
D.J. Duke, I. Herman, M.S. Marshall

PREMO: A Framework for Multimedia Middleware
A Java description of the ISO/IEC Standard

Lecture Notes in Computer Science No. 1591
Springer Verlag
1999

Copyright Springer Verlag

n the
 into

the

 have
ard has
rs in-
rms.
ad.

ead-
 PRE-
d to
er is
ecise
s and
Preface

Early in 1998, SC24, the subcommittee of ISO/IEC JTC 1 concerned with computer
graphics and image processing, completed work on a new standard for multimedia pres-
entation, called PREMO (PResentation Environment for Multimedia Objects), and pub-
lished under the official reference ISO/IEC 14478. The original proposal for PREMO
was for a new computer graphics standard, to be based explicitly on an object-oriented
approach. Such an approach was seen as timely, given that object-oriented design and
programming had rapidly become established, and work on a number of object-oriented
APIs for computer graphics had generated interest within the graphics community for
this technology (Inventor, the precursor of OpenInventor, is probably the best known ex-
ample). Development of a new standard was also seen as an opportunity to address fur-
ther technological issues. First, the new standard should encompass other media, such
as video, audio (both captured and synthetic), and in principle be extensible to new mo-
dalities such as haptic output and speech or gestural input, which have become increas-
ingly integrated within graphics applications; virtual environments and systems for
visualization being prime examples. The second requirement was that the standard
should allow the construction of distributed systems, where parts of a system involved
in the generation, processing, or the presentation of media data could be distributed
across geographically remote sites, interacting through a network.

Although the original goals for the development of PREMO included the detailed
specification of an API for multimedia programming, including all kinds of rendering
and media-coding facilities, it soon became clear that such goals were unrealistic. The
diversity of requirements for various applications and the wide range of different tech-
niques made the development of a detailed specification problematic. Instead, interop-
erability became the key issue: existing tools, applications, and programming interfaces
should be able to cooperate, even if they come from different implementations and ven-
dors. The term “middleware” came to the fore, denoting a software layer betwee
operating system facilities and application programs: in this way PREMO evolved
a middleware specification for multimedia programming.

Although PREMO defines objects for implementing multimedia middleware,
emphasis on interoperability means that PREMO also functions as a reference model for
distributed multimedia. Concepts common to a range of approaches in this area
been described and integrated in the PREMO model, and consequently the stand
an important role in education, and in promoting cooperation between programme
volved in multimedia development projects across potentially heterogeneous platfo

The text of an International Standard is usually dry, and notoriously difficult to re
Although this book does not replace the official text, its goal is to provide a more r
able version of the concepts, to present some of the more interesting details of the
MO multimedia objects, to highlight the reasons for specific design decisions, an
give simple examples which clarify the underlying concepts. If the goal of the read
to implement the PREMO standard, this book should aid in understanding the pr
specification of the ISO text. However, the book should also be useful for student

hich
e de-
o–ed-
edia
t. Fi-
IM
ole in
de to

; this
professionals whose goal is to gain a better understanding of the issues involved in dis-
tributed multimedia, regardless of the intricate details of the PREMO standard; this
group probably represents the majority of our readers.

Obviously, PREMO is the result of team work, which involved experts from four
continents and more than 10 countries. It is impossible to list all the people who, for a
shorter or a longer period, participated in the work. Nevertheless, we would like to men-
tion the contributions of three people who played particularly important roles. Horst
Stenzel (FH Köln, Germany) was the rapporteur of the working group within ISO w
was responsible for the development of PREMO. It was his task to coordinate th
velopment of the standard. James Van Loo (Sun Microsystems Inc., USA) was a c
itor of the document, and was instrumental in integrating the so–called Multim
Systems Services definition, which became the core of the final PREMO documen
nally, David Duce (Rutherford Appleton Laboratory, UK) coordinated the ERC
Computer Graphics Network which, between 1993 and 1997, played a seminal r
the precise specification of large portions of the standard. We express our gratitu
them, as well as to all experts who participated in the development of PREMO
book is the result of their work.

February 1999 David Duke
Ivan Herman

Scott Marshall

Contents

PREMO: A Standard for Distributed Multimedia . 1
1.1 Introduction . 1

1.1.1 What PREMO Is . 1
1.1.2 What PREMO Isn’t . 4

1.2 Formal Description Techniques and PREMO . 5
1.3 Structure of the Book . 6
1.4 Typographical Conventions . 8
1.5 Graphical Conventions. 8

An Overview of PREMO . 9
2.1 Introduction . 9
2.2 The Structure of PREMO. 9
2.3 The PREMO Object Model . 10

2.3.1 Overview. .11
2.3.2 From Language Bindings to Environment Bindings 12
2.3.3 Object References . 12
2.3.4 Active Objects. 13
2.3.5 Operation Dispatching . 14
2.3.6 Attributes . 14
2.3.7 Non-object Data Types . 14

2.4 The Foundation Component. 15
2.4.1 Structures, Services, and Types . 15
2.4.2 Inter-Object Communication . 16
2.4.3 Synchronization . 18
2.4.4 Time . 19
2.4.5 Property Management. 20
2.4.6 Object Factories. 21

2.5 The Multimedia Systems Services Component . 22
2.5.1 The Paradigm of Media Networks . 23
2.5.2 Virtual Resources . 23
2.5.3 Stream Control . 25
2.5.4 Virtual Devices . 25
2.5.5 Virtual Connections . 26
2.5.6 Higher-Levels of Organization: Groups and Logical Devices 27
2.5.7 Working in Unison . 28

2.6 The Modelling, Rendering, and Interaction Component 28
2.6.1 Object-Oriented Rendering. 29
2.6.2 Primitives . 30
2.6.3 Modelling and Rendering Devices . 31
2.6.4 Coordination . 32

2.7 Closing Remarks . 33

. 59
. 60
 . 61
. 63
 64
 64
. 65
 66
 67
. 68
. 69
. 69
 69
 73
. 74
. 74
75
 76
The Fundamentals of PREMO . 35
3.1 Introduction. 35
3.2 Basic Concepts . 36

3.2.1 PREMO Objects and Object Types . 36
3.2.2 Attributes . 37
3.2.3 Non-object Types . 38
3.2.4 Object Identity and Object References . 38

3.3 Operations. 40
3.4 Subtyping . 40
3.5 Inheritance . 42
3.6 Protected Operations. 43
3.7 Operation Selection, and Casting . 43
3.8 Operation Request Modes. 45
3.9 Exceptions. 46
3.10 The Object and Object Reference Lifecycle. 47
3.11 The Environment Binding . 48

General Implementation Issues . 49
4.1 Implementation Choices . 51

4.1.1 Implementation Language. 51
4.1.2 Implementation Environment . 53

4.2 PREMO Specifications in Java and Java RMI . 54
4.2.1 Constraints on the Specification Details . 54
4.2.2 Registering Server Objects . 56

The Foundation Component . 59
5.1 Introduction. 59
5.2 PREMO Non–object Types .

5.2.1 Basic Data Types .
5.2.2 Constructed Data Types. .
5.2.3 Exceptions .

5.3 Top Layer of the PREMO Object Hierarchy .
5.3.1 The PREMOObject Interface .
5.3.2 Simple PREMO Objects .

5.3.2.1 Event Structures .
5.3.2.2 Constraint Structures .

5.3.3 Callbacks .
5.3.4 Enhanced PREMO Objects .

5.3.4.1 Enhanced PREMO Objects as Service Objects
5.3.4.2 Property Management. .

5.3.5 Top Layer of PREMO .
5.4 General Utility Objects .

5.4.1 Event Management .
5.4.1.1 The PREMO Event Model .
5.4.1.2 The Event Handler Object .

2
99
9
03

103
104
105
05
07

109
110
110
13
114
115
116
117
.118
118
120
121

125
128
131
132
34
136

136
140
140
41
142
144
5

5.4.1.3 Synchronization Points. 78
5.4.2 Finite State Machines: Controller Objects . 81

5.4.2.1 Detailed Specification of a Controller 82
5.4.2.2 Activity of Controllers . 86

5.4.3 Time Objects . 87
5.4.3.1 General Notions . 87
5.4.3.2 Specification of the PREMO Time Objects 88

5.5 Synchronization Facilities . 90
5.5.1 Synchronizable Objects . 92

5.5.1.1 Overview: Event–Based Synchronization 9
5.5.1.2 State Transition Monitoring .
5.5.1.3 Detailed Specification of the Synchronizable Object 9
5.5.1.4 Synchronizable Objects as Callbacks. 1

5.5.2 Time and Synchronizable Objects .
5.5.2.1 Stop–Watch and Progression .
5.5.2.2 Time and Progression Space .
5.5.2.3 Reference Point Specifications in Time. 1

5.5.3 Combining TimeSynchronizable Oobjects: Time Slaves 1
5.5.4 Time–Lines .

5.6 Negotiation and Configuration Management. .
5.6.1 General Notions .
5.6.2 Property Inquiry Objects. .1
5.6.3 Constraining Properties. .
5.6.4 Dynamic Change of Properties .
5.6.5 Interaction among Properties .
5.6.6 Some Conclusions on the Negotiation Facilities

5.7 Creation of Service Objects .
5.7.1 Generic Factory Objects .
5.7.2 Factory Finders .
5.7.3 Use of Factories and Factory Finders .

Multimedia Systems Services Component . 125
6.1 Introduction .
6.2 Configuration Objects .

6.2.1 Format Objects .
6.2.2 Transport and Media Stream Protocol Objects
6.2.3 Quality of Service Descriptor Objects . 1

6.3 Stream Control .
6.3.1 The StreamControl Object .
6.3.2 SyncStreamControl Objects .

6.4 Virtual Resources .
6.4.1 Property Control of Configurations . 1
6.4.2 Resource and Configuration Management .
6.4.3 Stream Control .
6.4.4 Monitoring Resource Behaviour and Quality of Service Violations . 14

6.5 Virtual Devices . 146
6.5.1 Configuring Devices . 146

6.5.1.1 Global Configuration . 146
6.5.1.2 Port Configurations. 147

6.5.2 Examples of Virtual Devices. 151
6.5.2.1 Simple Media Devices . 152
6.5.2.2 Transformer Devices . 153

6.6 Virtual Connections . 155
6.6.1 Overview . 155
6.6.2 Detailed Specification of Virtual Connections 156
6.6.3 Examples of Virtual Connections . 157
6.6.4 Multicast Connections. 160

6.7 Groups. 161
6.8 Logical Devices . 163

The Modelling, Rendering, and Interaction Component 165
7.1 Introduction. 165
7.2 Primitives . 167

7.2.1 The Role of Primitives in PREMO . 168
7.2.2 The Hierarchy in Overview. 169
7.2.3 Captured Primitives. 170
7.2.4 Form Primitives. 171
7.2.5 Tactile Primitives. 172
7.2.6 Modifier Primitives . 173
7.2.7 Wrapper Primitives . 176
7.2.8 Tracer Primitives . 176
7.2.9 Structured Primitives. 177

7.2.9.1 Aggregate Primitives . 177
7.2.9.2 TimeComposite. 179

7.2.10 Reference Primitives . 185
7.3 Coordinate Spaces . 185

7.3.1 Coordinate . 186
7.3.2 TimeLocation . 187
7.3.3 Colour . 187

7.4 Devices for Modelling, Rendering and Interaction . 187
7.4.1 MRI_Format . 188
7.4.2 Efficiency Measures . 189
7.4.3 MRI Device . 190
7.4.4 Modeller . 190
7.4.5 Renderer . 191
7.4.6 MediaEngine . 192

7.5 Input Devices, and Routing . 192
7.5.1 InputDevice . 193
7.5.2 Router . 194

7.6 The Scene Database . 195

7.7 Coordination. 199
7.7.1 Management . 201
7.7.2 Allocation . 201
7.7.3 Synchronization . 202

Detailed Java Specifications of the PREMO Objects . 205
8.1 Introduction . 205
8.2 Foundation Objects . 205

8.2.1 Enumerations . 205
8.2.2 Additional Data Types . 206
8.2.3 Top Level of PREMO Hierarchy . 207
8.2.4 Structures . 208
8.2.5 General Utility Objects . 209

8.2.5.1 Event Management. 209
8.2.5.2 Controllers . 210
8.2.5.3 Time Objects .211

8.2.6 Sychronization Objects .211
8.2.7 Negotiation and Configuration Management 214
8.2.8 Creation of Service Objects . 215

8.3 Multimedia Systems Services . 216
8.3.1 Enumerations . 216
8.3.2 Structures and Additional Data Types . 216
8.3.3 Configuration Objects. 217
8.3.4 Stream Control . 218
8.3.5 Virtual Resource . 218
8.3.6 Virtual Device . 219
8.3.7 Virtual Connections . 219
8.3.8 Group . 220
8.3.9 Logical Device . 220

8.4 The Modelling, Rendering, and Interaction Component 221
8.4.1 Objects for Coordinate Spaces . 221

8.4.1.1 Coordinate Object . 221
8.4.1.2 Colour Object . 221
8.4.1.3 TimeLocation Object . 221

8.4.2 Name Object . 221
8.4.3 Objects for Media Primitives . 222

8.4.3.1 Primitive Object . 222
8.4.3.2 Captured Object . 222
8.4.3.3 Primitives with Spatial and/or Temporal Form 222
8.4.3.4 Form Primitives for Audio Media Data 222
8.4.3.5 Form Primitives for Geometric Media Data 223
8.4.3.6 Primitives for the Modification of Media Data 223
8.4.3.7 Modifier Primitives for Audio Media Data 223
8.4.3.8 Modifier Primitives for Structural Aspects of Media Data . 224
8.4.3.9 Modifier Primitives for Visual Aspects of Media Data 224

8
40
8.4.3.10 Organising Primitives into Structures. 225
8.4.3.11 Organising Media Data within Time 225

8.4.4 Objects for Describing Properties of Devices 227
8.4.4.1 MRI_Format Object . 227
8.4.4.2 EfficiencyMeasure Object . 227

8.4.5 Processing Devices for Media Data . 227
8.4.5.1 MRI_Device Object . 227
8.4.5.2 Modeller Object . 227
8.4.5.3 Renderer Object . 227
8.4.5.4 MediaEngine Object . 227

8.4.6 Scene Object . 228
8.4.7 Objects for Supporting Interaction . 228

8.4.7.1 InputDevice Object. 228
8.4.7.2 Router Object . 228

8.4.8 Coordinator Object . 229

Selected Implementation Issues. 231
A.1 The PREMO Environment . 231

A.1.1 Activity of Objects . 231
A.1.2 Top Level of the PREMO Hierarchy . 232
A.1.3 Operation Request Modes. 232
A.1.4 Distribution and the Creation of PREMO Objects 235

A.2 Specific Part 3 Objects . 237
A.2.1 Virtual Connection Objects . 237

A.2.1.1 Devices on the Same JVM: Piped Streams 238
A.2.1.2 Devices on Different JVM’s: Sockets 23
A.2.1.3 Multicast Connections . 2

References . 243

Index . 251

’ has
sing a
ta.
 vari-

] are
s PNG
eeds
 it all

,
nse.

 envi-
cen-
is is

s
media
ents,
ctile

 and
s con-

 and
d

 [89]
h a
s (e.g.
cations
well
Chapter 1

PREMO: A Standard for Distributed Multimedia

1.1 Introduction

The use of multimedia is now so widespread that the term ‘multimedia computing
become almost redundant. Few people today would conceive of purchasing or u
computer system that was not capable of displaying or processing multimedia da
Standards are now available for the encoding, transport and presentation of a rich
ety of media data. Many of these, such as JPEG, MPEG [55], MIDI and VRML [54
well known even among non-professional computer users. New standards, such a
[94] and SMIL [95] are under development in response to the opportunities and n
created by the World Wide Web. This apparent wealth of media standards makes
the more important to situate PREMO and understand its role:

• PREMO is a presentation environment. PREMO, like previous SC24 standards
aims at providing a standard “programming” environment in a very general se
The aim is to offer a standardised, hence conceptually portable, development
ronment that helps to promote portable multimedia applications. PREMO con
trates on the application program interface to “presentation techniques”. Th
primarily what differentiates it from other multimedia standardization projects.

• PREMO is intended for multimedia presentation. Whereas earlier SC24 standard
concentrated either on synthetic graphics or image processing systems, multi
is considered here in a very general sense. High–level virtual reality environm
which mix real–time 3D rendering techniques with sound, video, or even ta
feedback, and their effects, are also within the scope of PREMO.

In the remainder of this section, we will explore these two points in more detail
establish the fundamental rationale for the technical content and approach that i
tained in the remainder of this book.

1.1.1 What PREMO Is

Programming interfaces for graphics (“graphics packages”) are now widely known
used. These include de jure standards developed within ISO, specifically GKS [48] an
PHIGS [5], and industry-developed platforms such as OpenGL [93] and Inventor
that have now become de facto standards themselves. The process is ongoing, wit
new generation of graphics applications emerging based on the Java technologie
Java3D), and also in response to the needs and opportunities of web-based appli
(e.g. VRML). In contrast, programming interfaces for multimedia are rather less

2

layer,
ication
ports
 As a
r ex-
rious,

as im-
n the
possi-
ial set

ng a
sys-
 of dis-
sues
ilar
r ex-

ckage
uch of
known; while toolkits for multimedia applications have been developed, for example
MET++ [1] and MADE [42], standards for multimedia have concentrated largely on
formats for the storage and transport of media, declarative models of media content (for
example HyTime [68]). While the interface to presentation engines for such formats
does provide a starting point for the applications programmer, the level of control over
media processing that these affords is significantly lower than can be achieved in com-
puter graphics. And significantly, none of the existing presentation models or engines
integrates their media content with synthetic graphics.

The distinction between synthetic graphics and other presentation media may reflect
the different communities in which the fundamental developments took place (e.g.
much of the early interest in multimedia was stimulated by applications in publishing
and human-computer interaction, whereas graphics originally had stronger links with
engineering and scientific applications). Irrespective of these differences in origin, two
technological trends have meant that there is now a growing need to integrate these two
threads of activity. At one end of the cost-performance spectrum, the virtual environ-
ments and visualisation are emerging as mature technologies with needs that encompass
both synthetic graphics and other media, e.g. 3D audio, acoustic and haptic rendering.
At the other end of the cost spectrum, the availability of powerful, low-cost personal
computing platforms has made it feasible to develop multimedia applications for mass
markets, and for users of such machines to experiment with multimedia. An issue that
spans this spectrum of applications is how application programs can access, construct,
and control multimedia and graphics presentation. This is the context in which PREMO
has been designed.

PREMO as middleware

The term “middleware” has come to the fore in recent years. It refers to a software
between the fundamental services of an operating system and more specific appl
development environments. PREMO provides a level of middleware which sup
the implementation of a range of processing models for multimedia presentation.
form of middleware, PREMO does not define stand-alone services in the way, fo
ample, that a GKS renderer does. Instead, it provides an environment where va
vendor–specific components can cooperate. The middleware nature of PREMO h
plications for how the software objects defined by the Standard are described. O
one hand, these must not be too detailed, otherwise it would restrict the range of
ble implementations, but on the other hand these objects must provide a non-triv
of services. This strive for balance has fundamentally shaped the Standard.

Why is middleware important? Consider, for example, the task of implementi
distributed multimedia application such as a multi-platform video–conferencing
tem. Due to the variety of available media formats, resource requirements, means
tribution control, etc., a significant portion of such an application is dedicated to is
like configurability, adaptability, access to remote resources, distribution, etc. A sim
level of adaptiveness is also required when using media in combination as with, fo
ample synthetic graphics, video, and computer animation. No one applications pa
addresses such a variety of needs, and without middleware such as PREMO, m

3

ori-

–ori-
s like
 fills

a dis-
 dis-
t an
MO

rently
 of con-
on in-
erence
ro-
 the
tions
 be a
ech-
nd the
oal,

times
a di-
g, re-
 the

evel-
this infrastructure has to be developed from scratch or adapted from a similar applica-
tion. And the costs involved in modifying software to meet new demands are well
known.

In addition to enabling interoperation, the existence of middleware such as PREMO
can also assist in system evolution. The variety of graphics formats, available primi-
tives, animation algorithms, etc., continues to expand, and portable applications in-
creasingly have to adapt to an evolving environment. PREMO assists in this process by
factoring out at least some of the technological constraints into components that can be
interchanged and replaced, and by providing a flexible and extensible architecture in
which new software components can be defined for use by existing applications.

Multimedia presentation is not the only concern that is open to support by middle-
ware. Another, well known, example is architectural support for distributed object–
ented applications, as is provided by OMG’s CORBA[71].1) Although PREMO itself is
not related to the OMG specifications, PREMO should be viewed as a multimedia
ented extension of the basic object services and architecture provided by system
OMG or, as another example, Java’s RMI services [39]. Seen in this way, PREMO
the gap between the application-independent set of facilities offered by OMG, and
tributed multimedia application. Indeed, the relationship between PREMO and a
tributed object–oriented architecture is so close, it would be ill-advised to attemp
implementation of PREMO without the use of such services. Exactly how the PRE
specification builds on the concept of distributed multimedia without committing to a
particular model will be seen in Chapter 6.

PREMO as a reference model

Because PREMO describes an implementation environment (a prototype is cur
under preparation in Java, see Chapter 4), the specification encompasses a range
cepts needed in multimedia systems development. By providing a broad, applicati
dependent model of media processing, the specification itself also serves as a ref
model for distributed multimedia. This is significant, as in practice, “portability of p
grammers” is almost as important as the “portability of programs”. Although only
latter role of information processing standards is usually publicised by organiza
like ISO, the need for “programmer portability” in this area was also considered to
major goal for PREMO. Having a common, well understood set of principles and t
niques as a reference point greatly helps in understanding both the specificities a
commonalities of various multimedia programming environments. To achieve this g
the PREMO specification deliberately sets out a number of details which are some
hidden in other systems. As a reference model, PREMO is not only significant in
dactical sense; a unifying set of concepts may play an important role in classifyin
lating and organising the growing range of software toolkits that are available to

1) In fact, a liaison existed between OMG and the relevant ISO group, during the d
opment of PREMO, which clearly influenced the design of the Standard.

4

del –
 uti-
rds in
es not

n and
cessed
AW,
-
d for

use to

 to re-
rd to
aces.
o the
types
ithin a
edia

at bet-
ions;
s, for

. Al-
” for
 a set
odify
ia ar-

t does
may
 mul-
ight-
potential developer of a multimedia system. Without such concepts, this technological
cornucopia is in danger of becoming an anarchic ensemble of incompatible and incom-
parable artifacts.

1.1.2 What PREMO Isn’t

The characteristics that define what PREMO is – middleware and reference mo
also reflect what PREMO is not. In particular, PREMO is intended to build on and
lise existing media standards, not to replace them. Given that there are standa
place for media formats and processing, these are two concerns that PREMO do
address.

PREMO is not a Media Format

The PREMO specification does not describe any new format for the representatio
storage of media data. Instead, the Standard makes it quite clear that the data pro
by PREMO-based applications is expected to be stored in existing formats; AL
JPEG, MHEG, MIDI, MPEG [55], SMIL [95], VRML [54], to name a few. What PRE
MO does provide are mechanisms by which new PREMO objects can be define
new formats, and by which existing objects can coordinate the formats that they
exchange and process media data.

PREMO is not a Media Engine

The object types defined in the PREMO standard are not sufficient in themselves
alise a working multimedia application. To do this would have required the Standa
commit to particular kinds of media processors and renderers, with specific interf
All that this would achieve would be to add yet another type of media engine int
growing collection of such devices. Instead, PREMO provides a number of object
that can act as “wrappers” around existing engines, and allow these to be used w
processing network involving other devices that may be based on quite different m
formats or models. Rather than thinking of PREMO as a media engine, a somewh
ter analogy is to view PREMO as a software architecture for multimedia applicat
the objects defined by PREMO represent the basic constructs, the building block
multimedia applications. Even this analogy is not quite the whole story though
though parts of the PREMO specification provide building blocks that are “shaped
supporting a particular architectural model of an application, these in turn rely on
of lower-level PREMO objects, and users of PREMO is free to build on these, or m
the higher-level components, in order to instantiate whatever model of multimed
chitecture that is most appropriate for their needs.

Just as PREMO is not a media engine, it is not a complete environment, either. I
not, for example, provide a framework for quality of service management. This
seem strange, since quality of service is a particularly fundamental problem with
timedia applications. However, quality of service management is currently bound t

5

pans
and-
ntual
ion in
es pro-
ment

sys-
 (both

the is-
l is-

cesses
stem
 must
 of the
 itself

an be
highly
ld do,
ring
 [46]
mat-
ation

n ex-

ent of
 of for-
ncom-
phase
 nat-

th and
cal at
ssfully
n July
ages
ly up with network management issues; as of yet, there is no emerging consensus on
what application mechanisms are needed to implement quality of service, and indeed,
it seems probably that, like the concept of a network, ‘quality of service’ actually s
a whole range of levels of concern, from well known physical properties such as b
width and latency of raw transmissions, up to questions that impinge on the eve
presentation of the data, for example synchronization constraints between lip mot
video frames and the corresponding speech in an audio stream. What PREMO do
vide here is a basic set of hooks and facilities which a quality of service manage
protocol is free to utilise for monitoring and realising its requirements.

PREMO is not a user-oriented Specification

In addition to the technical problems of building a media application, multimedia
tems designers need to address the question of how well a particular media system
in terms of technology, and media content) meets the demands of its users. Like
sue of quality of service, usability involves a spectrum of concerns, from low leve
sues of signal quality, through questions about the cognitive resources and pro
needed to interact with an application, through to questions of how a particular sy
is situated in the work context and environment of its users. These human factors
obviously be addressed by media systems designers by making appropriate use
technologies at their disposal. PREMO is one such technology – the specification
does not describe how it should be used to realise user requirements.

