, but in the overwhelming majority of all practical cases it will
be enough).

The other, and not really major, problem is related to the more formal
specification of an extended 2D system. In all previous cases the points which are to
be transformed, that is the points which would serve as a basis for a formal

124

Figure 5.18.

specification are the ones shown in figures 5.6 and 5.7; they are essentially the
corner points. However, the exact resolution of the character description depends on
the character font in use; furthermore, the user of such systems is not entitled to
know the value of this resolution (which was 8 for all of the figures, like 5.18). In
other words, the internal points defined in this case should correspond to some
geometrical feature: for example the V2 and V4 division points of the character box
should be used (see figure 5.18) and the system itself may then find out that these
points correspond to the indices, say, 2 and 6. This also means that the more general
form for ctk, j should be used in the corresponding formulae.

5.3. Conics

Handling of conics in a projective invariant manner is quite different from what has
been described for cell array, pattern filling etc. Whereas in all these cases a general
method was used with some special arrangements for handling singularities, in the
case of conics the singularities themselves determine the global geometric (and
affine) behaviour of the curve, and this feature will be exploited.

It has been shown in chapter 3 that for each class of conics one can assign a
set of characteristic points; these points have the property of generating parametric
formulae which can be used to approximate the curve. Furthermore, these formulae
are such that they can also describe arcs instead of complete curves, provided that
the starting point, the end point and an interior point of the arc are also given. Tak-
ing these facts into account, it is a natural idea to try to find a description for the
conics such that:

�9 the description should be easily transformed by a projective transformation in
an invariant manner;

�9 it should be possible to construct this description out of the characteristic
points;

�9 it should be possible to reconstruct the characteristic set of points out of this

125

description.

Figure 5.19.

It is also worthwhile recalling here what the characteristic points are.

�9 For an ellipse (figure 5.19), the set consists of the centre (C) and the endpoints
of two conjugate radii (R and Q).

,'" n,"

Figure 5.20.

For a hyperbola (figure 5.20), the set consists of the centre again (C), the two
intersection points of a chord (P and Q) and two points (R and S) of the line
which is conjugate to the chord and contains.~the centre. The precise way the
points R and S are specified has been detailed in chapter 3 and will be

126

re-explained later in this chapter as well.

P

Figure 5.21.

�9 For a parabola (figure 5.21), the set consists of the intersection point of a
diameter (C), the two intersection points of the curve and a chord conjugate to
the diameter chosen before (P and Q) and, finally, the intersection point of the
diameter and this latter chord (R).

How all these points are constructed has already been presented; what will be shown
in the present chapter is that from the matrix and some additional data these points
can be calculated. A number of basic calculation steps in relation to conics have
been well described previously (and were presented in chapters 2.9.2.1 and 2.9.2.2).
For example, if the homogeneous coordinates of two points are known, it is possible
to calculate the homogeneous coordinates of their generated line as well those of its
pole. Also the polar of a point can easily be specified and this polar will be just the
tangent of the curve if the point is on the curve. All these calculations will be used
in what follows, but their details will not be repeated here.

It has also been mentioned in chapter 2 that the matrix of a conic is, in a
sense, an invariant description of the curve, and, if the matrix of the conic is denoted
by A and the projective transformation by T, the relationship

T(A) = (T-1)rA(T -1) (5.23)

gives the matrix of the image of the conic under the effect of T. In other words, the
matrix of the curve is projective invariant. It is therefore a natural idea to use the
matrix as a starting point for the required description.

It is also fairly easy to construct the matrix of the curve, once its classification
(that is whether it is an ellipse, a hyperbola or a parabola) and its characteristic
points are known. This was true both for 2D as well as for 3D (in the latter case a
generalised cylinder was used to represent the matrix). Unfortunately, the converse

127

is not true. It is not easy to generate characteristic points out of the matrix; in fact, it
is not even easy to find at least one affine point at all! It seems necessary to
transform at least some points of the curve as well, to have a starting point for the
generation. This is what will be done.

A conic will be represented by its matrix and three of its points. Clearly, if a
curve is defined originally by its characteristic points, three points of the curve can
be generated without problems as well as its matrix. The projective transformation
has to be used to transform the points themselves and formula (5.23) may be used to
generate the matrix of the transformed curve. What has to be shown is that if the
matrix A of the curve and three arbitrary points of the curve (say, X,Y and Z) are
given, it is possible to reconstruct the characteristic points. The necessary steps to
achieve that are as follows.

i) If the problem is given in 3D, the points X,Y and Z can be used to determine
the homogeneous coordinates of the plane I-I--XvYvZ. This plane contains
the curve; also, at least two ideal points of rI may be considered as known
(see chapter 2.9.2.2.)

ii) The conic has to be classified. This means that the intersection of the curve
and the ideal line (of the plane) had to be found. The method of doing this was
presented as a proof of theorem 2.26 for 2D and generalised for 3D in
chapter 2.9.2.2. As a by-product, not only is the classification achieved but
the eventual ideal points of the curve are also calculated.

iii) The centre of the curve has to be found. If the previous step has led to the fact
that the curve is a parabola, then this is automatically at hand: the (only) ideal
point is also the centre of the curve. If this is not the case, the pole of the ideal
line has to be calculated (remember that the center is the pole of the ideal
line). This can be done by choosing two ideal points (I1 and I2) and

(A/,)^(At2) (5.24)

will generate the pole in 2D (M 1 and A/2 describe the polars of the points 11
and 12 respectively). In case of 3D, the intersection with the plane H has also
to be added to (5.24).

iv) In case the curve is an ellipse, one of the known points of the curve may be
assigned as Q. The pole of the line CvQ can be calculated using (5.24) again
(in fact, this pole will be an ideal point). This ideal point will determine the
direction of the line conjugate to CvQ; its intersection points with the curve
can be determined using (as in ii)), the proof of the theorem 2.26). One of the
intersection points will be R.

v) For a hyperbola, the situation is slightly more complicated. Taking one of the
affine points of the hyperbola and denoting it by P (at least one of the points
X,Y or Z should be affine!) the other intersection point of the corresponding
diameter may be calculated. For each of the two asymptotes two points of it
are already known (the centre and the two corresponding ideal points; indeed,

128

the ideal points of the asymptotes are the intersections of the curve and the
ideal line, intersections which have been calculated in ii)). With the help of
these data the points E,F,G and H (intersection points of the asymptotes and
the tangents at the diameter endpoints) may also be computed. The method for
doing that was presented at the end of section 2.9.2.1, (see also figure 2.20).
Furthermore, the diameter, which is conjugate to the diameter PQ can also be
determined: the pole of P vQ (determined by the equivalent of formula (5.24))
gives a second point of it (the first being the centre). Finally, the intersection
points S and R may be calculated.

W R

Figure 5.22.

v/) For a parabola two affine points of the curve are already known (out of X, Y
or Z), which will play the role of P and Q. The pole of the line PvQ (denoted
by W on figure 5.22) may be connected to the (known) ideal point of the
curve; this will be a diameter. Based on the remark made in connection with
figure 2.19, the intersection of this diameter and the line segment PQ will be
the middle point of PQ. Additionally, the (other) intersection point of the
diameter with the curve may also be calculated; this will be C, the last missing
characteristic point.