1.2 Formal Description Techniques and PREMO

Formal description techniques (FDTs) are mathematically–based notations that c
used to describe the behaviour of software and hardware systems. They offer a
expressive language for characterising what a component of some system shou
without the need to describe explicitly the algorithm or mechanism needed to b
about that behaviour. Various formal description techniques are in use — LOTOS
and Z [78] are good examples of the range of possibilities. They differ in the mathe
ical structures that underpin the notation, and the different approaches to specific
that emerge from the mathematics offer different trade–offs, for example betwee
pressiveness and support for automated analysis.

ISO has investigated the use of formal description techniques in the developm
International Standards, and has developed a three–phase model for the adoption
mal methods in the Standardization process (see Section 10.4 of [56]). These e
pass the use of a formal description by the committee developing the Standard (
one), through to the third phase in which the formal description, accompanied by a
ural language commentary, defines the provisions of the Standard. Experience wi
acceptance of formal methods means that the third phase is simply not practi
present. However, serveral members of the PREMO rapporteur group had succe
used formal description methods in the context of other graphics standards, and i
1993, SC24 appointed a Special Rapporteur for Formal Description Langu

6

n the
 ob-

s that
E-
ject
 been

al as-
l de-
ences

MO
r that

ntation
 in-
 chal-
 with

 but
ne
etail
vely
g into

ming
 non-
 have
, even
 this
MO
ith a
 tech-
rary
, we

tandard
e, the
not ex-
g how
:

(G.J. Reynolds, then at CWI, Amsterdam), and invited him to provide an initial report
on the applicability of formal description techniques to SC24 standards [72]. This report
recommended that the formal description technique “Object–Z” [24,25] be used i
development of PREMO, as a way of gaining further insight into the design of the
ject types needed in the Standard.

Subsequent work with formal methods and PREMO concentrated on two area
were proving a source of difficulties within the committee work, specifically the PR
MO object model, and the general facilities for synchronization. Work on the ob
model has been published as a paper [19]. The initial work on synchronization has
published as a technical report [20], while subsequent work exploring behaviour
pects of synchronization is described in [26]. We will not make use of the forma
scription of PREMO in the book, but the interested reader may consult the refer
above, or a recent paper summarising this aspect of the development [23].

1.3 Structure of the Book

The main objective of this book is to present a detailed description of the PRE
standard. From the background material in section 1.1, it should already be clea
PREMO encompasses a range of concerns, spanning levels of multimedia prese
from low level synchronization of media streams through to high level facilities for
teroperation and coordination of devices. This complexity presents something of a
lenge when attempting to provide a coherent account of the Standard; by starting
the low-level facilities, one risks describing a large number of detailed facilities
with little direction or motivation, while in starting with the higher-level facilities, o
is forced to introduce concepts with the proviso that “these will be explained in d
later”. We have sought to avoid both of these pitfalls by giving an initial, comparati
informal description of the Standard as a self contained chapter, and then enterin
the details, matching our explanation with the actual structure of the Standard.

As PREMO is intended to be independent of any particular system or program
language, the description of the official standard was deliberately written using a
programming notation, based on the Object-Z specification language [24][25]. We
chosen not to reuse this notation here, for two reasons. It is awkward to typeset
within a poerful typesetting language like LaTeX (which has not been used for
book). More importantly, a second objective of this book is to describe how the PRE
standard could be implemented. This requires a programming notation (along w
supporting environment for distributed objects). For this we have chosen the Java
nologies of Sun Microsystems Inc.; specifically the language [36] and the RMI lib
[39] for remote access. And rather than use two notations for describing PREMO
have decided to use Java throughout, both as a means of documenting what the S
provides, and as the vehicle for discussing implementation issues. As we will se
match between what the PREMO standard describes and what Java provides is
act, and consequently we have dedicated an early chapter of the book to describin
we are using Java to describe PREMO. Thus, following this introduction, we have

7

 fea-
es the
more

s-
ased.
 view
ions

t
iron-
bject
 using
 covers
ge that

of the

s

n sup-

ced,

have

 been
r. This
uent
e how

state
ints.
• Chapter 2, An overview of PREMO. The high level organisation of PREMO into
four distinct components is explained, and subsequently the role and principle
tures of each component is described. This is an important chapter as it provid
underlying rationale for some of the design decisions that are described in
detail in later chapters.

• Chapter 3, Fundamentals of PREMO. In order to understand PREMO, it is nece
sary to understand the object model on which the whole PREMO approach is b
This chapter describes the first part of the Standard, which sets out PREMO’s
of object orientation, other kinds of entity in a PREMO system, and assumpt
about the environment of a PREMO application.

• Chapter 4, General implementation issues. The description of the PREMO objec
model is by necessity independent of any language and implementation env
ment. In the remainder of the book, we will be using Java to describe the o
types and services defined in the Standard. The general issues that arise from
Java as the language to describe the Standard are described in the chapter. It
aspects such as naming conventions, and the facilities beyond the core langua
are needed to define PREMO.

The three chapters that follow present the content of the remaining three parts
Standard, with each chapter addressing a particular component of PREMO.

• Chapter 5, The foundation component. This chapter explores the low level service
and objects that underpin many approaches to multimedia presentation.

• Chapter 6, Multimedia systems services component. Higher-level abstractions over
media processing devices and other resources are introduced, and their role i
porting a particular paradigm for multimedia systems is discussed.

• Chapter 7, Modelling, Rendering, and interaction component. Specialised devices
for media presentation, in particular support for synthetic graphics, is introdu
along with a framework for declarative modelling of media presentations.

In conjunction with this book, a number of core object types from the Standard
been developed and placed in the public domain1). It is not a complete implementation
of the Standard, but the most significant object types described in this text have
realised, in particular those that present interesting challenges to an implemente
activity has been carried out, not so much with the intention of using it for subseq
systems development (though that is certainly possible), but rather to demonstrat
the requirements defined for PREMO can be met in practice.

• Chapter 8, Detailed Java Specifications of the PREMO Objects, gives the complete
specification of the PREMO standard as a set of Java interfaces.

• Appendix A, Selected implementation issues. A number of the programming tasks
facing a PREMO implementer are relatively routine; concepts such as
machines, property lists etc. are well known and should require no design h

1) ftp://ftp.cwi.nl/pub/premo

8

These

and

d by

o pack-
However, a few requirements defined for PREMO are not trivial, and in the appen-
dix we describe a strategy for dealing with issues such as operation dispatch modes
and the creation of connections.

An index is provided at the end of the book.

1.4 Typographical Conventions

We have endeavoured to keep typographical conventions to a minimum. The text of the
book is written in times font (thus), with italics & bold for occasional emphasis. When
mentioned within the text, the names of PREMO object types (Java classes and inter-
faces) appear capitalised, and in italics. The same convention is used for the names of
PREMO operations (Java methods) in the running text. Definitions of Java classes,
packages, methods, and related code fragments, are presented as indented blocks, using
courier font.

1.5 Graphical Conventions

Although UML [30] is approaching the status of de facto standard for the documenta-
tion of object-oriented systems, the notation goes beyond what is needed in most parts
of this book, and we have instead opted for a simple way of documenting object-orient-
ed structures based on the conventions used in the book “Java in a Nutshell” [28].
are:

• class names are written in normal times font;

• interface names are written in times italic;

• if class (or interface) B extends class (or interface) A, B is written below A,
they are joined by a solid line; and

• if class B implements interface A, B is again drawn below A, and they are joine
a dashed line.

Shaded ovals have been used to show the grouping of classes and interfaces int
ages.

ard
ook,

se of
h con-

w well
les and
ng the
ntly or
ented
ne-

ming
 well
ler ap-

-ob-
oked
ecause
 con-

same
 to ex-
rpose;
cess-
Chapter 2

An Overview of PREMO

2.1 Introduction

In the introduction we established the need for a standard to address distributed multi-
media and the rationale for designing the standard to be extensible. This chapter is in-
tended to provide an overview of PREMO, and in doing so, one of the first concepts that
will be addressed is the PREMO component, which was introduced into the standard to
promote extensibility. Then, the four ‘parts’ that make up the official PREMO stand
are briefly introduced. The design of each part is described in detail later in the b
together with an outline of how its key provisions can be implemented. The purpo
this chapter is to summarise the content of the components, and explain how eac
tributes to the overall aims of the standard.

2.2 The Structure of PREMO

The concepts of modularity, data abstraction and component-based design are no
established within software engineering, where structures such as classes, modu
packages are used to manage the complexity of systems development by allowi
decomposition of a design into a set of parts which can be developed independe
incrementally, before being composed to form the desired system. The object-ori
basis of PREMO allows one level of structuring. However, this is relatively fi
grained, and in practice multimedia applications require families of objects that can be
assembled to implement particular functionalities. Today, this concept is beco
widely adopted in the form of design patterns [31]. These were, however, less
known when development of PREMO began, and consequently a somewhat simp
proach was adopted to structure the standard.

PREMO is defined as a collection of components, each of which provides one or
more profiles. A component defines a collection of entities, such as object and non
ject types. Object types provide services (in the form of operations that can be inv
by clients), or can have a more passive role, for example as data encapsulators. B
not all of the types defined within a component are necessarily needed in a given
text, PREMO components define one or more profiles which consist of a cluster of en-
tities. A component can build on (extend) the profiles of other components, in the
way that a class in object-oriented programming can be defined as an extension
isting classes. The components defined in the PREMO standard are general pu
they provide a progressively richer, and more structured model of multimedia pro

10
ing. It was the intention of the designers to realise functionality which would address
specific technologies, such as 3D audio and virtual reality, or specific application do-
mains, such as medical simulation or battlefield models. The development of new com-
ponents that extend some or all of the profiles defined in the standard helps to achieve
this aim. The four components of the PREMO Standard are :

1. Fundamentals. This specifies the object model used by PREMO and the require-
ments that a PREMO system places on its environment. Although the PREMO
object model is similar to the core model of the OMG (Object Management Group)
[69], it contains features needed to address the requirements of distributed systems.

2. Foundation. Object and data types that are generic to multimedia applications are
defined in this component, including facilities for event management, synchroniza-
tion, and time.

3. Multimedia Systems Services. Multimedia systems typically integrate a variety of
logical and physical devices. Some examples are input and output with devices such
as video editors, cameras, speakers, and processing with devices such as data
encoders/decoders and media synthesizers (e.g. a graphics renderer). This compo-
nent of PREMO defines the infrastructure needed to set up and maintain a network
of heterogeneous processing elements for media data. These facilities include
mechanisms by which media processors can advertise their properties and be con-
figured to match the needs of a network, and can then be interconnected and con-
trolled. MSS was originally defined by the Interactive Multimedia Association[45]
and subsequently adopted by SC24 and refined into a PREMO component.

4. Modelling, Rendering and Interaction. The MSS component defines concepts of
streams and processing resources that are independent of media content. In the MRI
component, these facilities are used to define generic objects for modelling and ren-
dering data, and basic facilities for supporting interaction. To support interoperabil-
ity, the component defines a hierarchy of abstract primitives for structuring
multimedia presentations. These are not sufficient in themselves to build a working
presentation, but provide the abstract supertypes from which a set of concrete prim-
itives could be derived.

Each of these components is now described in more detail.

2.3 The PREMO Object Model

Although with the emergence of UML [30] there is now some level of consensus on a
set of concepts for object-oriented modelling, at the implementation level there still re-
main a number of different approaches, as represented by the range of programming
languages that are claimed to support object-oriented techniques. These differences
vary from the fundamental, such as whether a system is class-based, or object-based
(using prototypes to define the structure of objects), to finer details, such as the various
levels of visibility or accessibility that can be assigned to the components of an object.

11

es
 pos-
pro-
 be
s the
er of

project
e in-
t for a
n. The

d has
], and
the re-
oaches
n of

iew-
sues
s, and

. The
l dis-
 de-

 of
s that

tate,
 object
as an
llows
ever
tory”
tory
ctivi-
pera-
. This
Within a development project which uses an object-oriented target language, the
choice of object model is effectively made once the target language is chosen. Indeed,
the precise details of the available object model may be one criteria by which the lan-
guage is chosen. In the case of PREMO, however, the situation is more complicated.
Like the standards that it follows (GKS [48] and PHIGS [49]), PREMO is intended to
be independent of any particular programming language. Thus, just as one can obtain a
C [58] binding or a FORTRAN [16] binding for GKS, it should be possible to obtain a
C++ [79] or Ada’95 [7] binding for PREMO. The need to provide this flexibility rais
a number of difficult technical questions, not the least being whether it should be
sible to bind PREMO to a language with no explicit support for object-oriented
gramming (e.g. FORTRAN’77 [82]). For now, the main point is that if PREMO is to
language independent and described in an object-oriented framework, it require
definition of some object model that defines the concepts from which the remaind
the standard can be constructed.

One of the fundamental issues that had to be decided at an early stage in the
was whether to adopt a “classical” object-oriented approach, in which objects ar
stances of classes that can be arranged in a hierarchy through inheritance, or op
more radical approach based, for example, on the use of prototypes and delegatio
former is typical of the models that underlie object-oriented design methods, an
been in widespread use in the form of languages such as Simula [9], Smalltalk [35
C++. Prototype-based approaches have, in contrast, been largely the concern of
search community; there has already been discussion on the value of such appr
in graphics and multimedia [3]. In particular, the use of delegation, and the notio
“trait” objects used for example in the SELF system [83] are attractive from the v
point of building highly adaptable and extensible systems. However, technical is
aside, the fact that prototype models are strongly bound to experimental system
are not in widespread use, represented a serious barrier to their use within PREMO
result is that the PREMO object model is based from the outset on a fundamenta
tinction between objects and classes, which in PREMO are called “object types”. A
tailed account of this model is given in Chapter 3; following an informal overview
the model, the remainder of this section describes other high-level design decision
affected the content of this component.

2.3.1 Overview

A PREMO system consists of a collection of objects, each with a local (internal) s
and an interface consisting of a set of operations. Each object is an instance of an
type, which defines the structure of its instances. An object type can be defined
extension to one or more other object types through inheritance; note that this a
for multiple inheritance. An important property of the model is that objects are n
accessed directly. Instead, a PREMO client requests a facility called an “object fac
to generate an object satisfying specific criteria, and if it is able to comply, the fac
will return a handle to the new object called an object reference. All subsequent a
ties involving the object is then done via the reference, for example invoking an o
tion on the object, or passing the object as a parameter to another operation

12

e, two
ractical
men-
se of
rough

ovide
separation of objects (i.e. physical storage) from their references is needed to support
the aim of distribution, as an object reference can be used to encode both local address
information and the location of a particular object across a network.

2.3.2 From Language Bindings to Environment Bindings

Although the choice of a class, rather than object-based model is relatively straight for-
ward, a number of further options are rather less apparent. In particular, the aim of mak-
ing the standard language independent introduces a tension in the design, between
introducing features that offer descriptive or computational power but are specific to a
restricted set of languages, or using a simple, less powerful model to describe the stand-
ard in the expectation that it will be easier to map the model onto the facilities of a given
implementation language. Features that are problematic range from the mundane, for
example how (or even whether) objects are copied, to complex problems such as the
management of remote or distributed objects.

One approach that PREMO employs to prevent over-commitment to a particular ob-
ject model is to introduce the notion of an environment binding. Previous standards in
computer graphics have also been developed using a language independent description,
and have been mapped onto a specific implementation language through a language
binding, that associates the abstract data types and operations defined in the text of the
standard with concrete data types and operation signatures within the target language.
Such a binding is still needed for PREMO. However, while some concepts in the stand-
ard will be mapped onto language-specific features (for example, object types and op-
erations), other aspects of the model, for example how objects are to be copied, or how
remote objects are accessed, are left as facilities to be provided by the environment of a
PREMO implementation. These facilities may be realised through language constructs,
but more generally they may be provided by library packages, or even via the use of oth-
er standards. Thus, access to distributed objects within a C++ implementation of PRE-
MO could be realised through a custom-built mechanism, or through a separate
standard such as CORBA [71]. In the case of a Java implementation, these two options
again exist, but in addition it is possible to use the Java RMI package [39]. By viewing
features such as object copy and remote access as requirements on the environment,
rather than requirements on the object model, the object model itself is simplified and
is consequently easier to map against the provisions of a specific implementation mod-
el.

2.3.3 Object References

It is widely accepted that a fundamental component of object orientation is that each ob-
ject in a system has an identity that is independent of that object’s state. Therefor
objects that have the same state can nether the less be distinguished. At a very p
level, this corresponds to the use of pointers to reference objects within an imple
tation. These pointers, or object references, may be implicit or explicit. In the ca
SmallTalk or Java, for example, it is not possible to access an object other than th
an object reference - this is enforced in the definition of the languages, which pr

13

a’95
ecords,
f the

jects
refer-
 URL.
t of an
is be
access
it and
 ob-

se of
ct di-
e via

 cer-
d to
r proc-
through
model
within

 proc-
ontrol

ncap-
uch as
s (or
e if it
sep-
hrough
ere is

s we
efine

What
ity. In
to be
 select
no constructs for referring to an object other than through pointers. C++ and Ad
have a different model. Objects in these languages are defined as generalised r
and a pointer to an object is a well defined type that is quite distinct from the type o
object itself.

As PREMO objects can be distributed, various mechanisms for accessing ob
may be used within even a single system. For example, local objects might be
enced via pointers, while remote objects are referenced by some form of extended
To avoid confusion and implementation bias, the standard introduces the concep
object reference as an explicit part of the object model, with the intention that th
bound to whatever means are used within the target language or environment to
specific objects. The approach taken in PREMO combines elements of the explic
implicit approach. In line with the former, the model defines both the concept of an
ject, and an object reference. However, the distinction is there to simplify the u
multiple implementation strategies — it is not possible to refer to, or use, an obje
rectly. Instead all access to an object, for example to invoke an operation, must b
an object reference.

2.3.4 Active Objects

Concurrency is by definition an integral aspect of multimedia presentation, and will
tainly be a property of the type of distributed application which PREMO is intende
support. Fundamental to such a model is the idea that several threads of control, o
esses, can be active within a system at one time, and that such processes interact
communication events. Here again there is a tension between adopting a simple
based on a particular set of facilities, or a more general model that is harder to use
the standard but is hopefully easier to implement.

On the one hand, there is a natural and appealing parallel between the idea of a
ess and that of an object. A process is an entity which encapsulates a thread of c
and that interacts with its environment through events; an object is an entity that e
sulates state and interacts with its environment through operations. Languages s
Eiffel [66] and more recently Java have built on this view by treating processe
threads) as particular types of object; in Java for example, an object will be activ
implements the Runnable interface. In contrast, other languages have maintained a
aration between these concepts. In Ada’95 for example, processes are realised t
a sophisticated task model, quite separate from the notion of task, while in C++ th
as yet, unfortunately, no standard model for dealing with processes.

The PREMO object model assumes that all objects are conceptually active; a
will discuss in section 2.4.1, the standard does however, for efficiency reasons, d
certain types of objects to have trivial activity. What the standard does not do is to man-
date any particular mechanism through which object activity should be realised.
is required is that each object has the capability to have an internal thread of activ
parallel with this internal activity, an object may receive requests for an operation
invoked; these requests arrive at operation receptors. At any time an object can

14

 of an
ariable

 of the
 rath-
intro-
a
nd for
 of an
ean-

ram-
guages
tem is
ile this
nces.
ne in-
ects”
f effi-
re han-
which requests it is willing to service. The PREMO object model does not place any
requirements on the execution order for operations, for example pending requests may
be serviced sequentially or concurrently.

2.3.5 Operation Dispatching

The delays inherent in remote object access and operation invocation mean that asyn-
chronous operations are a fundamental tool in the development of distributed systems.
Synchronous operation calls, in which the caller is suspended until the called operation
terminates, are also required. To support multimedia applications, the design of PRE-
MO also allows for a third kind of operation, sampled. A sampled operation is similar
to an asynchronous one, because once the operation has been invoked the caller is able
to continue its processing while the request is held in a queue. The difference is that the
queue of requests for a sampled operation is effectively a one-place buffer, with any re-
quest for the operation overwriting any pending request.

Each PREMO operation is defined as using one of these operation request modes.
The existence of these modes is one of the more significant differences between the
PREMO object model, and that found in most programming languages, or indeed the
model defined by the OMG.

2.3.6 Attributes

One of the positive aspects of object orientation is the emphasis on data hiding and en-
capsulation — clients of an object should only use the operations in the interface
object, and should not have access to the internal state. Instead, if access to a v
is required, it should be realised through operations that retrieve or set the value
variable. A number of such state variables appear within PREMO object types, and
er than define explicit operations for manipulating these variables, the standard
duces the concept of an attribute. The definition of an attribute looks like that of
variable, however an attribute of an object type is understood as being a shortha
a pair of operations in the interface of that object type which set and get the value
(internal) state variable. An attribute can be declared as read–only, or write–only, m
ing that the corresponding ‘set’ or ‘get’ operation is not available.

2.3.7 Non-object Data Types

SmallTalk was for some time presented as the prototypical object-oriented prog
ming system, and many of the ideas it pioneered were adopted in subsequent lan
and systems. One of its strengths was its simple ontology; everything in the sys
presented as an object, even “atomic” data such as numbers and characters. Wh
view produces a remarkably uniform model, it does have a number of conseque
First, there are a number of general raised by such an approach, including how o
terprets the “identity” of numbers, how one relates binary operations on data “obj
to the conventional mathematical view of numbers. Second, there is the issue o
ciency: treating data values as objects implies that operations such as addition a

15

age in
pted a
racters,

ntal
onisa-
c fa-
ise a
hout
dation
sed by
r use
ia the
h are
ially a
prin-

rinci-
 own
y im-
ss will
struc-
hey are
How-
tive”
r to the
de-off
e one
edia

te on a

nt.
dled by the same run-time dispatch mechanism as other operation calls. Data processing
in computer graphics and multimedia often involves a considerable amount of numeri-
cal processing with large data sets (geometric structures, digital image formats, etc.) and
here the need to use a general dispatch model is clearly an efficiency concern. Finally,
while PREMO is intended to be language independent, the most likely targets for a lan-
guage binding were seen as the family of object-oriented languages, including C++,
Ada’95 and Java, in which object-oriented structures have been added to a langu
which primitive data are treated as values. For these reasons, PREMO has ado
model that distinguishes between non-object data types, such as integers and cha
and object types.

2.4 The Foundation Component

The implementation of most multimedia systems involves a number of fundame
concerns: control and management of progression through media content, synchr
tion between activities, time, and coordination. Existing standards provide specifi
cilities for some of these tasks, while for others an implementor may need to util
general library (for example, for synchronisation) or develop ad-hoc solutions. Wit
mandating any specific approach to these general concerns, the PREMO Foun
component provides a set of general-purpose object and data types that can be u
a developer to implement the functionality mentioned above. A developer can eithe
these facilities “raw”, to create a customised architecture, or they can be used v
higher level object types and services provided by Parts 3 and 4 of PREMO whic
described later in this chapter. Because the Foundation component is essent
toolkit, the remainder of this section describes its main provisions in terms of the
ciple media system requirements that are supported.

2.4.1 Structures, Services, and Types

The requirement that, conceptually, all PREMO objects are active means that in p
ple all access to an object must allow for the possibility that the object will have its
thread of control. Depending on the implementation platform, this assumption ma
pose a high overhead on the cost of accessing components of objects; such acce
for example have to pass through the operation receptor and request handling infra
ture. For some aspects of media processing, these overheads are unavoidable; t
needed to support the provision of distributed services across a media network.
ever, in a typical media application, not all objects will necessarily be used as “ac
entities that provide services. One use of objects is as data encapsulators, simila
use of records (structures) in languages such as Ada and C. There is clearly a tra
here, between the elegance and simplicity of a homogeneous object model on th
hand, and the practical problems involved in storing and processing large multim
datasets on the other. For example, a visualisation application may need to opera
volume data set containing in the order of 107 - 109 voxels [74]. If each voxel is repre-
sented as an object, the overhead in processing this dataset will become significa

16

vides

ts of
.

kes
 com-
, two

mmu-
 same

 which
d in
PREMO has adopted an approach that retains a fundamentally simple object model
while allowing implementors to avoid the overhead of the full operation request system
where it is not required. The approach is based on the top-level organisation of the PRE-
MO object type hierarchy shown in Figure 2-1. All object types in PREMO are subtypes
of PREMOObject, in which fundamental object behaviour, such as the ability of each
object to return information about its type, is defined. Below this the hierarchy bifur-
cates. SimplePREMOObject serves as a supertype for those object types that represent
data encapsulators. Such object types are referred to as structures. EnhancedPREMOO-
bject is the abstract supertype for those object types that provide services, and which
therefore incur the overhead of the operation dispatch mechanism. This separation is
further formalised through the profiles that are defined in each component to identify
those object and non-object types that should be made available to clients of the com-
ponent. Each profile consists of lists of object types, either under the category “pro
type”, or “provides service”. Only an object type that inherits from EnhancedPREMOO-

bject is allowed to appear in the “provides service” clause, and it is only objec
these types that a client can expect to interact with through operation dispatching

2.4.2 Inter-Object Communication

Although ultimately all interaction between objects within a PREMO system ta
place via operation requests, this is not a particularly useful way of representing
munication and cooperation within a distributed system. In the case of multimedia
models are now well known:

• Stream-based models, in which information related to processing is sent on co
nication channels or media streams between objects. These may be the
streams that are used to carry media data.

• Event-based models, in which there is conceptually a separate mechanism by
specific operations in the interface of a collection of objects can be invoke
response to a specific situation in one object.

SimplePREMOObjectEnhancedPREMOObject

PREMOObject

objects used as
passive data stores

objects used to
provide services

general object system
facilities

Figure 2-1 — Two kinds of object type in the PREMO hierarchy

17

t of
s that

re now
 been
ly the
bject
 typ-
stem
acks

. Since
erns, it
o this
me
 to the

a par-

atch-
 that

-
hat

e han-
ignal
ndler,

ly

r, the
PREMO does define media streams that in principle can be used to support commu-
nication between objects. These are described in section 2.5.3. However, streams are a
comparatively “heavyweight” facility, intended primarily to manage the transpor
media data. Instead, the foundation component defines a collection of object type
provide an event management facility for inter-object communication.

The event mechanism is based on callbacks and event handlers. Callbacks a
widely used in the graphics and user interface management communities, having
popularised through systems such as the X library [77], OpenGL, and more recent
Java AWT [28]. Essentially, a callback is just an operation in the interface of an o
that will be invoked by some other entity within a system in response to an event. A
ical low level example is an operation in a user interface object that a run time sy
will invoke to notify the object of a mouse-button being pressed or released. Callb
often take parameters that carry information about the event that has taken place
the event management facilities in PREMO are used to address a range of conc
was sensible to introduce a systematic approach for carrying event information. T
end, an Event object types is defined to carry such information, specifically the na
of the event, a reference to the source of the event, and additional data specific
event.

Figure 2-2 provides an overview of the approach. Objects that are interested in
ticular event, (object A in the figure) must (i) be of a type that inherits from the Call-

back object type, which provides a general callback operation, and (ii) must register
their interest with an instance of the EventHandler object type. When an object (B in
the figure) wants to notify the system that an event has occurred, it invokes the disp
Event operation on an event handler (iii), and all objects that have registered with
handler to be notified of the event will have their callback operation invoked (iv).

In fact, chains of event handlers can be set, because the EventHandler object type
itself inherits from Callback and defines its callback operation to have the same ef
fect as dispatchEvent. Thus, object A in the figure could be an event handler t
subsequently distributes the event received by the callback to further objects.

In the case of a basic event handler, objects are only required to register with th
dler if they should to be notified of a particular event; any object in the system can s
to the handler that such an event has occurred. A specialised form of event ha
called an ANDSynchronizationPoint, provides a richer service. Objects not on
register to be notified of an event, they also register as notifiers for a particular kind of
event. When appropriate, a notifier signals the event handler as usual, howeve

callback

register

Listener

A

Notifier

B

Event Handler

dispatchEvent
(i)

(ii)

(iii)(iv)

Figure 2-2 — Overview of Event Management

18
event handler postpones the notification of objects interested in the event until all ob-
jects that have registered as notifiers have signalled the event to the handler. This object
type has a role in the general synchronization facilities of PREMO, which are discussed
next.

2.4.3 Synchronization

Like event handling, synchronization requirements in PREMO span a range of levels.
At the level of data streams, fine-grained synchronization may be used to implement
quality of service requirements, for example maintaining an adequate alignment be-
tween related audio and visual content. At a higher level, a multimedia presentation will
typically consist of a collection of components, some of which may be presented in par-
allel. In addition to any fine level of synchronization between such strands, synchroni-
zation between key milestones (such as the start/end of component strands) may be
required. Beyond direct control of media presentation, synchronization may also be
needed within the general control structure that manages the overall media system.

Synchronization in PREMO is supported at two levels - in terms of events, and in
terms of time. Event-based synchronization has obvious application in dealing with the
processing of structured presentations composed of more primitive media streams,
however it also has a role in synchronizing the presentation of the data within a stream,
where significant milestones are defined by the content of the stream, rather than its ab-
solute position. An example of this is the synchronization of ultrasound or other medical
scan data, where milestones defined by physiological events need to be aligned. Such
an example is described in more detail in [63]. Time-based synchronization is better
known, and involves ensuring that multiple activities reach particular milestones at
times specified relative to each activity.

The event and time-based approaches are both supported by a common framework,
the Synchronizable object type, which PREMO uses as the basis for representing, mon-
itoring and controlling the transmission and processing of media data. Although the in-
terface to this object type is large, it is based around three main ideas:

1. An internal progression space, which acts as a coordinate system for defining the
concept of location within some media stream or content. Synchronizable objects
do not themselves carry media data, but instead are inherited by object types which
are involved in the transport and processing of such data. Conceptually, the progres-
sion space represents the temporal extent of some media representation, and
progress through the progression space is made during processing of that media.

2. Progression is controlled by a finite state machine. This is actually achieved by hav-
ing Synchronizable inherit from another object type, called a Controller,
which is also defined in this component. Controllers are described in Chapter 5 and
their details are not of concern in this overview. It suffices at present to say that a
Synchronizable object can be in one of four states: stopped, playing, paused, and
waiting. Conceptually, when an object is in the playing state, progress is being made
through its progression space. Transitions between the states occur as a result of
operation invocation, and also through interaction with reference points, which are

19

int is
. The
 if has
it

ther
ning

particu-

f such

nd to
 means
ented
phical
g and
 time
 by
discussed below. A number of attributes define the parameters that affect how
progress is made, for example, the direction of progression.

3. Reference points can be placed along the progression space, either individually, or
repeated with a given period. Each reference point consists of an event, a reference
to an event handler, and a special boolean ‘wait’ flag. When a reference po
encountered during progression, the event is sent to event handler specified
wait flag indicates whether progression should be suspended at this point, and
the value true, the Synchronizable object is placed into the ‘waiting’ state, where
will remain until the resume operation in its interface is invoked.

Reference points and the ‘wait’ flag are intended to be used in conjunction with o
PREMO facilities to implement synchronization schemes. For example, by combi
reference points with the ANDSynchronization object type described in
section 2.4.2, processing of one part of a presentation can be suspended once a
lar milestone has been reached until all other Synchronizable objects that involved
in implementing the presentation have reached related milestones. An example o
a scheme is shown in Figure 2-3.

2.4.4 Time

Media such as sound, video and animation is fundamentally grounded in time, a
describe and control the presentation of such media it is necessary to have some
of representing and measuring time. The question of how time should be repres
(for example, as a continuum, or discretized) has been the subject of much philoso
debate, and is a non-trivial concern in areas such as real-time systems modellin
verification. PREMO adopts a pragmatic approach, in which all representations of
are based on ‘ticks’ produced by some clock. The granularity of a ‘tick’ is not fixed
the standard, but rather depends on the particular clock used.

waiting

playing

position

position

dispatchEvent

resume

ANDSynchronizationPoint

Synchronizable objects

Reference
points

Figure 2-3 — Example of a Synchronization Scheme

20

from
,
 actual

at
l

er of
bject
pause

ed in

of

f time,
ence.

ll be
 video.

ssion
r-

s of a
e of a
truc-
t can
duc-
ential
tion, or
e (as
n of
oject
odels

a
pair,
quence
erenc-
PREMO introduces object types to represent abstract clocks, a subtype of clocks rep-
resenting ‘real time’ system clocks, and a resetable timer. All clocks are derived
the abstract object type Clock, and specify a ‘tick unit’, which is the unit (for example
seconds) represented by each tick, and a measure of the accuracy of the clock. An
measure of time is obtained by invoking the inquireTick operation in the interface -
however, it is up to subtypes of Clock to attach a meaning to the number of ticks th
are returned. Thus an object of type SysClock returns the number of ticks (to its leve
of accuracy) since the start of the defined PREMO era. The object type Timer defines
a start/stop timer by extending the interface of Clock with operations for stopping,
starting, and pausing the progression of time. For objects of this type, the numb
ticks returned by inquireTick are the number of ticks that have elapsed, while the o
has been in its running state, since it was started (i.e. ignoring time spent in the
state).

The link between time, and the event-based synchronization model describ
section 2.4.3, is defined by the object type TimeSynchronizable, which couples the
behaviour of a Synchronizable object with that of a Timer object, thus making it
possible to measure and control the speed of progression through the internal span
a synchronizable object. The interface of TimeSynchronizable allows reference
points to be placed against positions on the progression space specified in terms o
for example, placing a reference point 30 seconds from the start of a video sequ
Obviously, the actual point in the video content at which this reference point wi
reached will depend on the speed at which progression is being made through the
Two subtypes of TimeSynchronizable are identified in the standard. A TimeSlave

object is one for which the rate of progression can be ‘slaved’ to the rate of progre
of some other time-synchronizable object. A TimeLine object can be used to set refe
ence points against milestones in real time.

2.4.5 Property Management

In the PREMO object model described in section 2.3, the attributes and operation
type are defined statically, when the object type itself is defined. Once an instanc
type is created, the interface of the object is fixed. This “static” approach to object s
ture has clear benefits, not the least being support for compile-time checking tha
reduce the likelihood of programmer error. However, as we mentioned in the intro
tion to section 2.3, more dynamic object models are also available, and their pot
use in graphics and multimedia has been noted [3,33]. Features such as delega
on a more modest level, the ability to alter the interface of an object at run tim
adopted in Python[87] for example) would play a useful role in the implementatio
constraint management for example. However, the experience of the MADE pr
[42] was that implementing such features within a class-based, ‘static’ object m
was a significant problem.

PREMO introduces the concept of object properties as a compromise between
purely static model and the facilities offered by dynamic models. A property is a
consisting of a key (i.e. a string) and a sequence of values. Each value in the se
can come from any PREMO non-object data type, and as these include object ref

21

alue’,
y can

corre-
mber

d and

ond-

d that
e cre-
ages,
struct
sses
n, as in
cribe
r as an
e
ly a
rmat,
e

of-
pe of
n the

 v87,
e spe-
 con-
es, an object property is essentially a dynamically typed variable. The EnhancedPRE-
MOObject type introduces operations to define, delete, and inquire values associated
with a given property key. Later in the book we will see how properties can be used to
implement various naming mechanisms, store information on the location of the object
in a network, create annotations on object instances, and underpin a framework for in-
ter-object negotiation. In support of this, the standard stipulates that objects of certain
types will have a property with a given key, and possibly particular values. However
clients of any object whose type inherits from EnhancedPREMOObject can attach new
properties at any time. Properties may also be declared as ‘retrieve only’.

The basic facilities provided by EnhancedPREMOObject are developed by two fur-
ther object types, PropertyInquiry and PropertyConstraint. In the first of these
types, each property key can be associated with a corresponding ‘native property v
which describes the range of values (capabilities) that the corresponding propert
take on. This can be viewed as a form of dynamic typing. The PropertyConstraint

type extends this model by ensuring that a value added to a property lies in the
sponding native property value, if this exists. This object type also introduces a nu
of ‘meta’ properties, for example, the key ‘dynamicPropertyListK’ is associated
with a list of values representing the keys of certain properties. The operations bin
unbind allow keys to be added to and removed from the values of dynamicProper-

tyListK. Only while a property’s key appears under this property can the corresp
ing value be changed.

2.4.6 Object Factories

One specific use of properties is in the creation of objects. In section 2.3.2 we note
PREMO relies on its environment to provide certain fundamental services, and th
ation of objects is one such service. In most object-oriented programming langu
creation is a comparatively simple mechanism, handled either by a language con
(e.g. the ‘new’ operator of Java) or through some meta-object system, in which cla
are themselves objects and can respond to message requesting object creatio
SmallTalk. This situation is complicated in PREMO by the use of properties to des
features of objects. For example, a PREMO system may define a JPEG decode
object type that has a property, say “GIFVersionK” which can be set to either the valu
‘87a’ or ‘v89a’ (CHECK) representing the two standard specifications. Alternative
system may offer two types of GIF decoder object, one for each version of the fo
in which the property “GIFVersionK” is fixed. There is thus interaction between th
structure of the type hierarchy, and the use of property keys.

In fact, from the viewpoint of a PREMO client, the specific type of an object will
ten be uninteresting. What is important is (i) that the object is a member of a subty
a given type, and (ii), that the properties of an object satisfy a given constraint. I
example above, what the client may really want is a device that can decode JPEG
and the client is not concerned whether this device is an instance of an object typ
cifically for this version, or is an instance of a more general object type that can be
figured to the given requirement.

22
In order to hide these issues, and provide a uniform interface for object creation, the
foundation component of PREMO introduces the concept of an object factory. A factory
is itself an instance of the GenericFactory object type that provides a single opera-
tion, createObject. This operation accepts an object type, and a set of constraints in
the form of a sequence of key / permitted value pairs, and (if possible) returns a refer-
ence tp an object that is an instance of the given type or a subtype, and whose properties
satisfy the constraint.

Factories are themselves objects, and a PREMO system provides a factory finder ob-
ject that is able to locate a factory capable of producing an object that will meet given
constraints.

2.5 The Multimedia Systems Services Component

Multimedia systems typically integrate a variety of logical and physical devices. For ex-
ample input and output might involve devices such as video cameras, microphones, and
a sophisticated speaker system. Processing in turn may involve logical devices such as
data encoders/decoders, media synthesizers (e.g. a graphics renderer), and a video mix-
er. The data produced an consumed by these devices takes a variety of forms, for exam-
ple a discretised audio signal, a sequence of video frames, or a discrete graphics model.
In turn, these forms can be encoded in a variety of formats (ALAW and ULAW for au-
dio, for example). Finally, different protocols may be available to communicate such
data, depending on the source and destination hardware, and on the available network
infrastructure.

As explained in the introductory chapter, PREMO does not aim to define new stand-
ards for the encoding or transport of media data. Rather, it seeks to provide a set of fa-
cilities that abstract away from the details of low level system services, instead
providing an application developer with a uniform high level view of media processing.
To this end, the multimedia systems services (MSS) component of PREMO defines the
infrastructure for creating and maintaining a network of heterogeneous processing ele-
ments for media data. This includes object types for describing generic resources, de-
vices, and facilities for organising a collection of such components into higher level
units with a single interface. MSS encompasses mechanisms by which media proces-
sors can advertise their properties for network construction, can be interconnected and
controlled, and can be configured dynamically to match the needs of a network while
in operation.

MSS was originally defined by the Interactive Multimedia Association [45], a large
consortium of industrial vendors and developers. IMA were aware of the work within
SC24 on the development of PREMO, and donated the MSS framework to the Commit-
tee. It was subsequently adopted by SC24 as the basis of a distinct PREMO component.
During the development of the standard, several of the main provisions of MSS were
refined and integrated with facilities from the Foundation component.

23

vel in-
n. At
e the
nt. The

ar to
mple,
, for
ction

gine
me-
e are
, for

es de-
hat

e ob-
rt 3 of
to ex-
e de-

r the

te in
devices
ers and
re for
2.5.1 The Paradigm of Media Networks

In order to abstract away from the details of specific media types, media processing el-
ements are viewed as “black boxes” that can be interconnected through a high-le
terface to construct a network of such elements appropriate for a given applicatio
this level, a PREMO application using MSS resembles a dataflow network, wher
nodes correspond to media processors, and the data streams carry media conte
adoption of a dataflow-oriented view of media system architecture is not peculi
PREMO. It has appeared in published approaches to multimedia systems (for exa
[34]), and is also increasingly used in “plug and play” applications environments
example the visualization tool AVS [84] uses such a model for interactive constru
of applications from a toolkit of basic modules.

Figure 2-4 contains an example of a small network. It represents a video en
combining input from a local file (for example, in MPEG) with audio clips stored as
dia primitives within a remote database (scene). The audio primitives in the scen
constructed by a number of audio modellers (MIDI devices, or waveform editors
example). The combined audio/video output is presented on a TV device.

The devices in the figure are all instances or subtypes of specialised object typ
fined in the fourth component of PREMO, and which is discussed in section 2.6. W
makes the construction and operation of such a network possible are that all of th
ject types involved extend the virtual device and resource concepts defined in Pa
PREMO. This allows the devices to be connected together, and subsequently
change media data along the streams shown. In the remainder of this section w
scribe the principle concepts and types that the MSS component provides fo
creation of such networks.

2.5.2 Virtual Resources

A high level view of a media network is of a collection of resources that coopera
the task of creating or processing media. These resources encompass physical
(such as cameras or mixing suites), software processes such as graphics render
audio filters, as well as supporting infrastructure such as connections and softwa

sceneaudio

modeller

TVvideo
enginevideo file

handler

audio

modeller

Figure 2-4 — Simple Multimedia Network

24

nisa-

ia

level

f these
rpose
or used

ation
ources
s ex-
isfied.
hich is
managing collections of lower-level resources. What is fundamental to this view is,
first, that a resource is something that has to be acquired for a task, and second, that
many of what we consider to be resources are inherently configurable. For example, an
audio mixer may involve both hardware and software elements, access to which must
be acquired before the mixer can be installed in a processing network. In fact, a number
of mixers might potentially be available, differing in characteristics such as the number
of channels that they can accept, the kind of audio formats that can be processed, and
the type of filters that can be applied.

The property description and management facilities described in section 2.4.5 form
the basis for realising this model. The characteristics of a particular resource are de-
scribed by properties; some of these can be set by a client of the resource, often to one
of a set of possible values defined as the native property values for the given key. Other
properties, representing immutable aspects of a particular resource (for example the
number of input channels to the audio mixer) are read only, but still play an important
role in establishing a media network.

The fundamental operation of a PREMO resource is defined by the VirtualRe-
source object type. Each resource (or more generally, each subtype of VirtualRe-
source) defines a set of property keys and values that are relevant to the description
and control of the resource. In addition, each resource encapsulates a number of config-
uration objects. These objects store data about the resource to which they are associat-
ed, and this information is used by other objects, for example in providing
communication services or quality of service management. The MSS component de-
fines three types of configuration object explicitly; each inherits from PropertyCon-
straint:

• Format objects represent the details of a media format, for example the orga
tion of a bitstream;

• MultimediaStreamProtocol objects provides information about how med
data is conveyed between processing nodes; and

• QoSDescriptor objects capture quality of service characteristics, such as the
of guaranteed service, and bounds on delay and jitter.

It must be emphasised that the PREMO standard does not describe all details o
object types; for example the specifics of particular media stream formats. The pu
of these object types is to provide placeholders and hooks that can be specialised
as required within a particular implementation environment. What the VirtualRe-

source object type does provide are operations for accessing particular configur
objects using semantic names (strings), acquiring the physical and software res
managed by the object, and validating whether the configuration requirement
pressed by the combination of properties and configuration objects can be sat
Each resource is also associated with a stream control object, the purpose of w
described next.

25

alled
ing
5.
s the
e vir-
which
r, it an
 inter-
a re-
n of

ecifi-

fer to
 port
ted to
of

ach
2.5.3 Stream Control

Virtual resources are involved in the production and transport of media data. Control
and monitoring of media streams is provided in PREMO by the StreamControl object
type. Different kinds of resource will have different views on media streams, ranging
from a low-level signal oriented view, through levels that abstract signals into packets,
and packets into media samples or chunks. This range of views is accommodated by
basing stream control on the TimeSynchronizable object type discussed in
section 2.4.3; by inheriting from this type, stream control can be defined with respect to
the coordinate system of the progression space, or (relative) time. To facilitate fine con-
trol over progress, the StreamControl object type refines the state machine inherited
from Synchronizable by introducing states that allow media content to be drained (dis-
carded) or buffered and subsequently released. These facilities, along with the ability to
place reference points along the progression space connected to the event handling sys-
tem, are intended, for example, for use as part of an overall quality of service manage-
ment strategy. A further object type, SyncStreamControl, allows progression
through its stream to be synchronized (slaved) explicitly with the progression of some
other object that is derived from the Synchronizable type.

Virtual resource objects have an associated StreamControl object that allows,
where applicable, monitoring and control of the end-to-end processing carried out by
that resource. Stream control objects are also a feature of an important kind of resource,
the virtual device.

2.5.4 Virtual Devices

The “nodes” in the dataflow network shown in Figure 2-4 are defined to be so c
VirtualDevice objects that form the basic building block for interaction and process
capabilities within PREMO. The anatomy of a virtual device is shown in Figure 2-

The principle features that the VirtualDevice object type adds to a resource i
presence of “openings”, called ports, which act as input or output gateways for th
tual device, and the concept of a “processing element”. Ports are the means by
data can be passed from one device to another. A port is not itself an object, rathe
identifier or handle that is used to reference a particular opening, and through the
face of a virtual device, access and control information about that opening. Like
source (and hence a device itself), each port is associated with a collectio
configuration objects that characterise the flow of data through the port. More sp
cally, each port has associated QoSDescriptor, Format, and MultimediaStream-
Protocol objects. The client can set the properties of these objects, and can re
them when configuring a network. These configuration objects are combined into a
configuration object, which also contains a reference to an event handler dedica
that port, and a SyncStreamControl object that controls and monitors the transfer
media data via the port. Just as with VirtualResource, an operation is provided by
VirtualDevice to validate the requirements captured by the configuration of e
port.

26

crete,
ment,
he
tream

r

e of ex-

roach

edia
of the
of the
treams
pe of
-

media
ction
ation
The “processing element”, shown in Figure 2-5, is a conceptual, rather than con
component of a virtual device. That is, there is no object type for a processing ele
nor does the VirtualDevice introduce variables or operations to implement it. T
only part of a virtual device that directly relates to processing is the end-to-end s
control and configuration objects inherited from VirtualResource. One of the tasks
to be addressed in implementing the VirtualDevice type is to decide how the transfe
of media data within the device is to be effected. By not being prescriptive about this
aspect, the PREMO designers have sought to better accommodate the wide rang
isting media processing software that might be “wrapped” within a subtype of Virtu-

alDevice for use in a PREMO–based network. Chapter 6 demonstrates one app
through which this interaction can be realised.

2.5.5 Virtual Connections

The lines in Figure 2-5 entering and leaving device ports represent the flow of m
along streams. PREMO itself does not define a “Stream” object type, since much
detail here depends both on the underlying network technology, and the context
connection (i.e. whether two devices are on the same host, local network, etc.). S
however are established and maintained by objects derived from another subty
VirtualResource, the VirtualConnection type. As a resource, a virtual connec
tion object contains a stream control object that represents the end-to-end flow of
data along the stream controlled by the connection. A subtype of VirtualConne
supports multicasting, with operations to attach and detach a device/port combin
to and from the connection. All connections are unidirectional.

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

StreamControl

Callback

Port

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

Port

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

Port

Configuration

Processing Element

Figure 2-5 — The Structure of a VirtualDevice Object

27

may
e

nnec-
orre-
eral
ols.

on-
elves,
nd de-
. For
m of
work

ith a
 pro-
con-
rces
t, the
single
inter-
vices.
d
mpo-
. Be-
up.
r that
er of
roups

irtual
as as a
nter-
licitly
utput
If the underlying devices are located on the same hardware, a connection may be re-
alised by directly linking the input and output ports of the associated devices. More gen-
erally, the devices will be on distinct, possibly remote, machines and using different
local facilities for inter–object communication. In such cases a virtual connection
need to create a virtual connection adapter, that provides appropriate interfaces to th
end-parties while managing any recoding or translation of raw data required. Co
tion adapters exist only as concepts within the PREMO standard. They do not c
spond to any particular object type, and in fact their implementation will in gen
require a collection of objects to manage the transfer between the different protoc

2.5.6 Higher-Levels of Organization: Groups and Logical Devices

Even the simplest non–trivial media network, involving two devices with a single c
nection between them, involves a significant number of objects: the devices thems
the connection, the connection adapter (if needed), event handlers for the ports a
vices, and possibly supporting objects to, for example, monitor quality of service
a realistic application, the number of objects is significantly greater, and the proble
tracking which particular groups of objects are relevant to any given part of the net
becomes significant.

To prevent organizational anarchy, it is often convenient for clients to interact w
single object that represents each “significant component” of a network. PREMO
vides a Group object type to support management of a collection of devices and
nections. Groups are resource objects which control a number of other virtual resou
(in particular devices and connections), and their respective network. By defaul
constituent devices remain hidden to the external client; instead, groups provide a
entry point for stream control, as well as other services. By using the basic group
face, the client does not have to know about the interfaces of these constituent de
Because Group inherits from VirtualResource, each group is itself a resource, an
consequently, the configuration of group components can be validated, and the co
nents themselves acquired, via the one group interface, rather than individually
cause a group is itself a resource, a group can itself be a member of a further gro

Although groups can be organized into hierarchies, it is important to remembe
a group is not a device; it has no ports of its own. Instead, a client using a numb
groups is responsible for ensuring that, where necessary, components of distinct g
are connected. A specialised form of group, called a logical device, combines the cen-
tral resource management capabilities of a group with the processing model of a v
device. Resources are added to and managed by a logical device in the same w
group, but the client of a logical device can also dynamically define ports on the i
face of the device. When defined, each port on the logical device is associated exp
with a port on a device that it manages. A logical device thus acquires input and o
ports, and can be built into a network in the same way as other devices.

28

g of
ration
2.5.7 Working in Unison

At this point we have described the main features of the multimedia systems services
component. Given the importance of this component to the aim underlying PREMO, of
supporting the development of distributed multimedia systems, it is useful to summarise
the roles played by the various object types described here. We do so by outlining the
steps involved in setting up a network using MSS.

1. Assuming that the client has a suitable factory, it first uses the factory to create the
various objects (devices, connections, and other resources) that make up the net-
work. Part of the specification for the objects given to the factory may involve con-
straints on properties of the objects, for example a device is able to receive data
using a particular format.

2. The connections are defined by sending each connection object a Connect request,
specifying the source and destination device/port combinations.

3. The client may create a group object, and then add all of the resources to the group
by sending the request addResourceGraph to the group. At this point the structure
of the network has been fixed, but no actual resources (e.g. bandwidth) have been
allocated to it.

4. Using the acquireResource request of the group object, the client attempts to allo-
cate the resources needed for each of the objects in the network. Inability of the
underlying system to meet this request will result in an exception which the client
can detect. In this situation it may modify its requirements by changing properties
of any of the objects within the group, for example by settling for a less reliable
connection.

5. Once the resources have been allocated, the client can start the transport of media
data through the network by accessing the StreamControl object of the group.

2.6 The Modelling, Rendering, and Interaction Component

A feature of the MSS component is that its provisions are independent of the data proc-
essed by the devices and resources within a network. Thus the same approach can be
used for setting up a video editing system as for setting up a virtual reality modelling
and rendering environment. The fourth component of PREMO describes general facil-
ities for the modelling and presentation of, and interaction with, multidimensional data
that utilises multiple media in an integrated way. That is, the data may be composed of
entities that can be rendered using graphics, sound, video or other media, and which
may be interrelated through both spatial coordinates and time.