It has been shown that using the matrix and three points of a conic the characteristic
points can be reconstructed; this also means that this representation is suitable for
the purposes of an extended graphics system.

6. Conclusions

The previous chapters have proven that using the tools and the descriptive power of
projective geometry, a number of problems can be solved in a more elegant and
efficient way and, furthermore, some of the problems arising in 3D graphics systems
have been solved for the first time by using these mathematical tools in a consequent
manner.

The W-clip (see chapter 3), published for the first time in [Herm87], was the
first fully general solution for the W-wraparound problem. Although alternative
approaches had been used previously, all had been developed for special forms of
projective mappings only (primarily the mappings realising the synthesised camera
model). In spite of its simplicity, the W-clip can handle the problem for all projec-
tive mappings, regardless of their possible special format. This generality is of par-
ticular importance when implementing such 3D packages as GKS-3D or PHIGS.
Furthermore, the optimisation methods, developed first in [Herm87] and extended in
the present thesis, result in reducing the amount of calculations to their possible
minimum; by just inspecting the matrix of the transformation, the number of clip-
ping steps can be reduced. The important point is that this optimisation will automat-
ically lead to reduction of calculations if the transformation happens to realise the
synthesised camera model.

The mathematical background used for the development of the W-clip has
also lead to additional improvements in the implementation of a 3D graphics pipe-
line. By moving some calculations into the four dimensional Eucledian space
instead of performing them prior to the projective transformation, a number of
compute-intensive graphics algorithms can be performed much more efficiently
than by other means. Examples presented in chapter 3 were Cell Array, Patterned
Area Filling, Stroke Precision characters and, with the help of some well-chosen
affine invariant formulations, all conic curves.

The modelling clip problem was, for some time, one of the unsolved algo-
rithmic problems of 3D computer graphics. The use of the four-dimensional
geometry provided the first viable solution for this problem, in spite of the fact that
this approach could be used in limited, albeit very important cases only. This solu-
tion, presented first in [Herin88], has also been fully described in chapter 4. The full
mathematical analysis of the modelling clip problem with solutions provided also
for the most general case, was also described in that chapter. The most important
result presented there was the fact that the modelling clip can be performed after the
full projective transformation, by performing a clip against two well-chosen convex
bodies.

By using very different techniques of projective geometry, new and alterna-
tive approaches for the fast implementation of some graphics algorithmic problems
were presented in chapter 5. These methods have in common the idea of finding a
projective invariant formulation for some graphical output primitives. Beyond the
possible speed improvement offered by these methods, these formulations have the
additional advantage of offering a new platform for the specification of new, general

130

and application-independent graphics systems. In chapter 5, the necessary
mathematical tools, based on the notion of double ratio, were developed and the
algorithmic methods presented for the case of such primitives as Cell Arrays, Filled
Patterned Areas and Stroke Precision characters. Also, projective invariant formulae
and generation methods were found and developed for the approximation of conics
under the effect of projective transformations, making use again of the projective
theory of conics.

7. Directions for Further Research

Beyond the specific algorithms which have an interest and importance of their own,
the present study was aimed at communicating a more general message. This might
be considered to be an attitude: it says that the use of more complicated and more
advanced mathematics might have fruitful results when applied to some relatively
well-known computer graphics problems and, in some cases (eg modelling clip),
such an approach may be the only one which leads to correct solutions. What "more
advanced" means is of course relative; results presented here cannot be considered
as real and deep novelties for pure mathematicians. If, however, the general level of
mathematical knowledge used in computer graphics is considered and this level is
judged upon the current curricula at universities as well as on what is reflected by
the usual and widespread computer graphics textbooks (see all the references made
before) one can definitely have the feeling that this level is not high enough or, to be
more exact, a higher level might lead sometimes to improvements in practice. As
such, this attitude might be important in a whole range of problems where projective
geometry may have an importance, such as the fields of computer vision, image
reconstruction, 3D interaction, 3D input tools (eg 3D locators), stereo image genera-
tion and stereo vision. This approach is also valid when using other mathematical
fields than projective geometry. The relatively recent emergence of the use of
quaternions in computer graphics and animation (see eg [Seid90]) or the use of sto-
chastic processes for modelling terrain (see eg [Anjy90]) are also additional exam-
pies.

To be more concrete, the description used in the previous chapters for the
images of regular grids (that is what are called Mtbius nets in mathematics) may be
an interesting starting point for further research. Indeed, this description and the
generation methods presented there might be used for the description of the distor-
tions on pixel images as well. In other words, the content of an image memory could
be transformed by a two dimensional projective transformation to describe a projec-
tive effect. An experimental implementation of the method described in the previous
chapter has shown that if the projective algorithm is used to transform a pixel array
instead of a "brute force" matrix-vector multiplication plus projective division, a
speed gain of 20% can be achieved. Taking into account the very high amount of
data involved, this speed improvement might have a great importance. Also, in most
the cases, such application do not suffer from the complications related to the
appearance of singularities in the algorithms, which makes them even simpler to
use. However, problems may arise when applying this generation method directly.
Indeed, the fact that pixels are at discrete locations would require some delicate con-
sideration. Also, a proper sampling of the colour values (by using for example sto-
chastic methods) is necessary to avoid aliasing.

Why is this interesting or important? In animation systems a commonly
employed technique is that of key frame animation. Here, important frames in a
sequence are generated directly from a geometric description, whilst intermediate
ones are derived by interpolation. In the course of such an interpolation it might be
interesting to have a method which would be able to distort a frame (that is a pixel

132

image) in a projective sense directly. Similar kind of distortions appear in texture
mapping (see for example [Heck86] or [Heck89]) where the mapping of textures
onto the screen may be described by a two dimensional affine or projective mapping
of the original texture.

Another example of an application where such pixel distortions might be
important is related to systems where traditional computer graphics (which might
also be called "image synthesis") and image processing (or "image analysis") are
used together. A major issue today is to see if it is possible to create a unified discip-
line which would encapsulate both image analysis and synthesis; in their recent sur-
vey in [Pun90], Pun and Blake have proposed the name "imagery" to cover such an
area. In such an environment, realistic images may be constructed by mixing syn-
thesised images (following traditional methods using some geometrical database)
and direct pixel images (like photographs for the background). If such images are
then to be seen from different viewpoints the original photograph must be distorted
again which leads to problems which might be related to the approach described in
the previous chapter.

A completely different field for possible further research is as follows. As
explained in chapter 2, projective geometry has resulted in a whole series of tools
and methods used by draughtsmen to produce technical drawings. These methods
include tools for drawing the image of a projected circle, to generate the image of
the middle point of a line segment etc. In some countries this field has become a
separate discipline within mathematics as some kind of special chapter of projective
geometry, called "Descriptive Geometry" in English (or "Darstellunggeometrie"
in German) while in other places it is part of a larger discipline concentrating on
technical drawing in general (which involves a whole range of additional problems
which have nothing to do with projective geometry); [Ffius71] is just one of
numerous possible references for such textbooks. These methods are powerful and
in most cases relatively easy to use; as an example, most of the figures in this study
have been generated using such methods. In some way, the generation of Mfbius
nets as described in the previous chapter has also been inspired by these approaches
and the reconstruction of the characteristic points of conics has also followed similar
mental paths.

It is therefore a natural idea to see whether these methods could be used for
computer graphics as well. The problem is that in most of the cases these methods
are based on the ability of the draughtsman to generate the intersection of two lines
with the help of rulers. Whereas this is easy to do for a human, the necessary calcu-
lations are not the simplest ones for computers. However, one could imagine a
hardware/firmware configuration where the intersection calculations are basic primi-
tives realised by some hardware or firmware. The necessary calculations, which
involve the evaluation of some formal determinant, are very regular and therefore
easily realisable by an appropriate microcode or hardware. In such cases, however,
the step of creating the intersection of two lines becomes cheap which might mean
that the computer might try to simulate a draughtsman. Whether such an approach
would really lead to significant improvements is not clear but this might be

133

worthwhile to investigate.

It is also a natural idea to follow the investigations on conics toward quadratic
surfaces. The reason this has not been done up to now is that generation of quadratic
surfaces leads to a problem which is not closely related to the quadratic surfaces
proper but is of a more general nature. This problem is the question of rendering
shaded 3D surfaces. The problem occurs in very practical terms in case of a
PHIGS PLUS implementation (although not in using quadratic but Rational
B-Spline Surfaces). This problem is presented in more detail in the next chapter.

8. An Unsolved Problem: Shaded B-Spline Surfaces

To make the problem of shaded B-Spline Surfaces understandable, it is worthwhile
giving a very short introduction to rational and non-rational B-Spline Surfaces.
Apart from the problem to be described it will also be interesting to see that the 4D
approach which has extensively been used throughout the present study is also used
in the theory of rational B-Splines, even if this is not always clearly stated.

Mathematically, splines are piecewise polynomial functions; these functions
are used in approximation theory to approximate more complicated functions. In
computer graphics, B-Splines are used in a similar sense; however, the aim is rather
to approximate a set of points either with a curve or with a surface and in such a
way that the approximation should be easy to calculate and to manipulate by model-
ling and graphics systems.

Definition 8,1. A k th degree (non-rational) B-Spline curve C(t) is
defined by:

n

C (t) = Y Bi, k(t)P i (a < t < b) (8.1)
i = 1

where

the Pi-s are 3D (or 2D) points, called control points.

a and b are fixed with 0_~a <b.

the Bi.k(t) are scalar-valued spline functions in the variable t, of order k
(degree k - l) . They are called the B-Spline basis functions and they form, in
fact, the basis of an appropriately chosen linear space of spline functions. The

f ~ l n + k basis functions are completely defined by the order k and a knot vector l:jfj~l
where

a = t l = t2 = " ' " = tk <lk+l~lk+2 ~ ' " " (8.2)

~ l n < l n + 1 = " " " = I n + k = b

The basis functions are non-zero on a finite number of adjacent intervals
defined by the knot vector and zero otherwise. If there exists some positive
real number d such that t l+l- t :-d for k<l_~n, the knot vector is said to be uni-
form and the corresponding B-Spline curve is also called a uniform B-Spline
curve; it is nonuniform otherwise ([Ti1183], [Pieg87]).

136

Similarly, one may define uniform or nonuniform B-Spline surfaces in 3D:

Definition 8.2. A kthx l th degree non-rational B-Spline surface is
defined as follows:

n ra

S (s, t) = ~ ~ ni, k(S)Bj, l(t)Pi, j (8.3)
i = l j = l

where

�9 the Pi, j-s form an n xm array of control points.
f ~ l n + k �9 Bi, k(S) is the i th basis function of order k, defined by the knot vector I~Mp-1

and By, l(t) is the jth basis function of order /, defined by the knot vector
§ l m + l ,qlq=l.

There is a rich and elegant mathematical theory for B-Splines. The reader may refer
to the excellent book of Barrels, Beatty and Barsky ([Bart87]) or to the well known
overview of the theory given in [Fari88]. In these references methods are presented
to evaluate B-splines, like the recursive Cox-de Boor algorithm or the Oslo algo-
rithm, and the basic properties of these curves and surfaces are also described. The
appendix of the PHIGS PLUS specification also contains the formal evaluation for-
mulae for these primitives (see [ISO89a]). Rendering these objects is also based on
these evaluation algorithms: by appropriate methods a large number of points is gen-
erated and these points are then used for a polynomial approximation of the
curve/surface. In this respect, the rendering process resembles the one used for con-
ics.

As far as the main properties of B-Splines curves/surfaces are concerned the
most important one related to the present study is the fact that a B-Spline curve or a
B-Spline surface is affine invariant. In other words, transforming a full
curve/surface (that is all its generated points) is equivalent to transforming the con-
trol points only and generating the curve/surface afterwards. Just as in the case of
conics, this feature is of a great importance as far as fast generation and rendering is
concerned. However, B-Splines curves/surfaces are not projective invariant; in
other words, the problem of finding a projective invariant formulation for these
curves and surfaces is very important.

The answer to this problem is the introduction of the so-called rational
B-Spline curves or surfaces. For such purposes, instead of the usual control points
weighted control points are used. When a curve is to be described in 3D (which is
the usual case), each control point Pi=(xi,Yi,Zi) is "weighted" with a weight value
wi to generate a set of 4D control points PW=(wixi,wiYi,WiZi,Wi) where wi>O ([).
With these 4D control points a B-Spline curve is defined in 4D by:

n

CW(t) = ~,Bi, k(t)p w (8.4)
i = 1

just as in case of non-rational B-Splines. As a next step, this curve is projected back

137

onto the w =1 plane by using the projective division and thus resulting in:

n

Y~Bi, k(t)wiPi
i-i

c (o -
n

~,Bi, lt(t)wi
i-1

(8.5)

,x

~nh c u r v ~

Figure 8.1.

(See also figure 8.1). Similarly, one may define a rational B-spline surface by using
(instead of (8.3)):

n m

Z Bi, k(S ~ j,t(t)wijP i,j
S (s , t) = i-lj=l (8.6)

II m

~, ~,Bi, k(S)Bj,t(t)wi,j
i=lj=l

It is interesting to realise that the use of 4D geometry is not confined to pro-
jective problems only. It has to be stressed, however, that rational B-Spline curves
or surfaces are not defined in projective or even homogeneous terms. Indeed, the
requirement that wi should be positive is clearly in contradiction with the definition
of homogeneous vectorst; furthermore, the exact choice of the value of wi has an
influence on the shape of the curve and this can be and should be used by designers
to adapt the curve to their needs (this is the reason why the value of w i is called
weight; see also [Pieg87]).