The MRI component is interesting for two reasons. It is the point within the PREMO
standard where the actual structure and content of media data becomes significant. It is
also the point at which ‘traditional’ computer graphics, i.e. modelling and renderin
synthetic scenes, is integrated into the broader concerns of multimedia. This integ

29

 such
 be ex-
bject
econd
oces-
equests
bject
 a ren-
n in
ption.
 may
por-

del or
 loca-
 in
st be
 ren-
ssing

ate on
e 2-4).
 several
s con-
ather
within an object-oriented framework highlights a significant design issue regarding the
implementation of graphics (and for that matter, other media) processing, which we dis-
cuss in the first of four sub-sections.

The actual description of the MRI component ranges over three concerns, which are
each covered by a separate heading thereafter. Section 2.6.2 concerns is the design of a
hierarchy of modelling primitives for characterising multimedia presentation.
Section 2.6.3 deals with the collection of devices that extend the VirtualDevice type
of the MSS component to allow modelling, rendering and interaction to take place with-
in a media network of the kind described in section 2.5.1. Section 2.6.4 focuses on a
particular device, the Coordinator, that plays a key role in mapping presentation re-
quirements of media streams against the devices that are available for processing media.

2.6.1 Object-Oriented Rendering

A fundamental question that must be addressed within any object-oriented graphics or
multimedia system concerns the allocation of fundamental behaviour, such as transfor-
mations and rendering, to object types defining media content within an API. Two quite
distinct approaches emerge. The first is to attach behaviour to the object types that are
affected by that behaviour. For example, geometric objects and other kinds of present-
able media data can be defined with a ‘render’ method, with the interpretation that
an object can be requested to produce a rendering of itself. Such an approach can
tended to collections of presentable objects, and fits well with the concept of an o
as a container for data along with the operations that manipulate that data. The s
approach is to define objects whose principle purpose is to act as information pr
sors, and which receive the data that they operate on as parameters to operation r
or through some other communication mechanism. In this case, a ‘renderer’ o
would receive presentable objects as input through some interface, and produce
dering of those objects via some output mechanism. From the discussio
section 2.5.4 it may already be clear that PREMO has adopted for the second o
Separating operations (in the form of devices) from the data that they manipulate
appear to violate a central tenant of object–oriented design. However, it has two im
tant benefits for PREMO.

1. First, a direct and desired consequence of a distributed model is that one mo
data set may be rendered by several processes working in parallel at various
tions. It is difficult to see how this can be realised efficiently in an architecture
which each media object renders or processes itself. Either such objects mu
able to support multiple concurrent threads internally, or any object that is to be
dered must first be copied. In contrast, treating renderers as a form of proce
device means that multiple renderers can be created (relatively) easily to oper
a given database of objects representing media data (see for example Figur
Such a database can either be shared by several renderers, or there may be
copies of the data. Strategies for managing the distribution, update, and acces
trol of data within such a system are well known, and thus this approach is r
more practical and flexible than the alternative.

30

perat-
 a ren-
ariety
cture
ssing
to

epro-

ces-
 inte-

When
e dif-
d,

asi-
rted

tives
r [89],
s. The
 ad-

e sec-
rom

iased
ffec-
istic
ries to
 is to
lling
gene-
al de-
 any
edia

iled
ed set
sible
 spe-
y use
article
forms,
2. It supports an approach to application development based on interconnecting a
number of processing devices — irrespective of whether those devices are o
ing on continuous media such as video, or a series of discrete data sets within
dering pipeline. Once such a network has been defined, it can be used for a v
of data sets or models, and can be readily modified. In contrast, in an archite
where (for example) graphics objects render themselves, the control of proce
and flow of data is encoded within specific operations, making it difficult
develop an application that can be modified or extended without wholesale r
gramming of those operations.

By opting for a model in which media data is essentially passive, while media pro
sors are active objects that provide services, PREMO aims to provide a uniform,
grated treatment of both digital media and synthetic graphics.

2.6.2 Primitives

The potential domains of application for a system such as PREMO are diverse.
considering the design of a component for modelling and rendering, this raises th
ficult problem of identifying an appropriate set of ‘media primitives’ — or indee
whether to include any model of primitives at all. Two directions initially appear fe
ble when considering how primitives for modelling and rendering could be suppo
in a system like PREMO. First, it would be possible to take an existing set of primi
from an established system, for example the node set provided by Open Invento
and adopt these to the needs of PREMO, possibly through some further extension
problem here is in finding a set of primitives suitable for the range of applications
dressed by PREMO, and then deciding on what, if any, extensions to include. Th
ond approach is to derive some minimal framework of elementary primitives f
which those used in practice can be derived by composition.

Although an interesting research problem, both this and the first approach are b
towards a model in which PREMO devices for modelling and rendering would e
tively be implementing a new standard for graphics primitives. It is simply unreal
today, given the investment in graphics and media technologies, to expect indust
adopt a new standard for media data. Instead, the philosophy underlying PREMO
view the standard as a framework for supporting the integration of different mode
and rendering technologies, with their own models of media data, within a hetero
ous distributed system. This has already been reflected in the discussion on virtu
vices, where we noted that the virtual device specification does not mandate
specific strategy for implementing the processing element, thus allowing existing m
processors to be accommodated.

In this context, the role of primitives is rather different from their role in a deta
standard such as PHIGS [44]. PREMO clearly cannot attempt to describe a clos
of primitives for modelling and rendering. Instead, it defines a general, exten
framework that provides a common basis for deriving primitive sets appropriate to
cific applications or renderer technologies. Graphics modellers, for example, ma
specific representations such as constructive solid geometry, NURBS surfaces, p
systems etc. Audio modellers may use primitives that represented captured wave

31
or raw MIDI data for synthesis. The aim of the primitive hierarchy defined in this part
is to provide a minimal common vocabulary of structures that can be extended as need-
ed, and which can be used within the property and negotiation mechanisms of PREMO
as a basis for devices involved in modelling and rendering to identify their capabilities
for use in a network. The seven categories of primitive defined in PREMO are:

1. Captured primitives. These allow the import and export of data encoded in some
format defined externally to PREMO, for example MPEG [55].

2. Form primitives. Here the appearance of the primitive is constructed by some ren-
derer or more general media engine. These include geometric primitives (polylines,
curves etc.), as well as audio primitives for speech and music, etc.

3. Wrapper primitives allow an arbitrary PREMO value to be carried as a primitive,
for example for use in returning the measure of an input device.

4. Modifier primitives alter the presentation of forms, for example visual primitives
encompass shading, colour, texture and material properties that affect (for example)
the appearance of geometric primitives.

5. Reference primitives enable the sharing and reuse of clusters of primitives via
names that can be defined within structures.

6. Forms and modifiers are combined within Structured primitives. An Aggregate
is a subtype of Structured which contains a set of primitives, where some mem-
bers of the set may be interpreted in application dependent ways; it is thus up to an
application subtyping from Aggregate to impose a specific interpretation on such
combinations. Of particular importance, given that PREMO is concerned with mul-
timedia presentation, is the TimeComposite primitive and its subtypes which
allow a time-based presentation to be defined by composing simpler fragments.
Subtypes of TimeComposite provide for sequential and parallel composition, as
well as choice between alternative presentations as determined by the behaviour of
a state machine. Additional control over timing is achieved via temporal modifiers,
and subtypes of TimeComposite define events that can be used within the PREMO
event handling system to monitor the progress of presentation.

7. Tracer primitives carry an event. This event can be detected at the port of a device
configured to use MRI_Format, and will be dispatched to the event handler associ-
ated with the port. This facility is used for coarse-level synchronization.

2.6.3 Modelling and Rendering Devices

The MRI component derives a number of object types from the VirtualDevice type
of the MSS component, as described in section 2.5.4. As in MSS, these do not represent
concrete devices. They instead define the interface that a device must offer in able to
provide certain kinds of service within a PREMO system, and in the case of Part 4, with
primitives derived from the hierarchy described above. The device network shown in
Figure 2-4 on page 23 incorporates a number of devices, the types of which would in-
herit from MRI object types. The MRI component defines a subtype of VirtualDe-

32
vice for use as the base type for deriving devices for modelling, rendering and
interaction. The so-called MRI_Device object type is required to support a format at its
input and/or output ports that allows MRI primitives to be transmitted and received.
Such a device is also required to define properties setting out which primitives it can
accept, and some measure of the efficiency with which it can process primitives. In the
standard, the following specialisations of MRI_Device are defined:

1. Modellers and Renderers guarantee to provide an output or (respectively) input port
that accepts MRI_Format streams for carrying primitives. The devices also contain
properties that characterise their ability to process primitives.

2. A MediaEngine is a device that can act both as a Modeller and a Renderer, i.e.
a device that can transform one or more streams of primitives into new streams.

3. The Scene object type defines a database that can be used to store primitives pro-
duced and/or accessed by other devices within a network. It is assumed, for exam-
ple, that multiple devices may have concurrent read access to specific primitives,
but the exact form of concurrency control is not specified. The interface of the
device allows requests for access to be granted or denied depending on the policies
adopted.

4. Two devices are introduced to support interaction. The InputDevice object type
(a mouse would be a concrete example) supports interaction in either sampled,
request or event mode through the stream and event handling facilities defined in
other parts of PREMO, while the Router object type allows streams of data to be
directed based on the state of an underlying state machine.

When accessing primitives stored in a scene, or coordinating the processing of multiple
media streams, it is necessary to be able to determine when a particular stream has been
fully processed (or received, in the case of database access). This task is supported by
the Tracer primitive, which carries a reference to an Event. Whenever such a primi-
tive is encountered at the port of a device that is a subtype of MRI_Device, the event
carried by the tracer will be dispatched to an event handler associated with the port. In
this way, other objects that need to be aware of the progress of media processing can
register interest in such events and be updated of processing activity.

2.6.4 Coordination

By using the primitives derived from the hierarchy described in section 2.6.2, an essen-
tially declarative description of a multimedia presentation can be defined. Typically
however, at some point this presentation will need to be processed or presented, and
during this activity the internal structure of the presentation, for example as a collection
of media data to be presented in parallel, becomes important. If a media network con-
tains a device that can process such structures directly, the problem is solved. However,
it is also possible that the presentation of a structured media primitive will require the
services of multiple devices, whose activities must then be coordinated to reflect both
coarse synchronization constraints, as well as quality of service requirements, inherent
in the declarative model.

33

 the
ey are
The MRI component defines a subtype of MRI_Device called a Coordinator.
Such a device encapsulates a number of other media devices (derived from Virtual-
Device), each of which provides the coordinator with one input port. The coordinator
itself has one input port, and as it receives primitives in MRI_Format, the coordinator
is responsible for decomposing any structured presentation into components that can be
processed by the devices that it encapsulates. In the example, the coordinator may re-
ceive presentations that involve synthetic graphics, video, and audio components. The
audio component of the presentation is delegated to the logical device responsible for
audio rendering, while the graphics and video are managed by the second logical de-
vice. The coordinator is also responsible for ensuring that its components maintain any
synchronization constraints captured by the overall presentation. It may achieve this by
monitoring the overall end-to-end progression of its encapsulated devices, and placing
synchronization constraints on those progression spaces, or by using more specific
mechanisms available within PREMO or a given implementation.

2.7 Closing Remarks

This chapter has presented an overview of the PREMO standard. In the process, we
have set out some of the design constraints that have determined the shape of the stand-
ard, and have discussed some of the alternatives that were considered. The description
of PREMO object types and their behaviour has been, by necessity, incomplete and in-
formal. In the chapters that follow, each of the four components will be presented in de-
tail, including the specific interfaces defined for the object types mentioned here. By
giving an up–front view of the overall provisions of the standard, it is hoped that
reader will be better able to relate the detailed account of the object types, as th
given, back to the overall picture of what PREMO is intended to achieve.

34

35

es in

than
d
e
ch as
wever,
tand-
ech-

fore
ssary
 Not
e, it
om

de-
als of
 the
ns, in
ference
nted
 can

equest
 audi-
Chapter 3

The Fundamentals of PREMO

3.1 Introduction

To date, standards for computer graphics APIs have inevitably implemented in a low-
level procedural language such as FORTRAN [82] or C [58]. The principle abstractions
that these languages support are function and procedure headers, and type or constant
definitions. An API standard could be described as a collection of data types and ab-
stract procedures, which would then be mapped through a language binding into func-
tion or procedure definitions in a specific host language. Critically, there were few, if
any, assumptions in the standard itself about how functions or procedures behaved. The
main difficulty, at least in the early language bindings, was deciding how to cope with
differences in the expressive power of the programming languages, e.g. FORTRAN did
not allow enumerated type definitions, so any use of ‘conceptual’ enumeration typ
the standard needed to map onto a set of constants within a FORTRAN binding.

At one level, PREMO represents a straightforward evolutionary step; rather
binding the standard to the facilities of a procedural language, the standard is intende
to utilise the facilities provided by object oriented programming systems. A languag
binding for PREMO is able to map entities in the standard onto mechanisms su
classes, methods, and inheritance provided by an object-oriented language. Ho
this view misses a significant difference between PREMO and previous graphics s
ards. In the case of PREMO, the implementation technology, i.e. objects, and the m
anisms for their definition and interaction, are an intrinsic part of the standard. Be
we can give a precise definition of the types and services of PREMO, it is first nece
to set out what we mean by terms such as ‘object’, ‘object type’, and ‘inheritance’.
only will these affect how we go about binding PREMO to a programming languag
will also affect how we construct complex entities in the PREMO specification fr
simpler ones.

The collection of definitions that set out the concepts with which PREMO is
scribed form the first component of the standard, referred to as the Fundament
PREMO. This chapter describes the fundamental component, following closely
structure of the Part 1 document, but also explaining the rationale behind decisio
particular those that have consequences on subsequent components and the re
implementation described in this book. Readers with a background in object orie
systems or modelling may find that they are familiar with some of the material and
skip sections. However, for at least issues (object references, and operation r
modes) the approach taken in PREMO may be unfamiliar to larger sections of the
ence.

36

 of ob-
 and
 all
xplic-

 of op-
bjects

to re-
 turn

 a set
of var-

 (read
y the
f the

 own
 self-
enting
d can
n im-

dard-
edia
t re-
 and
For readers who have learned object-oriented programming or design from a partic-
ular language or notation, the definition of some of the concepts in this chapter may
seem convoluted. It must be remembered that the PREMO object model is attempting
to define a set of concepts that can be mapped onto a number of different programming
models. Achieving this level of generality does unfortunately lead to some awkward-
ness.

3.2 Basic Concepts

All high-level programming involves the use of some paradigm or metaphor through
which the behaviour of a program can be understood and related to the problem domain.
Pascal and Ada are based on a procedural paradigm, where a program is organised as a
hierarchy of procedures whose activation reflects a stepwise decomposition of the tasks
needed to achieve a particular goal. Object-oriented programming originated in work
aimed at simulating real systems; the first object-oriented language, Simula [9], intro-
duced features that allowed the program to be organised in terms of the ‘classes’
ject that were being simulated. The development of Smalltalk [35] took this idea
turned it into a more general view of ‘programming as simulation’, that applied to
kinds of programming tasks, not necessarily those with system simulation as the e
it aim. In this model, a program is described in terms of how abstractions called objects
interact. An object consists of a set of variables that represent its state, and a set
erations that define the services, or interface, that each object offers to the other o
within the system. Starting from its initial state, an object evolves as it responds
quests (messages) from other objects. To respond to a message, an object may in
send messages to objects that it has access to.

3.2.1 PREMO Objects and Object Types

A PREMO object consists of a local (internal) state, and an interface consisting of
of operations that can be invoked on the object. The state consists of a collection
iables, while the interface is a collection of operations (sometimes called methods in the
wider literature). Conceptually, the state of an object cannot be accessed directly
or modified) by other entities within the system. Instead, all access is mediated b
interface – a client can only access or modify an object’s state by invoking one o
operations available in that object’s interface.

Any object in a PREMO system may conceptually be active, that is, have its
thread of control. In practice of course, it is useful to only implement an object as a
contained thread when this is needed; for many objects, for example those repres
static data, there is no thread of activity, and therefore the implementation overhea
and should be avoided. This requirement does make it more complex to provide a
plementation of PREMO in languages such as C++ [79] for which there is no stan
ised thread model. However, the notion of active objects is widespread in multim
(see for example [65]. Adopting it as a design principle for PREMO has brough
wards, for example PREMO Part 3 defines virtual ‘devices’ which are both objects
processes.

37

ction

e cor-
sses in
 im-
ndard
po-
d to-
ill be
avail-
-
 where

od-
ically,
, that
mic
 new
nefit

d of
 com-
amic
sed in

umber
a may
nts are
se pa-
g the
d in
 pair
t the
object

ead-
rns the
Each object in a PREMO application is created as an instance of an object type. Ob-
ject types correspond to the concept of a class in many object-oriented programming
languages. The term ‘object type’ is used in the standard to make explicit the distin
between the specification of an entity in the PREMO standard, and the implementation
of that entity in a particular programming system. There need not be a one-to-on
respondence between object types described in the PREMO standard and the cla
an object-oriented implementation of PREMO. In principle at least, it is possible to
plement PREMO in a non object-oriented language. For similar reasons, the sta
uses the neutral terms ‘operation’ and ‘invocation’ to refer to the behavioural com
nent of objects, in place of the ‘method’ and ‘message passing’ which are biase
wards object-oriented implementations. An object type introduces variables that w
part of the state of each instance of that type, and similarly, operations that will be
able in the interface of each instance1). PREMO, like mainstream object-oriented lan
guages such as C++, Ada’95 [7], and Java [36] has adopted a static object model,
the structure of an object is fixed by its type, and cannot be modified at run-time. M
els have been proposed in which the structure of an object can be modified dynam
i.e. while the system is running. Approaches such as CLOS [11] and Smalltalk [32]
include some capability for reflection’, are good examples of this. A restricted dyna
object model is also found in the Python language [87], where an object can gain
operations. Although there is some evidence that multimedia systems might be
from the use of a more dynamic model, the practical difficulties of realising this kin
behaviour in the languages currently in widespread use meant that the PREMO
mittee opted for a more traditional, static model. However, some support for dyn
structures was subsequently provided through the properties mechanism, discus
Chapter 5.

3.2.2 Attributes

The restriction that all access to object state be via operations is strong, and in a n
of cases imposes a significant overhead. For example, a device for playing medi
have a number of parameters, such as speed of play, where it is intended that clie
free to inspect and modify these parameters as needed. Although the value of the
rameters will affect the behaviour of the object, the operation of setting or accessin
parameter does no further work in itself. If the strict encapsulation model is followe
detail, each such parameter in an object type must be defined implicitly through a
of operations for accessing and modifying the parameter. Doing this throughou
standard would have added considerable overhead to the specification of the
types. To overcome this, object types in PREMO can introduce attributes, which can
further specialised into read-only, write-only, and read-and-write (the default). A r
only attribute can be seen as a shorthand for an operation that retrieves and retu

1) The possibility of subtyping (see section 3.4) means that instances may also contain variables
and operations inherited from supertypes.

38

ublic’
 of an
realise
e per-
d will

bject
ession
even
 a great

tion
ch as

sation
with
ented
g lan-
tional
erns
gram-

istinc-

hy de-
t of a
erates
nd re-
ow-
hich

at are
nd do

at per-
 lan-
ter to
value of an internal state variable. Dually, a write-only attribute defines an operation
that sets the value of a corresponding state variable. The default, an attribute that is both
readable and writable, has both operations.

For read-and-write attributes, an implementation of a PREMO object type may be
able to realise the attribute simply as a variable that is publicly accessible, e.g. a ‘p
state variable in C++ or Java. However, it should be noted that setting the value
attribute can result in an exception, and to implement this it may be necessary to
the attribute by a pair of methods. In any case, few languages support read/writ
missions for variables, and consequently most attributes in the PREMO standar
map on to methods in an implementation.

3.2.3 Non-object Types

The ideal of object oriented programming, that every entity in the system is an o
that can be manipulated through its interface, has probably found its purest expr
in systems such as Smalltalk and SELF [83]. In this environment, all entities –
things such as numbers and characters – are construed to be objects. This brings
simplicity to the language, but creates a significant difficulty. All data manipula
must (at least conceptually) be carried out by invoking operations, even things su
adding one number to another. This overhead can be reduced with good optimi
technology, but the resulting performance is still some way from that obtained
more direct methods of storage and operation. Partly for this reason, object-ori
languages have either been defined by adding features to existing programmin
guages (as in C++ and Ada’95), or by defining new languages that contain tradi
data types in addition to objects (for example, Eiffel [66]and Java). Efficiency conc
aside, this approach also benefits from easing the migration path for existing pro
mers.

For very much the same pragmatic reasons, PREMO from the outset makes a d
tion between object types, and non-object types. Each non-object value is a member of
some non-object type, but non-object types are not part of the object type hierarc
scribed in section 3.5. Values of non-object types are atomic, there is no concep
state or operations, rather, it is assumed that the environment in which PREMO op
provides a set of operators for manipulating non-objects, for example arithmetic a
lational operators for working with integers and other numeric formats. There is h
ever an important bridge between the world of objects and the world of values, w
is discussed in the next section.

Part 2 of PREMO (see Chapter 5) introduces a collection of non-object types th
used widely in the remainder of the standard. Other PREMO components can a
introduce further, specialised types (in the form of subranges or enumerations).

3.2.4 Object Identity and Object References

A basic tenet of the object-oriented metaphor is that each object has an identity th
sists, independent of the changing state [13]. Many object-oriented programming
guages treat objects as pointer variables, with the object itself being but a poin

39

 val-
 any

rough
O.

hine,
s be
cal to
local
ddress

ces-
it in

d an
rite-

 ob-
,

opied,
her val-
 object
e ref-
ities,
art of

 oper-
nism.

ter.
 no-

t

 class

con-
ndard,
ed
where the state variables, and data needed for method dispatch, are stored. In this ap-
proach the identity of an object is implicit; it is the address of the state in memory. Some
languages, notably C++ and Eiffel, also allow objects to be stored essentially ‘as
ues’, and in this case it is up to the programmer to take responsibility for defining
notion of object identity.

The PREMO standard mandates that all access to a PREMO object must be th
an object reference; it is simply not possible to access an object directly in PREM
There are two main reasons for requiring this:

1. PREMO objects are potentially distributed; if an object exists on a remote mac
it simply is not possible to access the object directly. By requiring that all object
accessed via references, the standard allows a seamless migration from lo
remote access, and avoids the complication of an explicit distinction between
and remote objects. An object reference can be used to encode both local a
information and the location of a particular object across a network.

2. If PREMO were implemented in a non object-oriented language, it might be ne
sary to code a notion of object reference explicitly. Making the concept explic
the standard provides at least a conceptual handle on the problem.

A PREMO client obtains a reference to an object by requesting a facility calle
“object factory” (discussed in Chapter 5) to generate an object satisfying specific c
ria. If it is able to satisfy the criteria, the factory will return a reference for the new
ject. Such a reference is a value of a non object data type, called an object reference
and can be used as any other item of non-object data. In particular, it can be c
stored, passed as a parameter to operations, and compared for equality against ot
ues of the type. It does not make sense to apply other comparison operators to
references. All subsequent activities involving the new object are then done via th
erence. Consequently, the PREMO environment must provide support for activ
such as invoking an operation on an object, which are often taken for granted as p
a language-specific object model. In the case of a remote object, for example, an
ation invocation must be translated into an appropriate remote invocation mecha
Such assumptions have a significant impact on the binding of the PREMO specification
to a implementation model; more will be said about this problem later in this chap

As a way of highlighting the important of object references within the standard, a
tational convention was introduced: for object type T, ‘ref T’ denotes the non object type
containing references to objects that are instances of T. In a language such as C++ tha
has explicit pointers, ‘ref T’ will become the type of pointers to T; for a language like
Java in which object references are implicit, the declaration of an object of some
is understood implicitly as the introduction of a value of ‘ref T’.

In common with most object-oriented systems, PREMO introduces a special
stant to designate an object reference that refers to no object. In the PREMO sta
this value is denoted NULLObject; in a Java implementation, it would be represent
by the null object.

40

ition
equest
iption
-

d zero

e
ion is
a op-
n ob-
cially
e op-

types
 is de-
patch-
ations,
oose
.
issue

 non-
ad, a

ct
 distin-
uted

tion. It
 a copy

rtain
nting
ts will
3.3 Operations

Object oriented programming languages often use the term ‘method’ for the defin
of the process that objects of a particular class should perform in response to a r
from some entity in the system. In keeping with the goal of separating the descr
of PREMO from language concerns, the term operation is used in the standard. An op
eration describes a process that can be applied to an object, through an operation invo-
cation (also called an operation request).

Each operation has a signature, consisting of one or more input parameters, an
or more output parameters, e.g. a signature has the form

op : p1 : T1, p2 : T2, ..., pn : Tn → r1 : S1, r2 : S2, ..., rm : Sm

Here p1 ... pn are the input parameters, and r1 ... rm are the output parameters. Th
first input parameter to an operation represents the object ‘on which’ the operat
being invoked. In many object oriented programming languages, the ‘receiver’ of
eration invocation, or message, is implicit when an operation is defined, i.e. it is a
ject of the class in which the method is written. This object is then designated spe
in the syntax for operation invocation, e.g. in Java or C++ the object on which th
eration is applied is written before the operation:

receiver.opName(arg1, arg2, ..., argn)

There is a good reason for distinguishing the receiver. In the presence of sub
(discussed in section 3.4), the operation performed in response to an invocation
termined by the type of the object that receives the request; this is called single dis
ing. However, there are also languages which have a more general model of oper
for example Ada’95 and CLOS treat all arguments to an operation equally, and ch
a suitable operation based on the types of each argument, so called multiple dispatching
The model of operations in PREMO is intended to be neutral with respect to this
of language design.