The advantages of rational B-Splines over non-rational ones are numerous.

tThe use of the symbols w~ for weights is the accepted use in the theory of NURB-s, although
their use might be misleading in this context, as it suggests that they correspond exactly to the
fourth element of a homogeneous vector of projective geometry.

138

Fkst of all, they allow the generation of surfaces and curves (eg circle, torus, sur-
faces of revolution) which are not exactly describable by non-rational curves or sur-
faces. Nice examples can be found in both [Ti1183] and [Pieg87]. As already men-
tioned, they give an additional freedom for the control of the final shape via the
value of the weight which may be very useful for designers. Furthermore, they seem
to offer a way to deal with projective invariance.

It is the case that the rational B-Spline formulation gives a more-or-less pro-
jective invariant description of splines. Formula (8.4) defines in fact a non-ra t ional
B-Spline curve in 4D. To use the linear part of the projective transformation it is
therefore enough to transform the control points again and the projective division
(that is the step from formula (8.4) to (8.5)) can be done afterwards. In other words,
handling a B-Spline via rational curves neatly fits into the frame described in the
chapter dealing with 4D methods: the approximation of the final curve (or surface)
can be done after the linear part of the transformation and before the projective divi-
sion.

What, then, is the problem? Shading. Indeed, in modem systems as well as in
the more modern standard proposals like PHIGS PLUS, all surfaces should also be
rendered (on demand) using some kind of shading. As long as only a flat rendering
of a surface is required the above described process of approximating in 4D works
wonderfully; however, there are serious problems when it comes to rendering the
same surface using shading.

The usually accepted shading method can be broken down into the following
steps.

/) The surface to be rendered is approximated by planar polygons.

ii) At each vertex of the polygons a number of values have to be calculated to
evaluate the shading equations. These data depend on the reflection type (dif-
fuse, specular) and the light source types (ambient, positional, directional,
spot) and include typically such data as normal vectors (the shading equation
are presented in the appendix of the PHIGS PLUS document [ISO89a] and
are also explained in more detailed and in a much more understandable way in
for example [P6ps89]).

iii) The polygons are rendered individually by interpolating the values determined
by step ii) for the interior pixels. Whether this interpolation involves the
colour values only (Gouraud shading) or the vector values as well (Phong
shading) is usually a set-table parameter.

The source of the problem lies in step ii). Indeed, the polynomial approximation can
be done without problems in 4D and the interpolation step itself does not depend on
the geometrical features. On the other hand, step ii) involves a number of geometri-
cal data which are all Euclidean in nature (see also figure 8.2 as well as the shading
equations described in [ISO89a] or [P6ps89]): normals, vectors and distances
between the points on the surface and the light source, direction of viewing etc. All
these data are distorted by a projective transformation, that is for example the image

139

\

Figure 8.2.

of~ 'wil l not be the normal on the image of the surface any more; that is it is not
mathematically equivalent to approximate the surface and the corresponding vectors
first and then transform them or the other way round. In other words, if step ii) is
performed in 4D, after the linear part of the transformation, the visual effect of the
shading calculations will be different; the only way of following steps exactly i)-iii)
is to perform them before the transformation. This is quite a disturbing fact; indeed,
the B-Spline formulation has the very attractive feature of describing a complicated
shape with a relatively low number of points (eg the description of a full torus in
space requires 64 points in space with weights, see [Pieg87]) whereas the correct
visualisation of the same surface would require much more. It makes therefore quite
a difference whether the full approximation has to be made before the transforma-
tion (leading to a huge number of matrix-vector multiplications in practice) or after-
wards.

There is no known solution to this problem. In a recent paper, Abi-Ezzi and
Wozny ([Abie90], see also [Abie89}) give a very pragmatic solution by "factor-
ing" a projective transformation; this means the transformation is described as a
concatenation of a fully orthogonal and a projective transformation, where this latter
one has a relatively "sparse" matrix (that is it can be proven that a number of ele-
ments will be zero). The approximation and the shading equations are evaluated
after the orthogonal transformation but before the projective one. This solution
works well and leads to speed improvements but is clearly not a full one.

A possible approach for a more elaborate solution would be to revise the
shading model itself. It should not be forgotten that all shading equations (as well as
the interpolations of step iii)) are only models and approximations of physical
phenomena; an alternative method could eventually be found which would lead to a
projective invariant formulation. This alternative should be, of course, no worse in
its visual effect than the old one. What such a new model could look like is however
still an open question.

References

[Abie89] S.S. Abi-Ezzi, The Graphical Processing of B-Splines in a Highly
Dynamic Environment, PhD Thesis, Rensselaer Polytechnic Institute, Troy,
New York (1989).

[Abic90] S.S. Abi-Ezzi and M.J. Wozny, "Factoring a Homogcneous Transforma-
tion for a more Efficient Graphics Pipeline", in Eurographics'90 Conference
Proceedings, cds. C.E. Vandoni and C.E. Vandoni, North Holland, Amster-
dam (1990). Also in Computer Graphics Forum, 9 (1990).

[Anjy90] K. Anjyo, "Mathematical Models for Scmi-globalizcd Spectral Syn-
theis", in Eurographics'90 Conference Proceedings, eds. C.E. Vandoni and
C.E. Vandoni, North Holland, Amsterdam (1990)

[Arde87] "Dor~ Programmer's Guide", Release 1.0, Ardent Computer Corporation,
Sunnyvale, CA. (1987).

[Arno90] D.B. Arnold and D.A. Duce, ISO Standards for Computer Graphics: The
First Generation, Butterworths, London (1990).

[Arok89] A. Arokiasamy, "Homogeneous Coordinates and the Principle of Duality
in Two Dimensional Clipping", Computers and Graphics, 13 (1989).

[Bart87] R.H. Bartels, J.C. Beatty and B.A. Barsky, An Introduction to Splines for
Use in Computer Graphics & Geometric Modelling, Morgan Kaufmann Pub-
lishers, Inc., Los Altos, CA. (1987).

[Berm61] G. Berman, "The Wedge Product", American Mathematical Monthly, 68
(1961).

[Bez83] H.E. Bez, "Homogeneous Coordinates for Computer Graphics", Com-
puter Aided Design, 15 (1983).

[Blin78] J.F. Blinn and M.E. Newell, "Clipping Using Homogeneous Coordinates",
Computer Graphics, 12 (1978).

[Clif88] W. Clifford, J.I. McConnell and J. Saltz, "The Development of PEX", in
Eurographics'88 Conference Proceedings, eds. D.A. Duce and P. Janc~ne,
North-Holland, Amsterdam (1988).

[GSPC77] ACM Siggraph GSPC, "Status Report of the Graphics Standards Plan-
ning Committee", Computer Graphics, 11 (1977).

[GSPC79] ACM Siggraph GSPC, "Status Report of the Graphics Standards Plan-
ning Committee", Computer Graphics, 13 (1979).

[Coxe49] H.S.M. Coxeter, The Real Projective Plane, McGraw-Hill, New York-
Toronto - London (1949).

[Coxe74] H.S.M. Coxeter, Projective Geometry, University of Toronto Press,
Toronto (1974).

[Crem60] L. Cremona, Elements of Projective Geometry, Dover Publications, Inc.,
New York (1960).

142

[D/ire66] A. Diirer, Underweysung der Messung mit dem Zirckel un Richtscheyt in
Linien Ebnen un Ganzen Corporen, (Facsimile Reprint from the original of
1525), Josef Stocker/Schmind, Nfirnberg (1966).

[Eukl75] Euklid, Die Elemente, Buch I-XIII, Akademische Verlagsgesellschaft,
Leipzig (1975).

[Fari88] G. Farin, Curves and Surfaces for Computer Aided Geometric Design,
Computer Science and Scientific Computing, Academic Press, San Diego-
London (1988).

[F/ius71] A. F~iustle, Technisches Zeichnen, Don Bosco Verlag, Miinchen (1971).

[Faux79] I.D. Faux and M.J. Pratt, Computational Geometry for Design and Mani-
facture, Ellis Horwood, New York - Chichester - Brisbane - Toronto (1979).

[Fisc85] G. Fischer, Analytische Geometrie, Vieweg Studium, Grnndkurs Mathema-
tik, Vieweg and Sohn, Braunschweig (1985).

[Fole84] J.D. Foley and A. van Dam, Fundamentals of Computer Graphics,
Addison-Wesley, Reading, MA. (1984).

[Fole90] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics:
Principles and Practice, Addison-Wesley, Reading, MA. (1990).

[Ghar85] N. Gharachorloo and Ch. Pottle, "SUPER BUFFER: A Systolic VLSI
Graphics Engine for Real Time Raster Image Generation", in Proceedings of
Chapel Hill Conference on VLSI, Computer Science Press, Rockville, MD.
(1985). Also in Tutorial: Computer Graphics Hardware, Image Generation
and Display, eds. H.K. Reghbati and A.Y.C. Lee, IEEE Computer Society
Press, Washington D.C. (1988).

[G6r688] J. G6r6g, G. Krammer and A. Vincze, "IXPHIGS: A Portable Implemen-
tation of the International PHIGS Standard", in Eurographics'88 Conference
Proceedings, eds. D.A Duce and P. Janc~ne, North Holland, Amsterdam
(1988).

[Hage87] P.J.W. ten Hagen, A.A.M. Kuijk and C.G. Trienekens, "Display Archi-
tecture for VLSI-based Graphics Workstations", in Advances in Computer
Graphics Hardware I, ed. W. Strager, EurographicSeminar Series, Springer
Verlag, Berlin - Heidelberg - New York - Tokyo (1987).

[Hage90] P.J.W. ten Hagen, I. Herman and J.R.G. de Vries, "A Dataflow Graphics
Workstation", Computer and Graphics, 14, (1990). Also in Reports of the
Centre for Mathematics and Computer Sciences, Report No. CS-R8910,
Amsterdam (1989).

[Haj660] Gy. Hajds, Bevezetds a Geometridba, Tank6nyvkiad6, Budapest (1960).

[Heck86] P.S. Heckbert, "A Survey of Texture Mapping", IEEE Computer Graph-
ics & Applications, 6 (1986).

[Heck89] P.S. Heckbert, "Fundamentals of Texture Mapping and Image Warping",
Reports of the Computer Science Divisions of the University of California,

143

Report No. UCB/CSD 89/156, Berkeley, CA. (1989).

[Herin87] I. Herman and J. Reviczky, "A Means to Improve the GKS-3D/PHIGS
Output Pipeline Implementation", in Eurographics'87 Conference Proceed-
ings, ed. G. Mar6chal, North Holland, Amsterdam, (1987). Also in Computers
and Graphics, 12 (1988).

[Herin88] I. Herman and J. Reviczky, "Some Remarks on the Modelling Clip Prob-
lem", Computer Graphics Forum, 7 (1988).

[Herm88a] I. Herman, T. Tolnay-Knef61y, J. Reviczky and F.L. Westhoff, "Three
Dimensional Graphics Standards and CGI", Computers and Graphics", 12,
(1988).

[Herm89] I. Herman, "2.5D Graphics Systems", in Eurographics'89 Conference
Proceedings, eds. W. Hansmann, F.R.A. Hopgood and W. StraBer, North-
Holland, Amsterdam (1989). Also in ISO document ISO/IEC JTC 1/SC 24
API-13 (1989). Also in Reports of the Centre for Mathematics and Computer
Sciences, Report No. CS-R8921, Amsterdam (1989).

[Herm89a] I. Herman, "On The Projective Invariant Representation of Conics in
Computer Graphics", Computer Graphics Forum, 8 (1989). Also in Reports
of the Centre for Mathematics and Computer Sciences, Report No. CS-
R8938, Amsterdam (1989).

[Herm90] I. Herman, "The Use of Projective Geometry in Computer Graphics",
PhD Thesis, University of Leiden (1990).

[Herm91] I. Herman, "Projective Geometry and Computer Graphics", in Advances
in Computer Graphics IV, eds. W.T. Hewitt, M. Grave and M. Roch, Eurogra-
phicSeminar Series, Springer Verlag, Berlin - Heidelberg - New York - Tokyo
(1991).

[Hest84] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A
Unified Language for Mathematics and Physics, D. Reidel, Dordrecht, (1984).

[Heyt63] A. Heyting, Projective Meetkunde, P. Noordhoff N.V., Groningen (1963).

[Hopg83] F.R.A. Hopgood, D.A. Duce, J.R. Gallop and D.C. Sutcliffe, Introduction
to the Graphical Kernel System GKS, Academic Press, London - New York
(1983).

[Hopg91] F.R.A. Hopgood and D.A. Duce, A primer for PHIGS, John Wiley &
Sons (1991).

[Howa87] T.L.J. Howard, "A Shareable Centralised Database of K R T 3 -A
Hierarchical Graphics System Based on PHIGS", in Eurographics'87
Conference Proceedings, ed. G. Mar6chal, North Holland, Amsterdam,
(1987). Also in Computers and Graphics, 12 (1988).

[Howa91] T.L.J. Howard, W.T. Hewitt, R.J. Hubbold and K.M. Wyrwas, A Practi-
cal Introduction to PHIGS and PHIGS PLUS, Addison-Wesley,
Workingham - Reading (1991).

144

[Hiibl90] J. Hiibl and I. Herman, "Modelling Clip: Some More Results", Computer
Graphics Forum, 9 (1990). Also in Reports of the Centre for Mathematics
and Computer Sciences, Report No. CS-R9008, Amsterdam (1990).

[Hubb87] R.J. Hubbold, "3D Graphics Standards: A Critical Appraisal", in Aus-
graph'87 Conference Proceedings, Australian Computer Graphics Associa-
tion (1987).