The input and output parameters of a PREMO operation are required to be of
object types, i.e. it is not possible to pass an object directly to an operation; inste
reference to the object must be passed. If the object is of type T, then the parameter type
will be of the reference type Ref T, which was previously mentioned, isa non-obje
type. This requirement on parameter types is another consequence of the need to
guish carefully between objects and object references within a potentially distrib
environment. By default, object references are passed directly to the called opera
is possible to indicate that the operation should instead be passed a reference to
of the object, constructed using the create facility described in section 3.10.

3.4 Subtyping

Object oriented programs typically involve the manipulation of objects that have ce
similarities. For example, a drawing program may manipulate objects represe
points in 2, 3, or 4-dimensional cartesian coordinate systems. Each of these objec

41

 be
PRE-

ct of
[88]),
 devel-
 types.

 to the
tion

d im-

 the

ber of
s the

ed the
 exist-
r in-
ch

and
have at least an x and y coordinate. A video media stream may pass from a device which
reads data from an external source to a device that displays the video; while the devices
may be objects of different object types, both however may have the capability to stop,
pause, and resume their processing tasks. Subtyping is the relationship that holds be-
tween two object types when objects of one type can be used in contexts where objects
of the first type are ‘normally’ expected. In the examples above, a 3Dpoint object type
may be a subtype of 2Dpoint, while both the video stream producer and render may
subtypes of a generic object type representing video devices. The definition of a
MO object type should indicate which object type(s) it is a subtype of.

Exactly what should and should not constitute ‘a subtype’ has been the subje
much debate within the object-oriented systems communities (see for example
and indeed different approaches can be required at various stages of the software
opment process. PREMO bases its notion of subtype on the interface of the object
For T to be a subtype of S, the following conditions must hold:

1. for each operation OPS in S, there should be an operation OPT in T with the same
name;

2. the number of parameters accepted by OPS and OPT should be the same;

3. with the exception of the first parameter, each the type of each parameter toOPT
should be the same as the type of the corresponding parameter to OPS. The excep-
tion is because the first parameter to an operation is taken to be a reference
object on which the operation is dispatched. Therefore this type will by defini
be distinct in different object types.

Two concepts which are useful in discussing subtyping are direct instance, an
mediate subtype:

• Each object in PREMO is a direct instance of exactly one type, which is called
object’s immediate type. If O is a direct instance of T, this means that O is an
instance of T, but not an instance of any subtype of T. Intuitively, an object is a
direct instance of the object type used to create the object.

• An object type T is an immediate subtype of object type S, if, informally, T is
‘immediately beneath’ S in the object type hierarchy. More precisely, T must be a
subtype of S, and there must be no other object type U such that U is a subtype of S,
and T is a subtype of U.

An object type can have any number of subtypes, and can also have any num
supertypes, that is, it can be a subtype of multiple object types. An object type, plu
collection of its supertypes, plus their supertypes, etc., forms a directed graph call
type graph of the object type. New subtypes are created by subtyping from some
ing PREMO object type. In particular, all PREMO objects are subtypes (directly o
directly) of the type PREMOObject, which defines the minimal functionality of ea
object in a PREMO system. This includes:

• operations to enquire an object’s type and type graph;

• an initialize operation that is performed on an instance when it is first created;

42

 by

bjects
nality.
ct
 type,
. Ab-
as an
ust be

ly, if
s of

r ob-
com-
s the
rent

 prob-
ities.
s al-
• an initializeOnCopy operation to be performed on an instance if it is created
copying an existing instance.

Some object types in PREMO have been introduced, not because they define o
that are useful in themselves, but because they describe some significant functio
Such an object type is called an abstract type. The functionality described in an abstra
type might be realised in a number of subtypes. By subtyping from the abstract
these object types then clearly indicate that they are providing particular services
stract types are non-instantiable, i.e. it is not possible to have an object which h
abstract type as its immediate type. Instead, any behaviour of an abstract type m
accessed through instances of some subtype.

3.5 Inheritance

Where subtyping is a relationship between object types, inheritance is a mechanism for
re-using the definitions of one object type in the description of another. Informal
object type T inherits from S, T acquires all of the state components and operation
S; it may also introduce state and operations of its own. If a PREMO object type T in-
herits from an object type S, T is defined to be a subtype of S.

Multiple inheritance, where an object type can inherit from more than one othe
ject type, is supported in the PREMO object model. While it is useful to be able to
bine features from various object types, in practice multiple inheritance introduce
potential for conflict between names (of states or operations) inherited from diffe
sources. For example, Figure 3-1 shows a Timer object type being defined by multiple
inheritance from object types representing a StateMachine, and a Clock. Both the
StateMachine and Clock introduce an operation called reset. The problem is that the
Timer object type inherits two conflicting implementations of reset.

Programming languages have adopted various approaches to dealing with this
lem. C++ for example a number of rules that attempt to resolve potential ambigu
Java, in contrast, does not allow multiple inheritance of implementations, but doe

Figure 3-1 — Name collision in multiple inheritance

Timer

ClockStateMachine

transition
whichState
reset

tick

reset

tick

time

time

transition
whichState
reset

43

er
low a class to implement multiple interfaces. Because an interface is only an operation
signature, there is no scope for ambiguity. Multiple inheritance was felt to be a useful
technique for deriving new object types in PREMO, and has been used in a number of
places in the standard. However, it was felt that the definition of rules to resolve any
ambiguity would impose an unnecessary implementation bias in the standard. Instead,
features (state variables, attributes and operations) of an inherited object type can be re-
named in order to avoid clashing with similarly named features from other object types
that are also inherited. Inherited features can also be redefined; for example, the Timer
object type in Figure 3-1 might define a new reset method that overrides both inherited
versions. If a name clash does occur, the results are not defined by the PREMO standard.

3.6 Protected Operations

Certain operations available on a PREMO object are not intended for use by clients.
Two examples of these are the initialize and initializeOnCopy operations de-
fined in PREMOObject and are thus available in all objects. These are intended for use
by specialised facilities described in section 3.10, not by arbitrary clients. Access to op-
erations can be limited by the declaring the operation as protected. A protected opera-
tion can only be invoked by an instance that contains the operation. The behaviour of a
protected operation can be modified within subtypes, for example by overriding, but an
operation declared as protected cannot lose that status in a subtype. Attributes can also
be declared as protected, meaning that the operations for reading and/or writing the cor-
responding state component are marked as protected.

3.7 Operation Selection, and Casting

Operation invocation in object oriented systems is complicated by the presence of the
subtyping relationship. When an operation is invoked, its name is given, along with
(non-object) values for each input parameter. The type expected for each result param-
eter is also known. On the basis of this information, the PREMO environment must se-
lect which of a number of possibly matching operations is to be executed. It does this
by examining the immediate type of the controlling parameter (the first input argument,
which is always present). The following conditions must be met by any operation that
is a candidate for execution in response to the request:

1. The immediate type of the object must define an operation with the same name and
number of input and output parameters as appear in the invocation. Suppose that the
signature of this operation is

op : p1 : T1, p2 : T2, ..., pn : Tn → r1 : S1, r2 : S2, ..., rm : Sm ;

two further conditions must then be met.

2. For each input parameter pi,

– if Ti is ref T, for some object type T, then the corresponding actual paramet
value must be a reference to an object of type T, or an subtype of T.

44

t be a

g

esult

variant

lling
me, the
er the
e pa-
 rule

ntrol-
e, an

tion
 in

 super-
– if Ti is not a reference type, then the corresponding actual parameter mus
legitimate value of type Ti.

3. For each output parameter ri,

– if Si is ref T, for some object type T, then the destination for the correspondin
result must be of type ref U, where U is either T itself, or some supertype of T.

– if Si is not a reference type, then the destination for the corresponding r
must be of type Si.

Points 2 and 3 can be summarised by saying that PREMO assumes a contra-
rule for operation parameters.

If it happens that more than one operation in the immediate type of the contro
parameter meets requirements 1-3. If the signatures of the operations are the sa
PREMO standard requires that an exception be raised (see section 3.9). If howev
operations have different signatures which are nether the less compatible with th
rameters given by operation invocation, the environment of PREMO may define a
or mechanism for choosing one of the candidate operations to be executed.

The importance of selecting an operation based on the immediate type of the co
ling parameter is shown in Figure 3-2, using the object types from Figure 3-1. Her
object reference, counter, declared as type Ref Clock has been assigned a Timer object.
This is quite legitimate, since a Timer is a Clock. However, if the reset operation is now
invoked on counter, the operation that is executed should be the version of reset defined
by the Timer object type, not that defined by the Clock object type. And indeed this is
what will happen, since the immediate type of counter is Timer, rather than Clock.

A PREMO environment is required to provide a finer level of control over opera
selection via a cast facility. If the program containing the counter reference shown
Figure 3-2 needs to access the reset behaviour defined in the Clock object type, it can
use the facility to generate a new object reference which has Clock as its immediate
type. The required behaviour can be then be accessed by invoking reset using this new
reference as the controlling parameter. An object reference can only be cast to a

Figure 3-2 — Operation Selection

Timer

Clock

tick

reset

tick

time

time

transition
whichState
reset

counter : ref Clock

reset(counter);

declared type

immediate type

45

nded
model
ges.

as
d. By
e dif-
tion
lving

ding
ritten
toring
ere the
r than
ample
d for
ants.

 syn-
er ob-
. For
ith the
le to
n in-

ecep-
type of its immediate type, i.e. an object type that appears in the type graph of the im-
mediate type. This is supported by facilities defined in Part 2 of PREMO that allow all
objects to enquire their type graph.

3.8 Operation Request Modes

In simple models of program execution, operations are usually carried out as synchro-
nous processes, with the caller suspending until the operation has been completed and
the result (if any) is returned. This model of course breaks down in the presence of con-
current processes, and is untenable in a distributed system where the overhead of locat-
ing and communicating with a remote object can be non-trivial compared with actual
execution times. Distribution has been a fundamental design goal in PREMO, and con-
sequently the PREMO object model must address the problem of how operation invo-
cation takes place. In PREMO, each operation on an object is defined to operate in one
of three possible request modes. These modes are called synchronous, asynchronous,
and sampled. The mode is an immutable property of an operation, specified when the
operation is defined. A subtype can override the implementation of an operation, but
cannot change the mode of the operation.

• Asynchronous operation request causes the caller of the request to be suspe
until the request has been serviced and a result returned. This is the usual
found in and supported by default in most object oriented programming langua

• The caller of an asynchronous request can continue its own thread of control
soon as the call is made; at some point the requested operation will be invoke
the time the operation has been completed, the caller may be carrying out som
ferent task, and it is not therefore possible to return a result. Communica
between asynchronous processes is a well known engineering problem, invo
techniques such as shared variables with mutual exclusive access.

• A sampled request is similar to an asynchronous request, except that any pen
request for a given operation (i.e. a call that has not been serviced) is over-w
by any new request. Conceptually, each operation has a 1-place buffer for s
pending requests. Sampled mode has been supported in PREMO for tasks wh
rate at which an object can be informed of, and service, requests may be slowe
the changes that are causing clients to make requests. This may happen for ex
where a server graphical objects in a distributed VR environment is being aske
detailed object geometry by clients managing the interaction of remote particip

Some care is needed in dealing with the suspension that results from invoking a
chronous operation. When suspended, an object can still receive requests from oth
jects, which are managed in accordance with the behaviour described above
example, a synchronous request on a suspended object will be held as pending, w
caller itself suspended, until the callee’s own invocation is completed and it is ab
service the request. While suspended however, an object can continue with its ow
ternal thread of processing; it just cannot access information related to its own r

46

ter-
itself.
 their

xcep-
s.

, de-
ervices
ption.
tors, for example to service a request. When an object invokes an operation on itself, the
operation receptor mechanism is by-passed; the implementation of the operation is in-
voked immediately. If this were not done, such an invocation would deadlock.

Distribution, and the activity of objects, both mean that an object may receive oper-
ation requests concurrently. At any time, an object may have a number of requests out-
standing on any number of its operation receptors. In this case, the object chooses one
of these requests non-deterministically and services it, then selects another request. An
object also has the ability to limit the range of requests from which it will select one.
This facility is for example provided in the Ada programming language through the
select statement.

3.9 Exceptions

An exception is a situation that arises during the execution of a PREMO operation
which makes it impossible or inappropriate to continue the execution of the operation.
For example, an object may be in a state for which the operation is inappropriate, or a
parameter value may be illegal. If a PREMO operation detects that an exception condi-
tion has been broken, execution of the operation should be abandoned, and an exception
should be raised. The state of the object is left unchanged (note that all exceptions de-
fined in PREMO relate to conditions that can be checked without modifying the state
of any object involved).

How an exception is raised, and communicated back to the object that invoked the
operation, is not defined in PREMO. Different programming languages support more
or less explicit constructs for exception management, and, for PREMO, exceptions are
part of a larger issue called the environment binding which is discussed in section 3.11.
PREMO however does mandate are the following rules.

• Different error conditions result in different exceptions, i.e. it is possible to de
mine the nature of the error that caused the exception from the exception
Exceptions are defined in the PREMO standard as objects that, in addition to
identity, can convey additional information about the cause of the exception.

• Facilities must be available for the caller of an operation to detect when an e
tion has occurred, and to unpack the information provided by exception object

One kind of operation is treated differently. Operations that initialise an object
scribed in the next section, do not themselves raise an exception, instead, the s
of the PREMO environment responsible for object creation should raise the exce
If an exception occurs during object initialisation, the NULLObject reference is returned
as the result of the creation operation.

47

t.

ther

t to
ular,
ance

nce
ance.
e pro-
ding

acil-
ill
ble
uction
e to a
ilarly

n to
3.10 The Object and Object Reference Lifecycle

PREMO objects are created, manipulated and destroyed by facilities that form part of
what is called the environment binding. This binding will be discussed in general terms
in the next section; here, we describe the changes can take place in the evolution of an
object and object reference.

1. Creation. An object is created using the create facility from the PREMO environ-
ment. This facility is given the name of an object type of which an instance is
required. It is required to produce a suitable instance, and to invoke the protected
initialize operation on the instance. Any parameters for initialisation are passed
via the create facility, which returns either an object reference, or the NULLObject
reference if an exception occurred during initialization. In the former case, the
immediate type of the reference will be the object type specified as an argument to
the create facility.

2. Copying. An object can be copied using a copy facility, which is given a reference
to the object to be copied. Like the create facility, copy returns a reference to a
new object, satisfying the following requirements.

– The reference returned by copy has the same immediate type as its argumen

– A protected operation, called initializeOnCopy, is invoked on the new
object by the copy facility. This operation does not accept any arguments (o
than the controlling parameter, which is the new object itself). The initial-

ize operation is not invoked by copy.

– If the copy is shallow, each component of the state of the new instance is se
the value of the corresponding component in the original instance. In partic
this means that a reference to an object in the state of the original inst
becomes a reference to the same object in the state of the new instance.

– If the copy is deep, all non-object components of the state of the new insta
are set up as copies of the corresponding components in the original inst
Each object reference in the new instance is then set to be a new referenc
duced by recursively invoking the deep copy operation on the correspon
reference from the original instance.

The choice of shallow versus deep copy is indicated at the point where the copy

facility is utilised.

3. Destruction. A reference to an object can, conceptually, be destroyed using a f
ity called destroyReference. The result of using this is that the reference w
have the value NULLObject. The object, however, may still exist and be accessi
via other references. The term ‘conceptually’ is used here, because the destr
of a reference is in many cases little more than the assignment of a (new) valu
variable representing an object reference. Object instances are destroyed sim
through the destroyObject facility. The effect of destroyObject on any refer-
ence to that object is not defined. It is good practice for the PREMO applicatio

48

echa-

pack-
 exter-

s, may

s re-
 top of
guage
rt dis-
d invo-
stead
 set of

l pro-

ram-
ed by
elect
nents
t. An
facil-
invoke destroyReference systematically, on each (former) reference to a
destroyed object.

3.11 The Environment Binding

Facilities such as active objects and asynchronous operation dispatching impose re-
quirements on an implementation of PREMO. How they are realised depends both on
the programming language to which PREMO is bound, as well as the environment that
the implementation uses. For example:

• a Java implementation may realize object activity through the Java threads m
nism, with access to remote objects provided by the RMI package [39];

• a C++ implementation might support active objects through a separate thread
age (pthreads, for example), while remote object access may be based on an
nal system such as CORBA [71].

In both cases (Java or C++), some facilities, such as operation request mode
need to be programmed explicitly.

It is not in general sufficient to produce just a language binding for PREMO. Anen-
vironment binding may also be needed, to define the link between certain service
quired by a PREMO system, and some higher-level mechanisms implemented on
the selected programming language. There is also no fixed border between lan
and environment binding. Some programming languages may for example suppo
tribution as a fundamental concept, and therefore services such as remote metho
cation will be built in. Most languages however do not have such services, and in
remote method invocation will need to be realised through a binding to a separate
higher level services, for example the Java RMI package, or a CORBA interface.

It has already been mentioned that PREMO assumes that its environment wil
vide a number of fundamental services, including:

• object creation and destruction;

• copying;

• operation invocation;

• generation and detection of exceptions

These facilities might be realised through explicit constructs in the host prog
ming language, or, like remote method invocation, they might need to be support
some package or other higher-level facility. To allow an implementor freedom to s
the most appropriate tools, these facilities are viewed not as fundamental compo
of PREMO, but as services that a PREMO system requires from its environmen
implementation of PREMO must therefore include a mapping from these generic
ities onto appropriate implementations.

tract

dard
ses a
bvi-
e our
hem-
formal-

allel
t of
ergo
les in
the
tails
mple,
tem;
nta-
cod-
fully
goes
Chapter 4

General Implementation Issues

PREMO is an abstract specification, i.e., the ISO document describes its functionality
in a programming language and environment independent way. This follows the tradi-
tions set up by various standards, including standards in computer graphics such as
GKS or PHIGS[5]. Whereas this is perfectly appropriate for an official ISO Standard,
we feel that, for the purposes of this book, it would be better to present PREMO in a
less abstract manner. This means:

• specifying objects in a well–known programming language rather than an abs
specification formalism used in the ISO document; and

• referring to a real, albeit currently prototypical, implementation of PREMO.

To illustrate the first point, Figure 4-1 shows how an object is specified in the Stan
text (you do not have to understand all the details for now). This specification u
formalism inspired by Z[78] and Object–Z[24,25]; it is precise and usable, but it o
ously requires a certain practice to read. By using a well–known language to defin
objects, the reader will have less difficulties to understand the type specifications t
selves, and can concentrate on the semantics of the object types rather than the
ism!

The prototypical implementation, referred to above, is being developed in par
with writing this book. We will therefore refer to “real” objects, rather than just a se
paper–and–pencil entities; all the type specifications appearing in the book will und
the scrutiny of a compiler, thereby ensuring the correctness of all the code examp
the book.1) “Prototypical” means that the implementation will only concentrate on
key elements of a possible product–level implementation, but will ignore certain de
which do not add to understanding the essence of the PREMO model. As an exa
a powerful MPEG coder and decoder is obviously important in a multimedia sys
however, our prototypical implementation does not aim at a very efficient impleme
tion of the MPEG compression algorithms, it just shows where a powerful coder/de
er can be plugged in. Of course, the prototypical implementation can (and hope
will) be used as the basis for a production level PREMO implementation, but this
beyond the scope of this book.

1) All the specification code of the book are also freely available on the web site:ftp://ftp.cwi.nl/pub/premo

50

”, and

ple-
 book.
 which
spec-
 an-

as our
reatly
 ref-
e the

-

-

-

The core of this book describes the object interfaces and the semantic behaviour of
the objects only, to give a thorough presentation of the reference model advocated by
PREMO. However, a separate appendix gives also some more details of the implemen-
tation itself, for those who want to understand what happens “behind the scenes
who may feel challenged to provide a full implementation of PREMO.

The choice of the programming language and the environment used for the im
mentation has a consequence on the way objects will be presented throughout this
The current chapter concentrates on some of the general issues and constraints
directed our choices and how these constraints will be visible in the various type
ification in the rest of this book. Of course, the problems we will describe, and the
swers we have found to those problems, reflect the chosen environment as well
own software engineering abilities, and the reader might perfectly be capable of g
improving our design. But that is all right; the goal of this book is to understand the
erence model of PREMO, and an efficient implementation would not necessarily b
most direct and clear account of PREMO.

Figure 4-1 — Object Specification in the ISO PREMO Document

PropertyInquiryabstract

EnhancedPREMOObject

inquireNativePropertyValue

keyin : Key

nativeValueout : seq Value

exceptions : {InvalidKey}

The operation returns the native property values for keyin. This native property value
represents the value or values the project instance can take on for keyin. A native prop-
erty value is available for all properties which are defined as part of the object’s func
tional specification.

The nativeValueout is typically a sequence of values (e.g., if the type of the correspond
ing property is defined as a String), or a minimum–maximum range (if the value is a
numerical type). The specification of the property shall define the return type of the re
sult of operation invocation if this is not the case.

Exceptions raised:

InvalidKey The key is invalid.

PropertyInquiry

51

EMO
ral to

 For-
rized
s, pro-
ences
e map-

 (see,
of ab-
ticular

being
e term
artic-
 view
the
 var-

31],

hout
 one

iple);
 con-

rts the

s only
When engaging into the implementation of any abstract specification, one has to
choose the programming language as well as the programming environment where this
implementation will exist. This is what we will detail in what follows.

4.1 Implementation Choices

4.1.1 Implementation Language

PREMO is an object–oriented standard. This means that the functionalities of PR
are defined in terms of object types and their behaviour. It is therefore quite natu
choose an object–oriented programming language for the implementation.

However, things are not that simple. Traditional imperative languages, such as
tran or C, rely on a common computational model which can be broadly characte
as a “von Neumann machine”, i.e., they all use concepts such as common variable
cedures, input and output variables, etc. Although there are of course great differ
among these languages, the underlying model is the same. As a consequence, th
ping of standards such as, in the area of computer graphics, GKS or PHIGS
e.g., [5]) is relatively straightforward; these standards are defined as a large set
stract functions, which have to be mapped against the specific features of a par
imperative language. There are a lot of details to fill in, but it is straightforward.

In spite of the abundance of object–oriented languages, the situation is far from
that simple when an object–oriented design is adopted. One has to realize that th
“object–orientedness” is, though widely used, rather vague, and each author of a p
ular object–oriented specification or each language designer have his or her own
on how objects are defined and how they behave. To be somewhat more precise, ob-
ject models used in these designs differ. These differences are then reflected in the
ious programming languages that claim to be object–oriented (Smalltalk[
Eiffel[66], C++[79], Java[36], Python[87], Ada’95[7], to name only a few).

The differences can be very significant when it comes to an implementation. Wit
trying to be exhaustive, here are some characteristics which may be different from
object model to the other (see also [13]):

• single vs. multiple inheritance (e.g., Java has single inheritance, C++ has mult
indeed, is the object model based on inheritance at all, or does it rely on the
cepts of prototypes and delegation (see, e.g., [62]);

• separation, or not, between an interface and an object type (e.g., Java suppo
separation explicitly, Smalltalk, Python, or C++ do not1));

• existence of non–object types, such as integers and doubles (e.g., Smalltalk ha
objects, C++ and Java have non–object types, too);

• how objects are created, destroyed;

1) Although one could argue, in the case of C++, that abstract C++ classes may be considered as interfaces.

52

ibutes
gation

e de-
been
fica-
too;
er 3)
. Al-
k of
 pro-

va is
from
 our

MO);

pack-

e set

 be in

e im-
 split

s, the
aces.
 are
• are the interfaces of object instances fixed (e.g., is it possible to add new attr
or methods to an object instance such as, for example, in Python or a dele
based model);

and the list continues…
As a consequence of this diversity, if a very precise abstract specification is to b

fined, this specification must include its own object model description. This has
the case for such industrial specification as CORBA[71]: OMG has its own speci
tion of what objects are in OMG’s point of view. And this is the case with PREMO,
an important portion of the so–called “fundamental” part of PREMO (see Chapt
has been devoted to the definition of the object model which PREMO relies on
though this object model is not particularly different from what people usually thin
objects, it had to be precisely defined, and this model did influence our choice for a
gramming language as far as our implementation was concerned.

The language we have finally chosen is Java. Although the object model of Ja
not 100% identical to PREMO’s model, it is probably the closest we can get. Apart
its large popularity and wide availability, the following features of Java influenced
choice:

• Java has exceptions as part of the language (exceptions are also used in PRE

• threads are integral part of the Java design;

• Java has a large and very useful set of utilities in terms of the various Java
ages;

• good portability across numerous platforms, including both the language and th
of ‘core’ Java packages.

As a consequence, all object specifications, example code, etc., in this book will
Java1).

Java uses the concept of ‘packages’ which offers us a nice way of structuring th
plementation, as well as the various interfaces of PREMO. Our implementation is
into the following packages:

premo.std.part2
premo.std.part3
premo.std.part4
premo.impl.part1
premo.impl.part2
premo.impl.part3
premo.impl.part4
premo.impl.utils

The content of these packages is straightforward: the ‘std’ packages contain those
classes and interfaces which are the direct counterparts of PREMO specification
‘impl’ packages contain the various implementation specific classes and interf
The premo.impl.utils package separates those implementation classes which

1) We will rely on the familiarity of the reader with Java. Apart from the book on Java by the designers of the
language[36], there are a large numbers of other books available (e.g., [28] or [39], to refer only to those
used by the authors), and the reader may consult these if necessary.

53

he “java
 ap-

 distri-
n in
d and
 have

t that
ons in

 one
70] or

.e.,

U,

led

e an
nd a
ith
nality
these
tible
e yet

ove to
ble
 use
s; it
 em-
efer
oices
used in all parts of PREMO; the premo.impl.part1, etc., packages contain the im-
plementation classes which are specific to a PREMO part. Part 1 of PREMO does not
include object type specification, i.e., it does not appear in this list as a std package;
however, some of the requirements of the object model lead to the development of spe-
cial facilities, which constitute the premo.impl.part1 package.