[Hubb90] R. Hubbold and T. Hewitt "GKS-3D and PHIGS: Theory and Practice",
in Advances in Computer Graphics IV, eds. W.T. Hewitt, M. Grave and M.
Roch, EurographicSeminar Series, Springer Verlag, Berlin- Heidelberg-
New York - Tokyo (1990).

[ISO85] "Information processing systems - Computer graphics - Graphical Kernel
System (GKS), functional description", ISO 7942 (1985).

[ISO88] "Information processing systems - Computer graphics - Graphical Kernel
System for Three Dimensions (GKS-3D), functional description", ISO 8805
(1988).

[ISO88a] "Information processing systems - Computer graphics - Interfacing tech-
niques for dialogues with graphical devices (CGI), functional description",
ISO DP 9636/1-6 (1988).

[ISO88b] "PEX Protocol Specification", ISO IEC JTC 1/SC 24/WG2/N2 (1988).

[ISO89] "Information processing systems - Computer graphics, Programmer's
Hierarchical Interactive Graphics System (PHIGS)-Part 1, functional
description", ISOflEC 9592-1 (1989).

[ISO89a] "Information processing systems - Computer graphics, Programmer's
Hierarchical Interactive Graphics System (PHIGS) - Part 4, Plus Lumi~re und
Surfaces (PHIGS PLUS)", ISOflEC 9592-4 (1990).

[Kel163] O.H. Keller, Analytische Geometrie und Lineare Algebra, Deutscher Ver-
lag der Wissenschaften, Berlin (1963).

[Ker~66] B. Ker~kj~irt6, Les Fondements de la G~omdtrie, Vol. II, Gdomdtrie Pro-
jective, Akad6miai Kiad6, Budapest (1966).

[Klem89] K. Klement, "Allgemeine Rotationsfl/ichen und Deren Darstellung als
Rationale F1/ichen", CAD und Computergraphik, 12 (1989).

[Kram89] G. Krammer, "Notes on the Mathematics of the PHIGS Output Pipe-
line", Computer Graphics Forum, 8 (1989).

[Lanc70] C. Lanczos, Space Through the Ages, Academic Press, Inc., London
(1970).

[Magn86] N. Magnenat-Thalmann, D. Thalmann, "Introduction ~ l'Informatique
Graphique", in Advances in Computer Graphics I, eds. G. Enderle, M. Grave
and F. Lillehagen, EurographicSeminar Series, Springer Verlag, Berlin-
Heidelberg - New York - Tokyo (1986).

145

[Mudu86] S.P. Mudur, "Mathematical Elements for Computer Graphics", in
Advances in Computer Graphics I, eds. G. Enderle, M. Grave and F. Lil-
lehagen, EurographicSeminar Series, Springer Verlag, Berlin- Heidelberg-
New York - Tokyo (1986).

[M~irt86] S. M~irton, Nincs kirdlyi tit (Matematikat~irt~neO, Gondolat, Budapest
(1986).

[Newm79] W.M. Newmann and R.F. Sproull, Principles of Interactive Computer
Graphics, McGraw-Hill, New York - Toronto - London (1979).

[OBar89] R. M. O'Bara and S. S. Abi-Ezzi, "An Analysis of Modeling Clip", in
Eurographics'89 Conference Proceedings, eds. W. Hansmann, F.R.A. Hop-
good and W. StraBer, North-Holland, Amsterdam (1989).

[Penn86] M.A. Penna and R.R. Patterson, Projective Geometry and Its Application
to Computer Graphics, Prentice-Hall, New Jersey (1986).

[Pieg87] L. Piegl and W. Tiller, "Curve and Surface Constructions Using Rational
B-Splines", Computer Aided Design, 19 (1987).

[Pixa88] "The RenderMan Interface", Version 3.0, PIXAR, San Rafael, CA.
(1988).

[Pun90] Th. Pun and E. Blake, "Relationships Between Image Synthesis and
Analysis: Toward Unification?", Report of the Eurographics Working Group
on Relationships Between Image Synthesis and Analysis, Computer Graphics
Forum, 9 (1990).

[P6ps89] J. P6psel and Ch. Hornung, "HighlightShading, Lighting and Shading in a
PHIGS+/PEX Environmnent", in Eurographics'89 Conference Proceedings,
eds. W. Hansmann, F.R.A. Hopgood and W. StraBer, North-Holland, Amster-
dam (1989). Also in Computers and Graphics, 14 (1990).

[Reis81] R.F. Reisenfeld, "Homogeneous Coordinates and Projective Planes in
Computer", Graphics IEEE Computer Graphics & Application, 1 (1981).

[Rose63] R.A. Rosenbaum, Introduction to Projective Geometry and Modern Alge-
bra, Addison-Wesley, Reading, MA. (1963).

[Suth74] I.E. Sutherland and G.W. Hodgman, "Reentrant Polygon Clipping",
Comm. oftheACM, 17 (1974).

[Sabi77] M.A. Sabin, "The Use of Piecewise Forms for the Numerical Representa-
tion of Shape", PhD Thesis, Reports of the Computer and Automation Insti-
tute of the Hungarian Academy of Sciences, 60/1977, Budapest (1977).

[Salm87] M. Salmon and R. Slater, Computer Graphics, Systems and Concepts,
Addison-Wesley, Reading, MA. (1987).

[Seid90] H.-P. Seidel, "Quaternionen in Computergraphik und Robotik", in
Geometrische Verfahren der Graphischen Datenverarbeitung, ZGDV-Reihe
Beitfiige zur Graphischen Datenverarbeitung, Springer Verlag, Berlin-
Heidelberg - New York - Tokyo (1990).

146

[Sing86] K. Singleton, "An Implementation of the GKS-3D/PHIGS Viewing Pipe-
line", in Eurographics'86 Conference Proceedings, ed. A.A.G. Requicha,
North-Holland, Amsterdam (1986). Also in GKS- Theory and Practice, eds.
P.R. Bono and I. Herman, EurographicSeminar Series, Springer Verlag,
Berlin - Heidelberg - New York - Tokyo (1987).

[Sto189] J. Stolfi, "Primitives for Computational Geometry", Digital Systems
Research Center Report 36, Palo Alto, CA. (1989).

[Stru53] D.J. Struik, Lectures on Analytic and Projective Geometry, Addison-
Wesley, Reading, MA. (1953).

[Ti1183] W. Tiller, "Rational B-Splines for Curve and Surface Representation",
IEEE Computers Graphics & Applications, 3 (1983).

[V~ra84] T. V~irady, "Basic Equations and Simple Geometric Properties of
Double-quadratic Curves and Surfaces", CAD Group Document 117, Cam-
bridge University Engineering Department (1984).

[V~ira85] T. V~irady, "Integration of Free-form Surfaces Into a Volumetric
Modeller", PhD Thesis, Reports of the Computer and Automation Institute of
the Hungarian Academy of Sciences, 171/1985, Budapest (1985).

[Watt89] A. Watt, Three Dimensional Computer Graphics, Addison Wesley, Wok-
ingham (1989).

[Wood71] P.A. Woodsford, "The Design and Implementation of the GINO 3D
Graphics Software Package", Software Practice and Experience, 1 (1971).

[Zach89] M. Zachrisen, "Yet Another Remark on the Modelling Clip Problem",
Computer Graphics Forum, 8 (1989).

Lecture Notes in Computer Science
For information about Vols. 1-481
please contact your bookseller or Springer-Verlag

Vol. 482: Y. Kodratoff (Ed.), Machine Learning - EWSL-91.
Proceedings, 1991. XI, 537 pages. 1991. (Subseries LNAI).

Vol. 483: G. Rozenberg (Ed.), Advances in Petri Nets 1990. VI,
515 pages. 1991.

Vol. 484: R. H. MiShring (Ed.), Graph-Theoretic Concepts in
Computer Science. Proceedings, 1990. IX, 360 pages. 1991.

Vol. 485: K. Furukawa, H. Tanaka, T. Fuijsaki (Eds.), Logic
Programming '89. Proceedings, 1989. IX, 183 pages. 1991.
(Subseries LNAI).

Vol. 486: J. van Leeuwen, N. Santoro (Eds.), Distributed Algo-
rithms. Proceedings, 1990. VI, 433 pages. 1991.

Vol. 487: A. Bode (Ed.), Distributed Memory Computing. Pro-
ceedings, 1991. XI, 506 pages. 1991.

Vol. 488: R. V. Book (Ed.), Rewriting Techniques and Appli-
cations. Proceedings, 1991. VII, 458 pages~ 1991.

Vol. 489: I. W. de Bakker, W. P. de Roever, G. Rozenberg (Eds.),
Foundations of Object-Oriented Languages. Proceedings, 1990.
VIII, 442 pages. 1991.

Vol. 490: J. A. Bergstra, L. M. G. Feijs (Eds.), Algebraic Meth-
ods II: Theory, Tools and Applications. VI, 434 pages. 1991.

Vol. 491: A. Yonezawa, T. Ito (Eds.), Concurrency: Theory,
Language, and Architecture. Proceedings, 1989. VIII, 339 pages.
1991.

Vo1. 492: D. Sriram, R. Logcher, S. Fukuda (Eds.), Computer-
Aided Cooperative Product Development. Proceedings, 1989
VII, 630 pages. 1991.

Vol. 493: S. Abramsky, T. S. E. Maibaum (Eds.), TAPSOFT
'91. Volume 1. Proceedings, 1991. VIII, 455 pages. 1991.

Vo1. 494: S. Abramsky, T. S. E. Maibaum (Eds.), TAPSOFT
'91. Volume 2. Proceedings, 1991. VIII, 482 pages. 1991.

Vo1. 495: 9. Thalheim, J. Demetrovics, H.-D. Gerhardt (Eds.),
MFDBS '91. Proceedings, 1991. VI, 395 pages. 1991.

Vol. 496: H.-P. Sehwefel, R. Mgnner (Eds.), Parallel Problem
Solving from Nature. Proceedines, 1990. XI, 485 pages. 1991.

Vol. 497: F. Dehne, F. Fiala. W.W. Koczkodaj (Eds.), Advances
in Computing and Information - ICCI '91. Proceedings, 1991.
VIII, 745 pages. 1991.

Vol. 498: R. Andersen, J. A. Bubenko jr., A. S01vberg (Eds.),
Advanced Information Systems Engineer!ng. Proceedings, 1991.
VI, 579 pages. 1991.

Vol. 499: D. Christodoulakis (Ed.), Ada: Thee Choice for '92.
Proceedings, 1991. VI, 411 pages. 1991.

Vol. 500: M. Held, On the Computational Geometry of Pocket
Machining. XII, 179 pages. 1991.

Vol. 501: M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, D.
Sannella (Eds.), Algebraic System Specification and Develop-
ment. VIII, 98 pages. 1991.

Vol. 502: J. B~rzdio~, D. Bj0rner (Eds.), Baltic Computer Sci-
ence. X, 619 pages. 1991.

Vol. 503: P. America (Ed.), Parallel Database Systems. Pro-
ceedings, 1990. VIII, 433 pages. 1991.

Vol. 504: J. W. Schmidt, A. A. Stngny (Eds.), Next Generation
Information System Technology. Proceedings, 1990. IX, 450
pages. 1991.

Vol. 505: E. H. L. Aarts, J. van Leeuwen, M. Rein (Eds.), PARLE
'91. Parallel Architectures and Languages Europe, Volume I.
Proceedings, 1991. XV, 423 pages. 1991.

Vol. 506: E. H. L. Aarts, J. van Leeuwen, M. Rem (Eds.), PARLE
'9 I. Parallel Architectures and Languages Europe, Volume lI.
Proceedings, 1991. XV, 489 pages. 1991.

Vol. 507: N. A. Sherwani, E. de Doncker, J. A. Kapenga (Eds.),
Computing in the 90's. Proceedings, 1989. XIII, 441 pages.
1991.

Vol. 508: S. Sakata (Ed.), Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes. Proceedings, 1990. IX, 390
pages. 1991.

Vol. 509: A. Endres, H. Weber (Eds.), Software Development
Environments and CASE Technology. Proceedings, 1991. VIII,
286 pages. 1991.

Vol. 510: J. Leach Albert, B. Monien, M. Rodrfguez (Eds.),
Automata, Languages and Programming. Proceedings, 1991.
XII, 763 pages. 1991.

Vol. 511: A. C. F. Colchester, D.J. Hawkes (Eds.), Information
Processing in Medical Imaging. Proceedings, 1991. XI, 512
pages. 1991.

Vol. 512: P. America (Ed.), ECOOP '91. European Conference
on Object-Oriented Programming. Proceedings, 1991. X, 396
pages. 1991.

Vol. 513: N. M. Mattos, An Approach to Knowledge Base
Management. IX, 247 pages. 1991. (Subseries LNAI).

Vol. 514: G. Cohen, P. Charpin (Eds.), EUROCODE '90. Pro-
ceedings, 1990. XI, 392 pages. 1991.

Vol. 515: J. P. Martins, M. Reinfrank (Eds.), Truth Maintenance
Systems. Proceedings, 1990. VII, 177 pages. 1991. (Subseries
LNAI).

Vol. 516: S. Kaplan, M. Okada (Eds.), Conditional and Typed
Rewriting Systems. Proceedings, 1990. IX, 461 pages. 1991.

Vol. 517: K. Nrkel, Temporally Distributed Symptoms in Tech-
nical Diagnosis. IX, 164 pages. 1991. (Subseries LNAI).

Vol. 518: J. G. Williams, Ins tantiation Theory. VIII, 133 pages.
1991. (Subseries LNAI),

Vol. 519: F. Dehne, J.-R. Sack, N. Santoro (Eds.), Algorithms
and Data Structures. Proceedings, 1991. X, 496 pages. 1991.

Vol. 520: A. Tarlecki (Ed.), Mathematical Foundations of
Computer Science 1991. Proceedings, 1991. XI, 435 pages.
1991.