4.1.2 Implementation Environment

Having an implementation language is not enough; a full implementation environment
has to be chosen, too. This entails the usual utility and I/O facilities, basic data struc-
tures such as hashtables, vectors, etc. Java offers a standard set of packages (t
core”) which are available with all Java implementations, and which are perfectly
propriate for our implementation (e.g., the java.lang, the java.utils, and the
java.io packages). There are no real problems in this respect.

There is, however, one area where a further choice has to be made, and this is
bution. Indeed, one of the main characteristics of PREMO is that it should functio
a fully distributed environment, i.e., some of the PREMO objects can be accesse
invoked through a network. This means that, beyond the choice of Java, we also
to choose which kind of tool we would use to manage distribution. It also turns ou
his choice has its (albeit minor) consequences on the way the various specificati
the book are defined and presented.

At the time of writing this book, there are, broadly speaking, three alternatives
could choose from to control the distributed access of Java objects (see, e.g., [
[86] for further details):

4. Microsoft’s DCOM (Distributed Component Object Model) used with Java (i
Visual J++);

5. Some form of an OMG CORBA implementation with a Java interface (IL
Netscape’s ONE or Caffeine, OrbixWeb, etc.); or

6. Sun’s (i.e., Javasoft’s) own RMI (Remote Method Invocation) facilities, bund
into Sun’s JDK (Java Development Kit), starting from version 1.1.

We ruled out the usage of DCOM for portability reasons; we did not want to hav
implementation dependent on only one environment. The choice between RMI a
CORBA implementation is less obvious. CORBA offers a greater compatibility w
other object environments and programming languages, and a richer set of functio
with respect to object interface registry (although, by the time the reader reads
lines, Sun may come up with additional registry services for RMI which are compa
with CORBA). On the other hand, using CORBA means having to access and us
another large piece of software besides the Java environment itself, which may pr
be a significant burden for portability (not all CORBA implementations are availa
on all platforms where Java runs). We have therefore opted for RMI. Provided we
Java JDK 1.1 or higher, this provides us with the level of portability Java itself ha
also has the functionality necessary for our prototypical implementation. It must be
phasized, though, that a fully marketable implementation of PREMO might well pr
to choose CORBA rather than RMI; development in this area is so rapid that our ch

54

, allows
 ‘reg-
 be ac-
rring
].

t of
jects

edia
rovide
ee

ocal’

aints
 Java

l serv-
which
 of all
iven

ses
may have been different had they occurred at a later time. Actually, the design philoso-
phies behind CORBA and RMI are very close to one another, so most of the specifica-
tion and code in this book would be valid for a CORBA environment, too. Both
environments rely on the concepts of client and server stubs, and the major differences
between the two approaches can be localized in the way these stubs (i.e., remote ob-
jects) are created, and the references to the server objects are accessed. As we will see
in Chapter 5, the abstract PREMO specification localizes these functionalities into one
or two objects anyway, so the differences between the RMI and corresponding CORBA
implementation are minor and easily manageable.

There is one important difference, however. In the case of CORBA, all objects in the
CORBA world are, per definition, remotely accessible, hence only their references
should and can be passed as method arguments. Java’s RMI, on the other hand
the user to differentiate between objects which are remotely accessible (i.e., they
ister’ as remote server, have a server and client stubs) and objects which cannot
cessed through the RMI mechanism but still exist in their own right. When transfe
references to objects in the second category, RMI passes the objects by value[91

The possibility of passing objects by value is important from PREMO’s poin
view. It so happens that the PREMO specification also differentiates between ob
which have their services available through the network, e.g., full–blown multim
players, and objects which are short–lived, simple, and are not supposed to p
complicated services in a distributed environment, e.g., a geometric point (s
section 5.3.4). The distinction made by the RMI designers between ‘remote’ and ‘l
objects perfectly suits our needs.1)

4.2 PREMO Specifications in Java and Java RMI

4.2.1 Constraints on the Specification Details

Using RMI for the specification of potentially remote objects creates some constr
as to how the abstract PREMO object type specifications should be described in
terms. First of all, in Java’s RMI, stubs are created for interfaces and not for classes. In
other words, one has to define a remote interface, which is used by the rmic stub gen-
erator program to create the client stub and the implementation skeleton. The rea
ice itself is supposed to be defined through a separate remote server class
implements the remote interface. This means, in practice, that the public interface
PREMO objects which are remotely accessible (a more precise definition will be g
in Chapter 5) will be defined as Java interfaces and not as Java classes. These interfaces
will be placed into the ‘std’ packages. The implementation has to provide clas
which implement these interfaces; these will form the ‘impl’ packages.

1) Passing objects by value is not yet defined in CORBA, but OMG has issued a Request for Proposal in
1996, and a specification may become available by the time this book goes to press. So, on long term, this
difference may disappear, too.

55

inute
ly in

-

s, ini-

e
his
ce of
 For-
eme

own is
Another consequence of using RMI is the requirement that all methods in a remote
interface are supposed to throw the java.rmi.RemoteException. The fact of throw-
ing those exception also means that all method invocations should be surrounded by
try and catch clauses.1) We have decided not to include the throw clause for Re-
moteException in the text describing the interface and the semantics of PREMO ob-
jects, nor do we enclose these method invocations in a try–catch pair in the example
code fragments in the text. Our concern was clarity and readability rather than m
details. The detailed Java specification of all PREMO objects appear separate
Chapter 8; those specification are fully precise and include the relevant throw clauses,
too.

Let’s look at a simple example. PREMO defines an object called Clock, and an ob-
ject called SysClock; the latter is a subtype of the Clock object. The SysClock object
is defined as a Java interface as follows:

package premo.std.part2;
public interface SysClock extends Clock {

/**
* Returns the number of tick since the start of the
* PREMO era, i.e., 00:00am, 1st of January 1970, UTC.
*/
long inquireTick() throws java.rmi.RemoteException;

}

The interface extends the interface Clock which, indirectly, extends a higher level ob
ject in the PREMO hierarchy which, on its turn, extends java.rmi.Remote. In other
words, the interface is (indirectly) defined to be potentially remote.

The following implementation class corresponds to the SysClock interface:

package premo.impl.part2;
import premo.std.part2;
public class SysClock_Impl extends Clock_Impl implements SysClock {

public long inquireTick() throws java.rmi.RemoteException
{

...
}

}

We omit the implementation details here, as well as the details on the constructor
tialization, etc.

Note that the class SysClock_Impl is a subtype (“extends”, in Java–speak) of th
class Clock_Impl. This reflects the inheritance relationship defined in PREMO. T
scheme cannot be followed in all cases: Java does not allow for multiple inheritan
classes, only of interfaces, whereas PREMO does allow for multiple inheritance.
tunately, the usage of multiple inheritance is rather limited in PREMO, so the sch
used for SysClock can be considered as fairly typical.

Finally, a fully functional Java code fragment would use the object as follows:

1) Note that if a CORBA implementation were used, the constraints would not be very different. For exam-
ple, if the objects are defined in Netscape’s Caffeine, the only difference is that the exception to be thr
called CORBA.SystemException instead of java.rmi.RemoteException. Just as in the case of
RMI, objects should be defined in terms of interfaces for Caffeine, too.

56

essible
 of im-
xtend

uld be

e and
r ob-
ent-
, the
y spe-
onse-
wn, so

ce cre-
emote

xtend
ne

would
t of the

tion
would
-
-

e
conse-
SysClock sysClock;
sysClock = (SysClock)GetTheObjectReferenceFromSomwhere();
int time;
try {

time = sysClock.inquireTick();
} catch(java.rmi.RemoteException e) {

System.out.println(e.toString());
}

although, as we said, we will not always include the try and catch clauses into all our
examples. The GetTheObjectReferenceFromSomwhere is obviously a dummy
method call for now; what should be noted, though, is that the method could return ei-
ther a reference to a local object or a reference to a local stub; the code remains identical.

Average users of PREMO may refer exclusively to the interfaces defined in the ‘std’
packages. By the very nature of Java interfaces, these describe the publicly acc
methods. However, PREMO also defines some protected methods, i.e., which are
portance for subclasses only. These are of interest for programmers who wish to e
existing objects. These protected methods are included in the ‘_Impl’ classes; indeed,
extending existing PREMO object types means in practice that these classes sho
extended in the Java sense.

As said before, this “dual” structure, i.e., the separation of a separate interfac
its implementation, is valid for those PREMO objects which may be used as serve
jects through RMI. PREMO also includes some simpler objects, which are implem
ed in a more “straightforward” manner; more about it in the coming chapters. Also
choice of Java and Java’s RMI have some other, minor consequences on the wa
cific abstract PREMO specifications are mapped onto an implementation. These c
quences may be better understood if the specific PREMO concepts are also kno
we will have to come back to those in later chapters.

4.2.2 Registering Server Objects

An issue which has not been addressed up to now is how an object instance, on
ated, becomes a server object, i.e., how would its methods become available for r
method invocation.

The usual approach when using RMI is that the implementation class would e
from a java.rmi.RemoteServer class; in the current release of JDK this can be do
by extending it from java.rmi.UnicastRemoteObject. By ensuring that the con-
structor of the superclass is invoked at instantiation time, such an object instance
then automatically be registered as a server object. We say “usual”, because mos
Java textbooks, when describing RMI, describe this approach only.

This scheme, however, would lead to problems with the PREMO implementa
classes. Indeed, Java does not allow for multiple inheritance; i.e., if a server class
already have to extend java.rmi.UnicastRemoteObject in order to become a serv
er object, the code of, for example, SysClock_Impl above would become invalid. Fur
thermore, this would mean that all instances of the given object type would becom
server objects which, though semantically acceptable, may have some negative
quences on efficiency.

57

 on
bove.
Fortunately, the designers of RMI anticipated this problem. An object can also be
registered as a server object by issuing the call:

UnicastRemoteObject.exportObject(InstanceRef);

call. This can be done either by the object instance itself, or by any other object. This is
the approach we have taken in our PREMO implementation; the object is registered
(“exported”) by the so–called factory objects; more about this in section 5.7.3
page 121. That is also why there is no trace of registration in the example code a

58

–ob-
sed in
nent
et of

ly
chro-
e goal
 are
 units

g en-
ason

out
ually,
argets

t they
 for
(see
ey be
 just as
u-
lance,
 What
-

Chapter 5

The Foundation Component

5.1 Introduction

The foundation component of PREMO provides a number of object types and non
ject types which are used in all the other PREMO components. These are rarely u
isolation, but rather as constituents of more complex PREMO objects. This compo
also defines the top–level of the full PREMO type hierarchy, thereby ensuring a s
common facilities which all PREMO objects have.

The reader will realize that the terms “multimedia”, or “media”, will be very rare
used when describing the objects in the foundation component (except for the syn
nizable objects). This may sound strange at first glance, but this is a necessity. Th
of the foundation component is to provide those fundamental building blocks which
necessary to do real multimedia processing and not to define the real processing
themselves. These are left for further components.

5.2 PREMO Non–object Types

Similarly to a number of object–oriented programming languages and programmin
vironments, the PREMO specification includes so–called non–object types. The re
is primarily efficiency, i.e., to have the ability to define integers, floats, etc., with
paying for the overhead of object creation, object references, and so forth. (Act
with a few exceptions, most object–oriented languages that are feasible PREMO t
would support this.)

PREMO does not really define what non–object types are, it rather tells us wha
are not. Non–objects represent final entities, i.e., there is no notion of subtyping
non–objects. Non–objects are not part of the full PREMO object hierarchy
section 5.3 below). Non–objects cannot offer services over the network, nor can th
active clients of those services. On the other hand, non–objects also have types,
objects do. Also, non–objects, and only non–objects, can appear as input or return arg
ments for object methods. This last point seems to be a severe restriction at first g
but it is not. Indeed, PREMO defines object references as being non–objects, too.
this restriction means is that only object references can appear as input or return argu
ments, and not the objects themselves.

PREMO non–objects fall into three categories. These are as follows.

60

bing
efined

ist-
s of
o the

 the
ment
od,

ation

jects”
nce of
urages

ntiate

EMO

gories.

ir di-

 non–
1. Basic data types. This is defined as a small set of non–object data types descri
fundamental entities such as integers or floats. All the basic data types are d
in Part 2 of PREMO.

2. Constructed data types. It is possible to construct new non–object types using ex
ing ones. A characteristic example is the construction of arrays. All Part
PREMO contain a small number of such constructed data types, related t
proper specification of “real” PREMO objects.

3. Exceptions. These are, strictly speaking, not defined as non–object types in
PREMO documents, but they logically belong to this category. Error manage
in PREMO is based upon the ability to throw exceptions from within a meth
exceptions which can be then caught by the caller. Exceptions carry inform
which can be extracted by whoever catches them.

It may be a source of confusion that some of these entities, referred to as “non–ob
in PREMO, will be represented by Java classes, i.e., objects. This is the conseque
the nature of Java, which does not have structures, enumerations, etc., and enco
the programmers to use classes even for those relatively simple entities1). However,
these “non–object classes” have some characteristics in common, which differe
them from the Java classes representing “real” PREMO objects. Namely:

• They are all final classes, i.e., they cannot be extended by other classes.

• They are not part of the PREMO object hierarchy.

• They are never defined as possible server objects for RMI.

• They all implement the java.io.Serializable interface, i.e., they can be
passed as arguments through RMI calls.

• They are not active entities (i.e., do not run in separate threads), whereas PR
objects make extensive use of threads.

When necessary, we will refer to these classes as “non–object classes”.
The subsequent sections will give some details on each of the non–object cate

5.2.1 Basic Data Types

Most of the PREMO basic data types are fairly straightforward, and they have the
rect counterpart in Java. These are:

1) More fundamentally, there will rarely be a direct mapping between the PREMO view of objects and
objects, and that of any target programming language.

PREMO non–object types Java types

Integer (Z) int

Real (R) double

Object type java.lang.Class

Time long

61

sep-
cessary

n im-
oice
 have
e
.

 types,
basic

sented
 of this

ed in
arrays
vel

cting
ple-

rath-
alues.
The type names, as appearing in the PREMO document, are not reused literally, and this
may be a source of confusion for whoever wants to consult the original PREMO docu-
ment while reading this book. The main reason is the relative inflexibility of Java in this
respect. Indeed, whereas in C or C++ it would be possible to say, e.g.,

typedef long Time;

which just gives a new name to an existing type, this facility does not exist in Java. The
only other possibility would have been to wrap all PREMO non–object types into
arate Java classes for the purpose of renaming, which would have been an unne
complication. In this book, we refer to the Java names only.

The “Time” non–object type is used to describe the ticks of a clock, and plays a
portant role in multimedia synchronization. PREMO gives the implementors the ch
of choosing either a real number or a large integer number to represent time. We
chosen the latter, based on the fact that Java’s view on elapsed time (see, e.g., thcur-

rentTimeMillis method of the java.lang.System object) uses long integers, too
The PREMO standard makes extensive use of a non–object data type called Value,

which acts as a union type encompassing all of the other PREMO non–object data
including object references. Java does not provide a union constructor over its
data types. Instead, our PREMO Java binding uses the Java class Object in place of
value. PREMO non–object values (which are basic values in Java) are then repre
by instances of the so–called Java “Envelope” classes when they appear as values
union type. For example, a value of type int, when used in the union type, is represented
as an object of type java.lang.Integer.

5.2.2 Constructed Data Types

Creating arrays is probably the most important non–object data mechanism us
PREMO. These are represented by Java arrays. Internally, when variable length
are necessary, java.util.Vector is also used, but this does not appear on the le
of interface specifications.

Another mechanism is the creation of simple classes, called structures, for colle
attributes (i.e., public variables) of other non–object types. The only method im
mented in a structure is the equals method (automatically inherited from
java.lang.Object) to ensure a proper use (comparing the constituent attributes
er than the object references), as well as obvious constructors to fill the attribute v
They may also appear as nested top–level classes as in the following example:

Object references implicitly part of the language, no
separate type is necessary

Boolean boolean

String String

PREMO non–object types Java types

62

enu-
inite

uag-
t in
rations
ed in

t con-
tion is
public class Structure extends SimplePREMOObject {
public static class SomeData {

public String key;
public Object value;

}
public SomeData[] someData;

}

(the example is fictitious). Using the nested SomeData class in the example makes the
specification cleaner and simpler. The data itself can be accessed through a statement
such as:

obj.someData[0].key

where ‘obj’ is an object of type Structure.
A further construction mechanism, widely used in the PREMO specification, is

meration1). Formally, this means defining a type whose value is restricted to a f
(usually small) set of symbols. For example, PREMO defines the enumeration

to denote a type which may have only two values, symbolically denoted by “Enter” and
“Leave”, respectively. The usual counterpart for this data type in programming lang
es is what is denoted as enum in C or C++. Because this construction does not exis
Java, a separate mechanism had to be constructed to implement PREMO enume
with Java classes. The public interface of the common superclass, which is defin
premo.impl.utils, is as follows:

package premo.impl.utils;
public abstract class PREMOEnumeration implements java.io.Serializable
{

protected PREMOEnumeration();
public boolean equals(Object obj);

}

Note that the constructor of the object is protected, i.e., clients, in general, canno
struct instances of this class directly. Using this superclass, a PREMO enumera
defined as:

package premo.std.part2;
public final class ActionType

extends premo.impl.utils.PREMOEnumeration {
public static ActionType Enter;
public static ActionType Leave;
private ActionType(int i) { super(i); }
static {

Enter = new ActionType(0);
Leave = new ActionType(1);

}
}

1) Not to be confused with the java.util.Enumeration interface!

ActionType Enter Leave::=

63

e rest
ted,

other
esent-

 com-

ra at-
 the
nds

e in-

The static section of the class creates a fixed number of enumeration instances. The
names of these instances constitute the enumeration tags. The separate integer value is
used to differentiate among the various enumeration instances, and is used internally in
the equals operation (inherited from PREMOEnumeration). Because the constructor
is private, clients do not have the ability to define new instances, which corresponds to
the fact that enumerations may only have a finite, pre–defined set of values. In th
of the book, when defining a PREMO enumeration, only the constants will be lis
and we will omit the standard constructor and the static section.

Part 2 of PREMO defines a number of constructed non–object types (as all
PREMO Parts do). To make the text more readable, these specifications will be pr
ed together with the objects which use them.

5.2.3 Exceptions

Exceptions in PREMO are simple extensions of the standard Java exceptions. A
mon superclass for all PREMO exceptions is defined as follows:

package premo.impl.utils;
public abstract class PREMOException

extends java.lang.RuntimeException implements java.io.Serializable
{

public Object[] Val;
public PREMOException();
public PREMOException(String s);

}

which is used by all exceptions defined by PREMO. This class also has an ext
tribute Val. This is used by some PREMO objects to add additional information to
exception they throw. Another noteworthy aspect of this class is that it exte
java.lang.RuntimeException, rather than java.lang.Exception. This means
that methods need not declare these exception in their throws clause (although we will
always do it to make the specifications more complete) and, more importantly, th
vocation of operations raising these exceptions are not obliged to be enclosed in atry–

catch pair.
The PREMO exceptions themselves are simple subtypes of PREMOException , de-

fined in the same way as the exceptions in the standard Java packages. Part 2 defines
the following exceptions:

The semantics assigned to throwing these exceptions are explained in conjunction with
the object methods throwing them.

CannotMeetCapabilities
IncorrectInit
InvalidCapabilities
InvalidKey
InvalidReference
InvalidType
InvalidValue

NoKey
NotInTypeGraph
OperationNotDefined
ReadOnlyProperty
RepeatedEvent
WrongState
WrongValue

64

ple-
 spec-

the se-
 anal-
 in the

aces
enta-

-
rations

ective-
e op-

d en-
y data

 sub-
ore a
 en-

is de-
, the
5.3 Top Layer of the PREMO Object Hierarchy

5.3.1 The PREMOObject Interface

All objects in the PREMO object hierarchy implement the PREMOObject interface. In
other words, this type represents the “root” of the entire PREMO hierarchy.

PREMOObject defines three methods which, by virtue of inheritance and the im
mentation of interfaces, are available for all PREMO objects. Here is the complete
ification of PREMOObject:

package premo.std.part2;
import java.lang.Class;
public interface PREMOObject extends java.rmi.Remote {

Class inquireType();
Class[] inquireTypeGraph();
Class[] inquireImmediateSupertypes();

}

The methods return the class of the object, the sequence of all supertypes, and
quence of immediate supertypes, respectively. These methods are very similar to
ogous to methods describing the class hierarchy of Java classes, and available
standard java.lang.Class object. The ones defined in PREMOObject are compli-
mentary in the sense that all returned information refers to types specified in the PRE-
MO document only, i.e., the various implementation dependent classes and interf
are filtered out. Of course, if knowledge of the complete inheritance and implem
tion hierarchy is necessary for the client, the java.lang.Class methods are always
available.

Although not appearing in the PREMOObject interface (a Java interface specifica
tion cannot contain protected methods), PREMO also defines three protected ope
which are to be implemented by the classes implementing the PREMOObject interface.
These are:

protected void initialize(Object initValue) throws IncorrectInit;
protected void initializeOnCopy()
protected void destruct()

These methods are invoked when the object is created, cloned, or destroyed, resp
ly. In terms of Java, they are essentially constructors (with a fixed signature), clon
eration, and finalizers, albeit defined in a language independent way.

The complete PREMO hierarchy branches off from PREMOObject into three large
categories of PREMO objects: so–called simple PREMO objects, callbacks, an
hanced PREMO objects (see Figure 5-1). Simple PREMO objects are essentiall
structures which, in contrast to non–object data types, can be folded into a PREMO
typing hierarchy. Callbacks consist of two interfaces only, and represents theref
fairly small category. The real multimedia service objects form the category of the
hanced PREMO objects and, not surprisingly, the bulk of the PREMO document
voted to the specification of various enhanced PREMO objects. In what follows
type structure of all three categories will be presented.

65

 a com-
t spec-
 not
n-

 PRE-
mple,
is is

lass:

EMO
ard
am-
5.3.2 Simple PREMO Objects

Simple PREMO objects are, conceptually, data structures needed for the proper speci-
fication of various multimedia service objects. They are very similar to constructed
non–object data type classes (see section 5.2.2) in the sense that the intention is
pact representation of entities such as a geometric point, an event, or a constrain
ification. The similarity is also reinforced by the fact that simple PREMO objects do
define multimedia services, e.g., over a network. The major difference between co
structed data types and simple PREMO objects is that the latter are part of the full
MO hierarchy, and they can also be subject to various subtyping patterns. For exa
it is possible to build a complete hierarchy of various events using subtyping (th
done very frequently in various interactive systems).1)

Formally, simple PREMO objects are defined to be subclasses of the following c

package premo.std.part2;
public abstract class SimplePREMOObject

implements PREMOObject, java.io.Serializable {
}

The class is abstract, i.e., non–instantiable, and it is a direct subtype, in the PR
sense, of PREMOObject. Note that the class also implements the stand
java.io.Serializable interface, i.e., instances of this class can appear, for ex
ple, as arguments of remote object calls.

1) It must be noted that the strong similarity between simple PREMO objects and constructed data types is an
artefact of the nature of Java, and not of the PREMO specification proper. Other languages may offer much
richer data structuring possibilities, such as enumerations and data structures. In this case, most of the
PREMO non–object data types could be described independently of the object/class hierarchy.

PREMOObject

simple PREMO objects enhanced PREMO objects

callbacks

Figure 5-1 — Main categories of PREMO objects

66

 usu-
so re-
to as

MO,
le ob-
er

e
tand-
f how
s.

s, in-
ugh

ynchro-

ects,
imple

.

ucture
The various simple PREMO objects are all subclasses from SimplePREMOObject,
either directly or indirectly. To reinforce the “data” nature of these classes, they are
ally defined in terms of public variables and not methods. These variables are al
ferred to as “structure tags”, and simple PREMO objects are also referred
“structures”.1)

Part 2 of PREMO defines only four simple PREMO objects. Other parts of PRE
especially Part 4, make a much more elaborate use of them. Two of these simp
jects, ActionElement and SyncElement, are closely related to the semantics of oth
objects, such as the Controller in the case of ActionElement, and the synchroniza-
tion objects in the case of SyncElement. They will be defined in later sections. Th
two other simple PREMO objects, defined in Part 2, are of a very broad use in the s
ard, so it is better to define them in general. They are also very good examples o
the various constructions described so far converge in concrete type specification

5.3.2.1 Event Structures

Event handling and event management play a central role in all dynamic system
cluding PREMO. Events represent basic building blocks to convey information thro
the system in an asynchronous fashion. Events are used to manage interaction, s
nization patterns, to monitor various activities in other objects, etc.

The complete event handling model in PREMO involves several different obj
which will be defined later (see section 5.4.1). All these objects make use of the s
PREMO object Event, which carries the necessary information. An Event structure
has a name, which can be used to identify the event itself, it contains an event data
which, at the abstract level, consists of an array of key–value pairs, and an event source,
which is a reference to the object which has created (“raised”) the event instance

Here is the class specification of Event:

package premo.std.part2;
import java.lang.*;
public class Event extends SimplePREMOObject {

public String eventName;
public static class EventData implements java.io.Serializable {

public String key;
public Object value;

}
public EventData[] eventData;
public EnhancedPREMOObject eventSource;

}

Note the use of a nested top–level class for the specification of a simple data str
(see also page 61). The type EnhancedPREMOObject is the “root” of all enhanced
PREMO objects, see section 5.3.4.

1) Of course, an implementation may also redefine operations such as equals, inherited from
java.lang.Object.

67

fer to
ceptu-
pes,
s places
uir-

some
latter
ludes,

o

5.3.2.2 Constraint Structures

The term “constraint” is used in a restricted sense in PREMO, and does not re
some kind of a complex constraint management system. It rather refers to a con
ally simple, albeit extremely important set of operations over values of different ty
leading to boolean results. Just such as events, these constraints appear at variou
in PREMO, e.g., in controlling the creation of PREMO objects, in managing and inq
ing their properties, etc.

A constraint structure contains a key–value pair, which must be compared to
other key–value pairs, and the description of the comparison operator itself. The
is simply an enumeration of operations such as equal, not equal, greater than, inc
excludes, etc. which are to be applied to the values of the keys.

Formally, the Constraint structure makes use of the following enumeration:

package premo.std.part2;
public final class ConstraintOp

extends premo.impl.utils.PREMOEnumeration {
public static ConstraintOp Equal;
public static ConstraintOp NotEqual;
public static ConstraintOp GreaterThan;
public static ConstraintOp GreaterThanOrEqual;
public static ConstraintOp LessThan;
public static ConstraintOp LessThanOrEqual;
public static ConstraintOp Prefix;
public static ConstraintOp Suffix;
public static ConstraintOp NotPrefix;
public static ConstraintOp NotSuffix;
public static ConstraintOp Includes;
public static ConstraintOp Excludes;

}

(see page 62 for the description of PREMOEnumeration). Using this enumeration, the
specification of a Constraint structure is as follows:

package premo.std.part2;
import java.lang.*;
public class Constraint extends SimplePREMOObject {

public ConstraintOp constraintOp;
public static class KeyValue implements java.io.Serializable {

public String key;
public Object value;

}
public KeyValue keyValue;

}

(Note that arrays can also be represented as Object in Java, so this structure may als
store a full sequence of values associated with a key.)

68

t” in
 object
rence

gle
fini-

pecif-

o the
le-

 third
uld be

n in

s, in
er to
-
n-

s only
 case,

nchro-

y the
d op-
5.3.3 Callbacks

Management of events dynamically is usually achieved by “registering interes
some events. This is done by publishing the reference of the interested party. The
which raises or forwards the event may then notify the interested party of the occur
of the event.

The Callback interface is defined to facilitate this mechanism, by defining a sin
entry point for any interested party. The interface has the following, very simple de
tion:

package premo.std.part2;
public interface Callback extends PREMOObject {

void callback(Event callbackValue);
}

Various enhanced PREMO objects implement this interface, thereby assigning a s
ic behaviour to the callback operation.

Although the interface specification is simple, there is an underlying semantics t
operation callback which must be taken into account when the interface is imp
mented. Two features should be emphasized:

• If the operation’s semantics is such that the callback value is forwarded to a
party, or the structure tags are changed, a copy of the event structure sho
made. Indeed, the same event structure can be forwarded (through the callback

operation) to a number of objects, whose identity and number is not know
advance. Changing the callback values may lead to uncontrollable situations.

• Callbacks are usually used for interaction and synchronization. In other word
time critical situations. It is therefore of a paramount importance that the call
the callback operation is not suspended for a long time while the operation per
forms its own activity. The callback operation is therefore defined to be asy
chronous (see Section 3.8).

Whereas, in simple cases, the semantics of the callback operation may be defined to
affect the state of the object directly, it is very often the case that this operation act
as an entry point to call other operations on the object. To facilitate this second
PREMO also defines an interface which extends Callback, called CallbackByName.
This extension does not add any new methods, but overrides the (inherited) asy
nous callback operation:

package premo.std.part2;
public interface CallbackByName extends Callback {

void callback(Event callbackValue) throws OperationNotDefined;
}

The callback of CallbackByName has the following behaviour: the eventName

structure tag of the Event structure (appearing as the input argument of callback) is
interpreted to be the name of a local operation which is then internally invoked b
callback operation (an exception is raised if the name does not refer to any vali

69

 order
anced
, not

ion
 those,
tation

alled

.

her di-
, of

d and
ays of
noth-
pera-
eration). By default, all other structure tags of the Event structure are disregarded by
the callback operation. Subtypes of CallbackByName may add an additional behav-
iour to the operation which also takes these tags into consideration.

5.3.4 Enhanced PREMO Objects

Most of the objects defined by PREMO are enhanced PREMO objects. All other cate-
gories of objects, as well as the various non–object types, are defined and used in
to make the specification of enhanced PREMO objects concise and precise. Enh
PREMO objects have a common supertype within the PREMO hierarchy called
surprisingly, EnhancedPREMOObject.

5.3.4.1 Enhanced PREMO Objects as Service Objects

A fundamental restriction of PREMO is that enhanced PREMO objects, and only those,
offer services over a distributed PREMO environment. In terms of our implementat
strategy, based on Java RMI, this means that enhanced PREMO objects, and only
should be registered as RMI server objects. This means that the “dual” implemen
structure, as described in section 4.2.1, is valid for all enhanced PREMO objects.

Formally, enhanced PREMO objects are those which implement an interface, c
EnhancedPREMOObject, defined as follows:

package premo.std.part2;
import java.lang.*;
public interface EnhancedPREMOObject

extends PREMOObject, java.rmi.Remote {
}

[Note: we have omitted the various methods defined by EnhancedPREMOObject for
now, see section 5.3.4.2]. Note that the interface also extends java.rmi.Remote,
which is necessary to ensure that the object could serve as an RMI server object

This interface is implemented by a separate class in the premo.impl.part2 pack-
age:

package premo.impl.part2;
import premo.std.part2.*;
public abstract class EnhancedPREMOObject_Impl

implements EnhancedPREMOObject {
}

The various enhanced PREMO objects are implemented by classes extending, eit
rectly or indirectly, this class (and implementing their corresponding interface
course).

5.3.4.2 Property Management

Properties are used to store values with an object that may be dynamically define
are outside of the type system. Properties are pairs of keys (i.e., strings) and arr
values which are conceptually stored within an enhanced PREMO object (to use a
er terminology, each enhanced PREMO object has an associated dictionary). O

70

ined,
hat ob-
t more
2] or
amic
llows
 and
 con-
s also
ch are
iency.
 (C++,
nse-
for the

 level.
e, the
es (es-
s not
ial to
oper-
e dy-

in the
cts,

 or
tions are introduced to define, delete, and inquire values from the array associated with
a key. Properties can be used to implement various naming mechanisms, store informa-
tion on the location of the object in a network, create annotations on object instances,
and they also play an essential role in negotiation mechanisms within PREMO
(section 5.6). The existence of some properties (i.e., the keys) may be stipulated by the
standard for a specific object type, but clients can attach new properties to objects at any
time.

Properties may be defined as read only. This means that they cannot be defined
through an operation on the object, nor can they, or their associated values, be changed
or deleted. Read only properties are typically set by the object when initialized, and are
used to describe the various capabilities of the object.

Why use properties? The fundamental reason lies, in fact, in the conservative nature
of the PREMO object model. Indeed, in PREMO, operations on a type are defined stat-
ically, when defining (“declaring”) the object. Once the object type has been def
and an object instance of that type is created, no new operation can be added to t
ject instance dynamically. On the other hand, it has been advocated elsewhere tha
dynamic object models should be used for graphics or multimedia (see, e.g., [1
[42]). Indeed, the use of delegation[62] or, on a more “modest” level, a more dyn
view of objects such as, for example, the approach adopted in Python[87] (which a
the addition of operations dynamically), would be more appropriate for graphics
multimedia systems. These features would play an important role, for example, in
straint management, in the adaptability of objects, etc. However, experience ha
shown that implementing such features on top of languages or environments whi
not prepared for them represents a significant burden and leads to a loss of effic
And, unfortunately, none of the widespread object–oriented systems or languages
OMG specifications, Java, etc.) implement delegation or anything similar. As a co
quence, and after some discussion, the adoption of such features was rejected
development of PREMO.

Properties aim at offering a replacement for such advanced features on a lower
Although properties do not allow new operations to be added to an object instanc
mechanism can at least be used to simulate adding and manipulating new attribut
sentially, data) to object instances. Obviously, the implementation of properties doe
represent a significant problem. The dynamic nature of properties is quite benefic
PREMO. This will become clear in later chapters. One could therefore say that pr
ties play a somewhat less elegant, but very useful role in PREMO in increasing th
namic nature of object instances.

Basic property management can be carried out with a set of methods defined
EnhancedPREMOObject interface, thereby available for all enhanced PREMO obje
and implemented in the EnhancedPREMOObject_Impl class. In the remainder of this
section, we will go through these operations in somewhat more details.

5.3.4.2.1 Property Definition

The EnhancedPREMOObject interface contains the following operations to create
to modify properties.

71

ject
 add
all-
refer-

 in the
 to the

alues,

pera-

h the
void defineProperty(String key, Object[] value)
throws ReadOnlyProperty;

This method adds a new property to the object. If the key identifies a property already
defined for the object, the new value is assigned to the property, replacing the previous
value(s). Otherwise, a new property is created with key and value.

void addValue(String key, Object value)
throws ReadOnlyProperty;

This method adds a value to the properties for the argument key. If the key has not been
used yet, a new property is defined. Both of these methods may raise an exception if the
key refers to a read–only property.

By default, if a property value is defined for a key which already exists for the ob
instance, the old value is silently overridden. However, the client has the ability to
a reference to a Callback object to a property key to monitor those changes. The c
back is activated whenever a new value is defined for the key. Adding a callback
ence is done through the method:

void setPropertyCallback(String key,
Callback callback,
String eventName)

throws NoKey;

The newly created event instance, forwarded to the callback, uses the name given
method argument. The event structure contains the key–value pair corresponding
new setting.

5.3.4.2.2 Removal of Properties

Two methods are defined to remove properties from an object. The method

void undefineProperty(String key)
throws ReadOnlyProperty, NoKey;

removes the property altogether, deleting both the key and all the corresponding v
whereas the operation

void removeValue(String key, Object value)
throws ReadOnlyProperty, NoKey, InvalidValue;

removes a single value from the property defined for a key. (The exception Invalid-

Value is raised if the value does not appear on the property list.) Both of these o
tions raise an exception if a read only property is referred to in their argument.

5.3.4.2.3 Property Inquiry Operations

A single property can be inquired through the

Object[] getProperty(String key) throws NoKey;

method. If all the properties are to be inquired, they can also be accessed throug

PropertyPair[] getPairs();

72

the

r it re-
the

ment
e-
ing in

ows:
ces in
om-
arison

e left
 of the

om-
-

ore
 serv-
method, where PropertyPair is a separately defined non–object data type of
form:

public final class PropertyPair implements Serializable {
public String key;
public Object[] value;

}

Most of the methods so far could raise an exception if the key was not present, o
ferred to a read–only property. The full set of keys can also be retrieved through

public static class KeyInfo {
public String key;
public boolean readOnly;

}
KeyInfo[] inquireProperties();

method, which may aid the client to form a proper call sequence.

5.3.4.2.4 Property Matching

Property matching is the most powerful operation among the property manage
methods of the EnhancedPREMOObject interface. It allows for a constraint–based r
trieval of properties, serving as a basis for various negotiation mechanisms occurr
multimedia systems.

The interface specification of the method is as follows:

public static class MatchPropertyResults {
public PropertyPair[] satisfied;
public PropertyPair[] unsatisfied;

}
MatchPropertyResults matchProperties(Constraint[] constraintList);

(the Constraint structure is defined in Chapter 5.3.2.2 on page 67, and MatchProp-

ertyResults is a top–level nested class.) Semantically, what happens is as foll
The properties defined for the object are matched against the property sequen
constraintList. For each key appearing in this constraint list, the values are c
pared against the value or values stored with an identical key in the object. Comp
is based on the boolean operation defined by the enumeration ConstraintOp (also de-
fined in Chapter 5.3.2.2), and appearing as the structure tag of constraint list. Th
operand of the operation is the property stored in the object, and the right operand
operation is the value appearing in the constraintList structure. If the operation
does not make sense, the result of the comparison is false (for example, “Includes”
for numerical types).

The satisfied array contains those keys with associated values for which the c
parison has resulted in true. The unsatisfied array contains those keys with asso
ciated values for which the comparison has resulted in false.

An example will clarify the use of this method. A fictitious audio object may st
the various audio formats it can decode in a property list. The object providing the
ice may define a (read–only) sequence of values for the key “AudioFormatK”, e.g.,
<“AIFF”, “ AIFC”>, describing the audio file formats it can recognise. The match-

Properties method may be invoked with a pair consisting of a key and a value:

73

an

t the
nly

ed.
[“AudioFormatK”, “AIFF”]

using the comparison operator “Equal”. The result will be:

satisfied: [“AudioFormatK”, <“AIFF”>]
unsatisfied: [“AudioFormatK”, <“AIFC”>]

Another call, using:

[“AudioFormatK”, “IRCAM”]

will result in

satisfied: [“AudioFormatK”, <>]
unsatisfied: [“AudioFormatK”, <“AIFF”,“AIFC”>]

etc. Based on this information the client can choose the AIFF file format which can be
managed both by itself and the audio service.

The example can be made more complex. For example, using more than one key in
the invocation of the matchProperties operation (e.g., also include sampling size),
and optimizing the calls through the use of arrays of values and the “Includes” oper-
ator instead of “Equal”, further information can be retrieved on the object. This c
serve as a basis for powerful negotiations.

5.3.5 Top Layer of PREMO

Figure 5-2 gives an overview of all the interface and class definitions appearing a
top level of the PREMO type hierarchy and is a detailed version of Figure 5-1. O
those simple objects are depicted on the figure which have already been present

premo.impl.part2

Figure 5-2 — Top classes and interfaces of PREMO

PREMOObject

SimplePREMOObject Callback EnhancedPREMOObject

Constraint

EnhancedPREMOObject_Impl

Event CallbackByName

premo.std.part2

74

 cate-
in the
lding
ed in
e are

MO.

c ac-
n ob-
ontrol
 is ap-
eed a

 dy-

ee, or
e con-

mation
tivi-

sted

on-
nowa-
f GKS
ed the
ve[5].
ents,
ava’s
 AWT
e de-
5.4 General Utility Objects

We have, somewhat arbitrarily, re–grouped a few PREMO Part 2 objects under a
gory called general utility objects, although this categorization does not appear
original Standard itself. The objects in this category provide some elementary bui
blocks which are used in various other places in PREMO, but they are rarely us
isolation, i.e., without being bound to some other, more complex objects. Ther
three groups of general utility objects:

• Event handler objects, which provide an event propagation mechanism in PRE

• Controller objects, providing an interface for controlled finite state machines.

• Timer objects, which define the interfaces to measure time in PREMO.

This section will present these objects in more detail.

5.4.1 Event Management

Forwarding information, i.e., data, through operation invocation is a relatively stati
tion. The caller has a direct knowledge of the callee (modulo the actual value of a
ject reference), only one callee can be invoked at a time, the callee has no real c
over the occurrence of the call, etc. Whereas this approach to information transfer
propriate most of the time, it has long been recognized that dynamic systems n
more flexible way of forwarding information, too. As opposed to a direct call, this
namic form of data transfer should be such that:

• The caller, or the source of the information, should be separated from the call
the possible consumer of the data. The caller does not need to know about th
sumer of the data.

• Data transfer should be as asynchronous as possible. The source of the infor
should just make the data “known” to its environment, and continue its own ac
ties.

• It should be possible to have more than one consumer at a time.

• The receiver should have the ability to dynamically control whether it is intere
in the information or not.

Event handling, or event management, has become the standard answer to these c
cerns, and event management is ubiquitous in dynamic and interactive systems
days. Events were already present as early as 1982, when the first version o
became more widely available as a technical document. The GKS standard includ
notion of event mode input which had some of the characteristics described abo
The notion of events became more familiar through various windowing environm
such as X11, and is now part of almost all graphics and multimedia systems. J
AWT has the notion of events, too, and the listener–based event model, present in
since Java version 1.1, shares a lot of common characteristics with what will b
scribed below for PREMO.

75

erned

 of the

object.
clients.

ent of
ipients

ances,
How-
uned.

hen a
names
here
Just as in the case of a precise object model, various systems have their own view of
event management, but none of the present schemes suffices for PREMO. Consequent-
ly, PREMO defines its own event management model.

5.4.1.1 The PREMO Event Model

Figure 5-3 gives a rough overview of the main notions involved. Events are simple PRE-
MO objects which were already defined in section 5.3.2.1 on page 66. Events have a
name, a source, and they may contain event data. A name is also referred to as event
type, which is a String. A source is the reference to a PREMO object (usually a refer-
ence to the object which creates a specific instance). The event data is conatined in a
sequence of key–value pairs, much like properties. Event management is conc
about how these units of information are propagated among PREMO objects.

The main feature of event management is the separation between the source
events and the objects receiving the events, called also event clients. This separation is
done through the use of a special object in PREMO, called an event handler. Objects,
which intend to propagate an event, send the event instance to this event handler
and it is the event handler’s task to broadcast the event instance to a set of event
Objects, which want to become event clients, register to the event handler. If they do
not want to be an event client any more, they can unregister. In other words, event han-
dlers embody a one–to–many propagation of events with a dynamic managem
prospective event receivers. The event source does not know who the event rec
are for a specific event; it only sends the event to the event handler.

Prospective event clients can register themselves to several event handler inst
thereby having some control over which category of events they want to receive.
ever, registration, and the corresponding event propagation, is much more finely t
Indeed:

1. When registering, the client gives an event name to the event handler, too. W
new event arrives, the event handler compares the name of the event to the
which are part of client registrations. Only those registrations are considered w

EventSource

register/unregister

dispatch event

ca
llb

ac
k

Figure 5-3 — Event management in PREMO

EventClient1

EventClient2

EventClientn

EventHandler

dispatchEvent
register

76

vent

uire-
on of
vents,
he ac-

 real
 of
g this

va in
“phi-
d, in
nd the
these names coincide. In other words, the client registers its interest for a specific
type of event. If the client is interested in several different event types from the same
event handler, it should register separately for each of them.

2. Beyond the event name, clients can also impose some constraints on the event data
as part of registration. These constraints are checked by the event handler by com-
paring the event data to the constraints. If the result of this comparison is false, the
event is not propagated to that event client. As a simple example, the client may
specify that it is interested in an event of a specific type if and only if its data con-
tains an entry with a specific key and value. More complicated constraints are also
possible.

Prospective event client objects should implement the Callback interface (see
section 5.3.3). Event propagation is done by the event handler through the callback
operation. The event handler object is defined to be a Callback object, too, with the
callback object identified with the event dispatch operation. This means that various
event handler objects may be “chained”, thereby forming a complex network of e
propagation patterns.

Event handlers are frequently used as building blocks for interaction. The req
ment of asynchronicity in event propagation is therefore essential. The main acti
the event handler, i.e., managing the constraints and effectively propagate the e
should never suspend the event source which intends to dispatch a new event. T
tivity of the event handler is therefore of a primary importance: conceptually, the
effect of the dispatchEvent is simply to place the event instance into some sort
internal event queue and a separate thread should be responsible for emptyin
queue and propagate the events. In other words, this operation is defined to byasyn-
chronous.

Note that the PREMO event model is not unlike the event model used by Ja
AWT or in the Java Beans specification. The major difference is that, although the
losophy” is similar, the mechanism is more explicit in PREMO than in Java. (Indee
the latter, the various AWT components play the role of both the event sources a
event handlers, rather than separating the two into different object types.)

5.4.1.2 The Event Handler Object

The “core” of the PREMO event management mechanism is the EventHandler object
type. The interface of the object is as follows:

public interface EventHandler
 extends Callback, EnhancedPREMOObject, java.rmi.Remote
{

long register(String eventType, Constraint[] constraints,
AndOr matchMode, Callback theCallback);

void unregister(long id) throws InvalidEventId;
void dispatchEvent(Event e);

}

77

vent
 imple-
e

e

ere is

ained

ent is

con-
rison

ns’,
value
 is the

his

 used:

sult is
The dispatchEvent operation is defined to be asynchronous. Event registration
makes use of the Constraint structure, defined in section 5.3.2.2 (see page 67) and a
simple PREMO enumeration:

public final class AndOr
extends premo.impl.utils.PREMOEnumeration {

public static AndOr And;
 public static AndOr Or;
}

The registration operation returns a registration identifier. This identifier should be used
to unregister (an exception is raised if an invalid event registration identifier is used as
argument for unregistration).

Dispatching an event is achieved through the dispatchEvent call although, as pre-
viously stated, the “real” effect of this operation is merely to put a copy of the e
structure into an internal queue; actual dispatch is done in a separate thread. The
mentation of the EventHandler interface must provide an implementation for th
callback operation, too (in order to implement the Callback interface). The effect
of callback is identical to dispatchEvent in this case. The two operations can b
considered as simple synonyms.

The details of event propagation are at the heart of the object’s semantics. H
what the object has to do when a new event instance is received:

1. The type of the new event is compared to all registrations. Only those are ret
where the new event’s type matches with the registered event type.

2. For all retained registrations:

2.1. If either the event data or the registered constraint array is empty, the ev
forwarded. This is done by invoking the callback operation on the registered
object with the event instance as an argument.

2.2. If the arrays are not empty, all key–value pairs with identical keys, in the
straint and the event data arrays, respectively, are compared. Compa
means using the operation defined in the ConstraintOp field of the constraint
(which tells whether the comparison means ‘equal’, ‘greater than’, ‘contai
etc., see page 67). The left operand of the comparison operator is the
stored in the event handler, i.e., the registered value, and the right operand
value in the new event instance.1)

2.3. If the registered value for the AndOr enumeration is And, the logical AND of all
comparisons is considered. Otherwise, the OR is considered. This leads to the
result of the full constraint checking: If true, the event is forwarded (like in 2.1
above). If false, this registration is not considered for event dispatch for t
event instance.

Let us see some examples. In a very simple case, registration with no constraints is

long id = eHandler.register(“PREMOEvent”,null,null,this);

1) If the operation does not make sense, e.g., a ‘contains’ is required for two numerical types, the re
false.

78

mpose
is ac-
n.
which is issued by the prospective event client on an event handler. The event source
object might perform the following set of operations:

Event ev = new Event();
ev.eventName = “PREMOEvent”;
ev.eventSource = this;
ev.eventData = new Event.EventData[] { new Event.EventData() };
ev.eventData[0].key = “MyKey”;
ev.eventData[0].value = “MyValue”;
eHandler.dispatchEvent(ev);

which creates an event instance with an event data array of length 1. The new event in-
stance is dispatched. Because the event client has not defined any constraints, it will re-
ceive a copy of the event ev. If, however, event registration were done through the
following sequence:

Constraint[] cons = new Constraint[] { new Constraint() };
cons[0].key = “MyKey”;
cons[0].value = “AnotherValue”;
cons[0].constraintOp = new ConstraintOp(ConstraintOp.Equal);
long id = eHandler.register(“PREMOEvent”,cons,AndOr.And,this);

Then the client will not receive a copy of ev. Indeed, the constraint imposed on the key
“MyKey” is not fulfilled in this case.

5.4.1.3 Synchronization Points

General event handler objects, as described in the previous paragraph, do not i
any restrictions on the type of events which they are ready to forward. Any event
cepted and forwarded, subject of course to the constraints imposed on registratio

Figure 5-4 — Event handler objects

EventHandler

premo.std.part2

premo.impl.part2

EventHandler_Impl

SynchronizationPoint_Impl

SynchronizationPoint

ANDSynchronizationPoint

ANDSynchronizationPoint_Impl

79

ter-
ed to
pted by
ot a

 event
nces;

 to the

ent
ccept

multi-
 spe-

y

ir an-
 with
r type

s
ing
o ef-
Synchronization points are specialized event handlers which do impose some further
restrictions on their “dispatch” side. A synchronization point object maintains an in
nal table of events, referred to as “synchronization events”. Operations are defin
add and delete a synchronization event. These events are those which are acce
the synchronization point for event propagation. Dispatching an event which is n
synchronization event results in an exception and the event is not forwarded. (One must
be somewhat more precise about what it means that an event is a synchronization
or not. The internal table of synchronization events contains a set of object refere
an event, which appears as an argument to the dispatchEvent operation, must be
equal to one of the events in the table. Equality means that the event source refers
same object, the event names are identical, and that the event data are equal1).)

Note the fact that event sources should be equal for dispatch (a reference to the ev
source is part of an event structure): this means that synchronization objects a
events from specific objects only. Hence their name — these objects are used in
media synchronization schemes where they synchronize information flow among
cific object instances.

The interface of a synchronization point object is quite straightforward:

public interface SynchronizationPoint
extends EventHandler, java.rmi.Remote

{
void addSyncEvent(Event e) throws RepeatedEvent;
void deleteSyncEvent(Event e) throws UnknownEvent;
long register(String eventType, Constraint[] constraints,

AndOr matchMode, Callback theCallback)
throws InvalidEventId;

void dispatchEvent(Event e) throws UnknownEvent;
}

The operations addSyncEvent and deleteSyncEvent are used to add, respectivel
delete, a synchronization event. An exception is raised by addSyncEvent if an event
has already been added as a synchronization event.

The operations register and dispatchEvent are inherited from EventHandler,
but their semantics is extended slightly, and they may throw exceptions which the
cestors don’t. In the case of a synchronization point, the event type must coincide
the event type of at least one of the synchronization events (an event of anothe
would not be forwarded anyway), and this is checked by the register operation be-
fore performing the “original” registration. The dispatchEvent operation (which
overloads the operation inherited from EventHandler) checks its argument and raise
an UnknownException if the event is not a synchronization event, further disregard
the event. Otherwise, the original (inherited) meaning of the operation comes int
fect.2)

1) Eventually, what this boils down to, is the equality of the values in the event data, i.e., the equality of the
objects the values represent. In the case of Java, one has to define the operation equals to give a more spe-
cific meaning to equality.