Vol. 521: B. Bouchon-Meunier, R. R. Yager, L. A. Zadek (Eds.),
Uncertainty in Knowledge-Bases. Proceedings, 1990. X, 609
pages. 1991.

Vol. 522: J. Hertzberg (Ed.), European Workshop on Planning.
Proceedings, 1991. VII, 121 pages. 1991. (Subseries LNAI).

Vol. 523: J. Hughes (Ed.), Functional Programming Languages
and Computer Architecture. Proceedings, 199 l. VIII, 666 pages.

1991.

Vol. 524: G. Rozenberg (Ed.), Advances in Petri Nets 1991.
VIII, 572 pages. 1991.

Vol. 525: O. Grinther, H.-J. Schek (Eds.), Advances in Spatlal
Databases. Proceedings, 1991. XI, 471 pages. 1991.

Vol. 526: T. Ito, A. R. Meyer (Eds.), Theoretical Aspects of
Computer Software. Proceedings, 1991. X, 772 pages. 1991.

Vol. 527: LC.M. Baeten, J. F. Groote (Eds.), CONCUR '91.
Proceedings, 1991. VIII, 541 pages. 1991.

Vol. 528: J. Maluszynski, M. Wirsing (Eds.), Programming Lan-
guage Implementation and Logic Programming. Proceedings,
1991. XI, 433 pages. 1991.

Vol. 529: L. Budach (Ed.), Fundamentals of Computation
Theory. Proceedings, 1991. XII, 426 pages. 1991.

Vol. 530: D. H. Pitt, P.-L. Curien, S. Abramsky, A. M. Pitts, A.
Poign~, D. E. Rydeheard (Eds.), Category Theory and Compu-
ter Science. Proceedings, 1991. VII, 301 pages. 1991.

Vol. 531: E. M. Clarke, R. P. Kurshan (Eds.), Computer-Aided
Verification. Proceedings, 1990. XIII, 372 pages. 1991.

Vol. 532: H. Ehrig, l-I.-J. Kreowski, G. Rozenberg (Eds.), Graph
Grammars and Their Application to Computer Science. Pro-
ceedings, 1990. X, 703 pages. 1991.

Vol. 533: E. B6rger, H. Kleine Brining, M. M. Richter, W.
Schtinfeld (Eds.), Computer Science Logic. Proceedings, 1990.
VIII, 399 pages. 1991.

Vol. 534: H. Ehrig, K. P. Jantke, F. Orejas, H. Reichel (Eds.),
Recent Trends in Data Type Specification. Proceedings, 1990.
VIII, 379 pages. 1991.

Vol. 535: P. Jorrand, J. Kelemen (Eds.), Fundamentals of Arti-
ficial Intelligence Research. Proceedings, 1991. VIII, 255 pages.
1991. (Subseries LNAI).

Vol. 536: J. E. Tomayko, Software Engineering Education. Pro-
ceedings, 1991. VIII, 296 pages. 1991.

Vol. 537: A. J. Menezes, S. A. Vanstone (Eds.), Advances in
Cryptology- CRYPTO '90. Proceedings. XIII, 644 pages. 1991.

Vol. 538: M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A
Unified Approach to Interior Point Algorithms for Linear
Complementarity Problems. VIII, 108 pages. 1991.

Vol. 539: H. F. Mattson, T. Mora, T. R. N. Rao (Eds.), Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes.
Proceedings, 1991. XI, 489 pages. 1991.

Vol. 540: A. Prieto (Ed.), Artificial Neural Networks. Proceed-
ings, 1991. XIII, 476 pages. 1991.

Vot. 541: P. Barahona, L. Moniz Pereira, A. Porto (Eds.), EPIA
'91. Proceedings, 1991. VIII, 292 pages. 1991. (Subseries
LNAI).

Vol. 543: J. Dix, K. P. Jantke, P. H. Schmitt (Eds.), Non-
monotonic and Inductive Logic. Proceedings, 1990. X, 243
pages. 1991. (Subseries LNAI).

Vol. 544: M. Broy, M. Wirsing (Eds.), Methods of Program-
ming. XI1, 268 pages. 1991.

Vol. 545: H. Alblas, B. Melichar (Eds.), Attribute Grammars,
Applications and Systems. Proceedings, 1991. IX, 513 pages.
1991.

Vol. -547: D. W. Davies (Ed.), Advances in Cryptology -
EUROCRYPT '91. Proceedings, 1991. XII, 556 pages. 1991.

Vol. 548: R. Kruse, P. Siegel (Eds.), Symbolic and Quantitative
Approaches to Uncertainty. Proceedings, 1991. XI, 362 pages.
1991.

Vol. 550: A. van Lamsweerde, A. Fugetta (Eds.), ESEC '91.
Proceedings, 1991. XII, 515 pages. 1991.

Vol. 551:S. Prehn, W. J. Toetenel (Eds.), VDM '91. Formal
Software Development Methods. Volume 1. Proceedings, 1991.
XIII, 699 pages. 1991.

Vol. 552: S. Prehn, W. J. Toetenel (Eds.), VDM '91. Formal
Software Development Methods. Volume 2. Proceedings, 1991.
XIV, 430 pages. 1991.

Vol. 553: I-I. Bieri, H. Noltemeier (Eds.), Computational Ge-
ometry - Methods, Algorithms and Applications '91. Proceed-
ings, 1991. VIII, 320 pages. 1991.

Vol. 554: G. Grahne, The Problem of Incomplete Information
in Relational Databases. VII1, 156 pages. 1991.

Vol. 555: I-I. Maurer (Ed.), New Resnlts and New Trends in
Computer Science. Proceedings, 1991. VIII, 403 pages. 1991.

Vol. 556: J.-M. Jacquet, Conclog: A Methodological Approach
to Concurrent Logic Programming. XII, 781 pages. 1991.

Vol. 557: W. L. Hsu, R. C. T. Lee (Eds.), ISA '91 Algorithms.
Proceedings, 1991. X, 396 pages. 1991.

Vol. 558: J. Hooman, Specification and Compositional Verifi-
cation of Real-Time Systems. VIII, 235 pages. 1991.

Vol. 559: G. Butler, Fundamental Algorithms for Permutation
Groups. XII, 238 pages. 1991.

Vol. 560: S. Biswas, K. V. Nori (Eds.), Foundations of Soft-
ware Technology and Theoretical Computer Science. Proceed-
ings, 1991. X, 420 pages. 1991.

Vol. 561: C. Ding, G. Xiao, W. Shan, The Stability Theory of
Stream Ciphers. IX, 187 pages. 1991.

Vol. 562: R. Breu, Algebraic Specification Techniques in Ob-
ject Oriented Programming Environments. XI, 228 pages. 1991.

Vol. 563: A. Karshmer, J. Nehmer (Eds.), Operating Systems
of the 90s and Beyond. Proceedings, 1991. X, 285 pages. 1991.

Vol. 564: I. Herman, The Use of Projective Geometry in Com-
puter Graphics. VIII, 146 pages. 1992.