80

hich
uch
at-
ts by
d data,
s-
 itself
n

cha-
nt).

e col-
e that

f all,

d all the
A further specialization of the synchronization point is the AND synchronization
point. This object does not add any new operation to the synchronization objects, i.e.,
its specification is simply:

public interface ANDSynchronizationPoint
extends SynchronizationPoint, java.rmi.Remote {

}

However, while implementing the semantics of synchronization points, this object also
delays event propagation. The goal is to “collect” a number of incoming events, w
are identical except that they originate from different event sources. Only when all s
events arrive to the AND synchronization point would the object forward the accumul
ed events. This is done by, conceptually, categorizing all synchronization even
event name and event data. All synchronization events, having identical name an
fall into the same category, regardless of their source. When an event arrives for di
patching, its category is located and, within its category, the synchronization event
found. However, instead of being dispatched, this information is just flagged. Wheall
events within a category are flagged, and only then, will all the events be dispatched
(following, of course, the original semantics of dispatching, i.e., the constraint me
nism may still block the propagation of a specific event instance for a specific clie

The ANDSynchronizationPoint can be functionally described as an array of AND

components, each of which requires all registered events for a given category to b
lected before dispatching these events to registered clients. It is important to not
multiple categories of events can be handled within one ANDSynchronizationPoint

instance.
As an example, let us consider the following code (see also Figure 5-5). First o

two event registrations are performed, both with the event names “PREMOEvent”, one
for the client Client1 and the other for Client2. To simplify the code, no constraints
are added to the registration:

long id1 = eHandler.register(“PREMOEvent”, null, null, Client1);
long id2 = eHandler.register(“PREMOEvent”, null, null, Client2);

2) Note a very subtle difference between the operations callback and dispatchEvent. The callback is not
listed here, i.e., the extra exception is not raised (although a non–synchronization event is disregarde
same). This is because, when using callback, the external world would consider a general Callback object
only, and it cannot be expected to check this special exception.

Source2

Figure 5-5 — Synchronization points

Source1 ev1

ev2

ev1, ev2

ev1, ev2

eHandler

Client2

Client1

81

chro-

ll:

 mul-

 nec-
sed as
mong
es and
r, and
efined
rovid-

y for a
Then, two event instances, both having “PREMOEvent” as a type, are created, for the
sake of the example, with empty data. Also, both events are registered by the syn
nization point as synchronization events:

Event ev1 = new Event();
ev1.eventName = “PREMOEvent”;
ev1.eventSource = Source1;
Event ev2 = new Event();
ev2.eventName = “PREMOEvent”;
ev2.eventSource = Source2;
eHandler.addSyncEvent(ev1);
eHandler.addSyncEvent(ev2);

Finally, an event dispatching sequence is done through:

eHandler.dispatchEvent(ev1);
Do SomethingElse();
eHandler.dispatchEvent(ev2);

If eHandler is a synchronization point the sequence on the reception of events will be:

Client1 receives ev1
Client2 receives ev1
SomethingElse is done
Client1 receives ev2
Client2 receives ev2

However, if eHandler is an AND synchronization point, dispatching ev1 is delayed. In-
deed, this event belongs to the same category as ev2 (only their event source differ).
Consequently, the sequence on the reception of events will be this time:

SomethingElse is done
Client1 receives ev1
Client2 receives ev1
Client1 receives ev2
Client2 receives ev2

This is the result of the fact that the “real” event propagation has to wait for the ca

eHandler.dispatchEvent(ev2);

before proceeding further.
The importance of synchronization points will become clear when event-based

timedia synchronization is addressed (see section 5.5).

5.4.2 Finite State Machines: Controller Objects

The notion of finite state machines is ubiquitous in computing, and it should not be
essary to define the notion here. Finite state machines (FSMs) are commonly u
elementary tools, e.g., to manage user interactions, to control communication a
objects, etc. The behaviour of PREMO objects are often described in terms of stat
state transitions, i.e., in terms of finite state machines. This usually provides a clea
unambiguous specification. There is also a need to have finite state machines d
as separate object types. Multimedia systems are almost always interactive, and p
ing the elementary building blocks to create, e.g., interaction patterns is necessar
proper specification of middleware.

82

ethods

tside

bil-
ted

 related
hand,
te

call-
e call-
pecific
onitor

s the
The finite machines appearing in an interactive setting have some extra require-
ments. They must be:

• programmable, i.e., the end–user should have means to attach his/her own m
to each state transition of the object.

• monitorable, i.e., it should be possible to monitor state transitions from the ou
easily, typically through some event propagation mechanism.

The Controller object type of PREMO provides these facilities. The programma
ity of the Controller objects is ensured by the specification of a number of protec
methods as part of the object. The client of a Controller object does not (and should
not) access these methods directly, because their invocation sequence is closely
to the state transition of the object. That is why they are protected. On the other
by defining a subtype for a Controller object, one can create specialized finite sta
machines where the required behaviour is coded into these protected methods.

The ability to monitor state transition is accomplished by dynamically attaching
back routines to state transitions. This means that if a state transition occurs, thes
backs are notified. For example, event handlers can be attached as callbacks to s
state transitions and, through these event handlers, any object which intends to m
the state transitions can express its interest. Furthermore, Controller objects are de-
fined as subtypes of Callback, too, which means that Controller objects can be
chained together to form very complex interaction patterns.

5.4.2.1 Detailed Specification of a Controller

States in Controller are represented by strings. The allowable states, as well a
current state of the object, can be retrieved by the operations:

premo.std.part2

premo.impl.part2

Figure 5-6 — PREMO types related to the Controller object

premo.std.utils
PREMOEnumeration

ActionType

SimplePREMOObject Callback EnhancedPREMOObject

ActionElement Controller

EnhancedPREMOObject_Impl

Controller_Impl

83

t of
urrent

simple

e

ghly

:

rface

he the
 the
public String getCurrentState();
public String[]getPossibleStates();

These attributes are set during the initialization of the object (formally, this is done in
subtypes. Controller itself is abstract). The attributes are “read–only”, i.e., the se
possible states cannot be changed by the client, nor can it directly change the c
state.

The user can attach callbacks to various state transitions. This is done using a
PREMO object:

public class ActionElement extends SimplePREMOObject {
public Callback eventHandler;
public String eventName;

}

describing the callback, and a PREMO enumeration of the form:

public final class ActionType
extends premo.impl.utils.PREMOEnumeration {

public static ActionType Enter;
 public static ActionType Leave;
}

The semantics of the ActionElement structure is clear: it holds the reference for th
callback object which has to be notified of a state change. The eventName field is used
to construct a suitable event structure. This event construction will be more thorou
explained later.

Conceptually, each state may have two ActionElement instances assigned to them
one labelled as “enter” and the other labelled as “leave” action. Furthermore, eachpair
of states may refer to another instance of an ActionElement. These instances can be
set and removed through the following methods (which are part of the public inte
of Controller):

void setAction(String state, ActionElement action, ActionType aType)
throws WrongState;

void removeAction(String state, ActionType aType)
throws WrongState;

void setActionOnPair(String stateOld, String stateNew,
ActionElement action)

throws WrongState;
void removeActionOnPair(String stateOld, String stateNew)

throws WrongState;

The semantics of these routines is quite straightforward (the WrongState exception is
raised if the required state is not a possible state for the Controller instance).

Finally, the last two methods of the public interface of Controller is:

void handleEvent(Event e);
void callback(Event e);

The two methods are completely identical; they are synonyms. This also meanst t
handleEvent operation is (just like callback) asynchronous. The operations trigger
state transition of the object. The new required state is the eventName field of the ar-
guments (see page 66 for the specification of the Event structure). The callback

84
method makes the Controller object a Callback object, too. By declaring that Con-
troller also extends the Callback interface, we ensure that the finite state machines
can be chained through event propagation.

As said earlier, the exact semantics of the object depends on a set of protected oper-
ations, too (these are part of the implementation class of the Controller, i.e.,
Controller_Impl). These are as follows:

protected boolean checkTransition(Event e);
protected Event.EventData[]

onLeave(Event e, String oldState, String newState);
protected Event.EventData[]

onEnter(Event e, String oldState, String newState);
protected void handleUnknownEvent(Event e);

All elements are now in place for a precise specification of the object behaviour (see
also Figure 5-7).

1. A state transition is requested by a client through the invocation of the operations
handleEvent or callback. The event name is interpreted to be the state name to
which the Controller object should transit. For the sake of this discussion, State1
is the name of the current state of the object, and State2 is the name of the requested
state.

2. The controller object invokes the (protected) operation checkTransition, for-
warding the argument of handleEvent/callback. This operation returns a
boolean value indicating whether the transition is allowed. (By default, all transi-
tions are allowed, i.e., checkTransition just tests whether the new state has been
defined as a genuine state for the object. Subtypes may implement a more complex
transition table by overriding this method).

State1

State2

1. check validity of
State1 to State2 tran-
sition

2. call local operation
‘onLeave’

3. perform callback for
‘Leave’

5. call local operation
‘onEnter’

6. perform callback for
‘Enter’

4. perform callback for
(State1,State2)

Figure 5-7 — Behaviour of a Controller object

handleEvent

85

ance

the

 an

g the

e

lex.

 can
3. If the transition is not allowed, the operation handleUnknownEvent is invoked,
forwarding the argument of handleEvent, and handleEvent/callback fin-
ishes. handleUnknownEvent may decide to report an error, to forward the event to
another Controller instance or an event handler, etc.

4. If the transition is allowed, the following steps are executed:

4.1. The operation onLeave is invoked. This operation receives, as argument, the
event structure appearing as the argument of handleEvent, as well as (the
strings) State1 and State2. The operation returns data suitable to be used as an
event data tag in an event structure.

4.2. If there is no ActionElement structure associated with State1 labelled as
“leave”, this step is ignored, and go to 4.3 below. Otherwise, an event inst
is created, using the event name in the ActionElement structure associated to
State1 labelled as “leave”, and the event data returned by onLeave. A callback
is then executed with the newly created event instance as argument.

4.3. The value of the attribute denoting the current state is set to State2, i.e., the real
state transition occurs.

4.4. If an ActionElement is associated with the pair (State1, State2), a new event
instance is created using the event name in the ActionElement and the array
[State1,State2] as event data with the key “Transition”. The callback oper-
ation on the Callback object, referenced by the ActionElement, is then
invoked using this new event instance.

4.5. The operation onEnter is invoked. This operation receives as arguments
event structure appearing as the argument of handleEvent, as well as (the
strings) State1 and State2. The operation returns data suitable to be used as
event data tag in an event structure.

4.6. If there is no ActionElement structure associated to State2, and labelled as
“enter”, this step is ignored. Otherwise, an event instance is created, usin
event name in the ActionElement structure associated to State2 labelled as
“enter”, and the event data returned by onEnter. A callback is executed with
the newly created event instance as argument.

The default behaviour of the onLeave and onEnter methods is to copy the data of th
input event argument to the output. In other words, a Controller can simply forward
the event data it receives without touching it.

The specification looks a bit complicated, but it is long rather than comp
Figure 5-7 shows the three possible places in a state transition where other Callback

objects may be “hooked”, i.e., which can be used to chain a Controller object into,
e.g., an interaction pattern. The following example shows how a specialized FSM
be defined:

86

s

public class FSM extends Controller_Impl implements Controller
{

// Initialization: fills up the state table
public FSM() {

super();
possibleStates.addElement(“First”);
possibleStates.addElement(“Second”);
possibleStates.addElement(“Third”);
currentState = “One”;

}
// Specialize through the protected methods
protected Event.EventData[]

onLeave(Event e, String oldState,String newState)
{

System.out.println(“Leave “ + oldState + “ for “ + newState);
// return the event data (using default action)
return super.onLeave(e,oldState,newState);

}
protected Event.EventData[]

onEnter(Event e,String oldState,String newState)
{

System.out.println(“Arrive to “ + newState +“ from “ + oldState);
// return the event data (using default action):
return super.onEnter(e,oldState,newState);

}
}

The example is of course not very exciting, but it shows how FSMs can be defined in
PREMO. Here is how an FSM instance can be monitored:

FSM fsm = new FSM();
ActionElement act = new ActionElement();
act.eventHandler = new MyCallback();
act.eventName = “Monitor”;
fsm.setAction(“Third”, act, ActionType.Leave);

The effect of the code fragment is that any time the FSM object instance leaves the state
“Third”, the callback in MyCallback will be invoked with event whose name i
“ Monitor”.

5.4.2.2 Activity of Controllers

Another issue, related to the Controller object, should be mentioned. As said in the
introduction, controllers are frequently used as building blocks for interaction. It is
therefore important that the state transition action would not suspend the caller of han-

dleEvent for too long, i.e., this operation is asynchronous. This is also in line with the
requirement on Callback objects, see page 68. Much like event handler objects (see
page 76), the effect of handleEvent (and of callback) is to place the event instance
into an internal event queue. A separate thread should be responsible for emptying this
queue, possibly perform a state transition, and propagate the events through the call-
backs.

87

n of

 time
 be

cy is,

rom

ll, of
mmit
r ex-

e, it is
are to
the pi-
nably
rpos-
curacy
rs, but
5.4.3 Time Objects

5.4.3.1 General Notions

Time is an essential notion in multimedia systems, and also one of the most difficult to
grasp, primarily if full generality and distribution is to be taken into account. Although
there are systems, special hardware equipment, etc., which are capable of providing pre-
cise control over time, these are rarely available in the type of computing environments
in which PREMO is supposed to run. As a consequence, PREMO cannot include object
specifications which rely on real–time control. In most of the cases implementatio
such facilities would be impossible.

The pragmatic approach adopted by PREMO is to define a simple interface to
control, without requiring a certain accuracy. Instead, the local accuracy value can
inquired, and it is expected that the client would adapt its behaviour if the accura
for example, reduced.

PREMO time objects may return elapsed time in different time units, ranging f
picoseconds to years. Which unit to use is set by the client (a separate TimeUnit enu-
meration type is defined for that purpose). The accuracy of the time objects wi
course, depend on the current setting of the unit. Time objects may easily co
rounding errors and be off, for example, by one year if the unit is set to years. (Fo
ample, because our implementation relies on long integer values to measure tim
not possible to express the value of 2.5 years!). On another extreme, it is very r
have a computing environment which can provide an accurate measurement on
cosecond level. The typical case is that the various time objects would be reaso
accurate on the millisecond level, which is enough for multimedia presentation pu
es. The current accuracy can be inquired by the client, and the unit used for the ac
value can also be chosen. It is possible to measure the returned time value in yea
expect the corresponding accuracy value in milliseconds.

88
On the abstract level, represented by the abstract type called Clock, elapsed time is
measured as the returned value of an operation called inquireTick. Various subtypes
of the Clock object attach a more detailed semantics to what the ticks really mean. This
value and the accuracy obey the following relation. Suppose that the output of in-
quireTick is T, and the value of the accuracy is A (both values are long integers in our
case). If the moment used by inquireTick as a starting point in time is E then, math-
ematically, the real actual time , when inquireTick is called, follows the relation:

This also means that an accuracy of value zero represents the most accurate timing pos-
sible, and increasing values represent a loss in precision.1)

5.4.3.2 Specification of the PREMO Time Objects

The more formal specification of the time objects rely on the enumeration TimeUnit,
which is defined as follows:

1) To be precise, this relation is valid if accuracy and time are measured using the same units. If this is not the
case, A should be replaced by a function f(A), which converts the accuracy value from its own units to the
units used by T.

Figure 5-8 — Time objects

premo.std.part2

premo.impl.part2

Clock

Timer SysClock

Clock_Impl

Timer_Impl SysClock_Impl

Tr

E T
A
2
---–+ Tr E T

A
2
---+ +≤ ≤

89

ma-

-
e it
package premo.std.part2;
public final class TimeUnit

extends premo.impl.utils.PREMOEnumeration {
public static TimeUnit Picoseconds;
public static TimeUnit Nanoseconds;
public static TimeUnit Microseconds;
public static TimeUnit Miliseconds;
public static TimeUnit Second;
public static TimeUnit Minute;
public static TimeUnit Hour;
public static TimeUnit Day;
public static TimeUnit Month;
public static TimeUnit Year;

}

which simply lists the various time units usable in PREMO. Using this enumeration, the
abstract Clock interface is defined as follows:

package premo.std.part2;
public interface Clock
 extends EnhancedPREMOObject, java.rmi.Remote
{

TimeUnit getTickUnit();
void setTickUnit(TimeUnit unit);
TimeUnit getAccuracyUnit();
void setAccuracyUnit(TimeUnit unit);
long getAccuracy();
long inquireTick();

}

Based on the general description of the previous section, the semantics of each of these
operations should be clear by now.

There are several objects in PREMO which implement this interface; two of them are
usable by themselves, too. These are the system clock and the timer object.

The system clock object (called SysClock) provides real time information (modulo
the accuracy of the clock, of course) to PREMO. SysClock does not add any new op-
erations to its interface:

package premo.std.part2;
public interface SysClock extends Clock, java.rmi.Remote {
}

but defines the exact semantics of the inquireTick operation. It returns the elapsed
time since 00:00AM, 1st of January 1970, UTC. For historical reasons, this starting
point in time has been chosen by numerous computer systems (including Java), hence
its choice in PREMO, too.

The Timer object models a stop–watch. It can be viewed as a tiny finite state
chine, with three states: TSTOPPED, TSTARTED, and TPAUSED (these are static integer
constants defined in a simple Java class called State) and managing an internal time
register. This register is reset to zero either when the object leaves the TSTOPPED state,
or through an explicit reset operation. inquireTick returns the elapsed time the ob
ject spent in TSTARTED state since the last reset of the counter, but ignoring the tim
spent in TPAUSED is ignored. The complete interface of the object is:

90

e-
uence

uring
cases,
etimes
es are

t rate
 sys-
uting
blem
public interface Timer extends Clock,java.rmi.Remote
{

int getTimerCurrentState();
void start();
void stop();
void pause();
void resume();
void reset();

}

which include the obvious state transition operations and the explicit reset. Figure 5-
9 shows the meaningful state transition operations. All other state transition calls (e.g.,
calling pause when the object is in the TSTOPPED state) are ignored.

5.5 Synchronization Facilities

One generally accepted and important characterization of multimedia systems is that
they manage continuous media data. “This term refers to the temporal dimension of m
dia, such as digital video and audio in that at the lowest level, the data are a seq
of samples — each with a time position. The timing constraints are enforced d
playback or capture when the data are being viewed by humans.”[60] In some
such as animation and synthetic 3D sound, the samples may result from (som
complex) internal calculations (synthesis) whereas, in other cases, the sampl
available through some data capture process.

Maintaining the presentation of a continuous media data stream at a sufficien
and quality for human perception represents a significant challenge for multimedia
tems, and may impose significant resource requirements on the multimedia comp
environment. Aside from this inherent constraint (sometimes referred to as the pro
of intra–media synchronization) a further difficulty arises from the fact that multimedia
applications often wish to use several instances of continuous media data at the same
time, such as an animation sequence with some accompanying sound or a video se-
quence with textual annotations. The difficulty here is that not only should the individ-

start

TSTOPPED

TSTARTED

TPAUSED

pause

stop

resume

stop

Figure 5-9 — State transitions in a Timer object

91

of the
ulta-
btitles

sually
e-
c and
chro-

 see,
 and
ple-
 sys-

rience
 place

chro-
hould
ftware

plete
media

clara-
nces).
cha-
tating

 are
sound
tones

 basis
lt on
upport
appli-

del
. Some
 specif-

nted
ual media data be presented with an acceptable quality, but well–defined portions
various media content should appear, at least from a perceptual point of view, sim
neously; some parts of a sound track belong to a specific animation sequence, su
should appear with specified frames in a video sequence, etc. This problem is u
referred to as inter–media synchronization. The specific problems raised by intra–m
dia synchronization is not addressed by PREMO, because this is media specifi
falls outside the charter of a general reference model. In what follows, the term syn
nization is always used to refer to inter–media synchronization.

Synchronization has received significant attention in the multimedia literature,
for example, the book by Gibbs and Tsichritzis[34] or the survey paper Blakowki
Steinmetz[10] for further information and references on the topic. An efficient im
mentation of inter–media synchronization represents a major load on a multimedia
tem, and it is one of the major challenges in the field. What emerges from the expe
of recent years is that, as is very often the case, one cannot pin down one specific
among all the computing layers (from hardware to the application) where the syn
nization problem should be solved. Instead, the requirements of synchronization s
be considered across all layers, i.e., in network technology, operating systems, so
architectures, programming languages, etc. and user interfaces.

The synchronization facilities of PREMO concentrate on one aspect of a com
solution, namely, on a conceptual model and software architecture aimed at inter–
synchronization. It provides general facilities which can be used to implement various
synchronization specifications which use interval–based, axes–based, or other de
tive methods (see again, e.g., the survey paper in [10] for further details and refere
In line with the middleware nature of PREMO, the goal is to provide a general me
nism upon which these various declarations can be implemented, instead of dic
one specific approach to be used for synchronization.

The PREMO synchronization model is based on the fact that objects in PREMO
active. Different continuous media (e.g., a video sequence and corresponding
track) are modelled as concurrent activities that may have to reach specific miles
at distinct and possibly user definable synchronization points. This is the event–based
synchronization approach, which forms the basic layer of synchronization in PREMO.
Although a large number of synchronization tasks are, in practice, related to synchroni-
zation in time, the choice of an essentially “timeless” synchronization scheme as a
offers greater flexibility. While time–related synchronization schemes can be bui
top of an event–based synchronization model, it is sometimes necessary to s
purely event–based synchronization to achieve special effects required by some
cation (see, for example, the application described on page 98).

In line with the object–oriented approach of PREMO, the synchronization mo
uses abstract object types that capture the essential features of synchronization
of them have already been presented in earlier chapters, whereas some are more
ically tailored at synchronization. These are:

• synchronizable objects, and their various subtypes (see Figure 5-10), to be prese
in more detailed in this section.

• synchronization points, (and event handlers in general), see section 5.4.1.3.

92

 ones.

data
sense,
stract
imen-

gress
thread

ers. To
• time objects, see section 5.4.3.

Among all these, the various synchronizable objects are by far the most complex
The rest of this section concentrates on their detailed specification.

5.5.1 Synchronizable Objects

5.5.1.1 Overview: Event–Based Synchronization

Synchronizable objects in PREMO provide a high–level abstraction for media
presentation and synchronization. Media datum is taken here in a very abstract
and it is only the various subtypes which attach specific semantics to it. On this ab
level, synchronizable objects have an internal progression along an internal, one d
sional coordinate space, also referred to as progression space. The active nature of the
synchronizable objects play a paramount importance. Synchronizable objects pro
along their progression spaces independently from one another, using their own
of control (their “virtual processor”).

The progression space can be represented by integers, doubles, or long integ
be more precise, the progression space is, conceptually, one of:

Figure 5-10 — Objects for synchronization

premo.std.part2

premo.impl.part2

EnhancedPREMOObjectCallback

CallbackByName
Clock

Timer

TimeSynchronizable

Synchronizable

TimeLine TimeSlave

Synchronizable_Impl

EnhancedPREMOObject_Impl

TimeSynchronizable_Impl

TimeLine_Impl TimeSlave_Impl

93

ious
s the
ecial

cts

ies pro-
r the

].
i.e., the concepts of positive and negative “infinity” are also meaningful. The obv
extension of the notions “greater than”, “smaller than”, etc., on these spaces allow
behaviour of synchronizable objects to be defined more succinctly. We define no sp
Java classes to represent these types. We will simply identify the MAX_VALUE and the
MIN_VALUE constants of the Integer, Double, and Long Java classes with their re-
spective infinity values1). It is up to the implementation of the synchronizable obje
to manage the arithmetic properly. To simplify the discussion, the symbol “ C” will be
used in this section to denote this progression space. Subtypes of synchronizable objects
specify the exact numeric type being used and add a semantic meaning to this coordi-
nate space. Attributes of the progression, such as span (the interval of interest within
this coordinate space), can be set through operations defined on the synchronizable ob-
ject.

The progression space2) can be used to describe various types of progression. For ex-
ample, media objects may represent time, video frame numbers along this space, ani-
mation frame numbers, sound samples, etc. The choice of the semantic content of the
progression space may also depend on the application. For example, if the object repre-
sents a symphony, the progression space units may represent either the various move-
ments of the symphony, or the bars within a movement, or the notes themselves, or even
the individual musical samples. The choice will obviously depend on the level of syn-
chronization granularity the application requires.

Reference points are points on the internal coordinate space of synchronizable ob-
jects where synchronization elements can be attached (see also Figure 5-11). Synchro-
nization elements are structures which contain a reference to in an event instance, a
reference to a PREMO Callback object, and, finally, a boolean Wait flag. When pro-
gression goes over a reference point, the synchronizable object makes a call to the
callback operation of the object stored in the reference point, using the stored event
instance as an argument to the call. Then, it suspends itself if the Wait flag is set to
true, or continues progression otherwise. Through this mechanism, the synchronizable
object can stop other objects, restart them, suspend them, etc. Operations are defined on
synchronizable objects to add or delete reference points with their related synchroniza-
tion elements.

In more precise terms, a Synchronizable object type is defined in PREMO as a
supertype for all objects which may be subject to synchronization. This object is defined
to be a finite state machine. The possible states, the major state transitions, and the op-
erations resulting in state transitions, are shown in Figure 5-12. The initial state is

1) Note that the PREMO document defines these types as separate non–object types. The rich facilit
vided by the Java Integer, Double, and Long classes makes it unnecessary to define separate types fo
Java version.
2) The multimedia literature also uses the term LDU (for Logical Data Units) to denote the same concept[10

double∞ double ∞– ∞{ , }∪==

int∞ int ∞– ∞,{ }∪==

long∞ long ∞– ∞,{ }∪==

94

’s
sing

the

ition,

ewly
 then
STOPPED. Note that no operation is defined for a transition into state WAITING. The
only way a Synchronizable object can go into the WAITING state is through its inter-
nal processing cycle (see below).

The object maintains a current position on its progression space. The progression of
the object along its internal coordinate space happens within a (possibly infinite) inter-
val of this space, called the span, defined through a start and an end point. If the object
state is STARTED, the object carries out its internal processing in a loop of proces
stages. Each stage consists of the following steps:

1. The value of the current position is advanced using a (protected) operation pro-

gressPosition (defined as part of the object’s specification) which returns
required next position.

2. This required position is compared with the current position and the end pos
and the following actions are performed:

2.1. If there are reference points lying between the current position and the n
calculated position (or there is a reference point set at the new position),

Event Instance

Object reference

Synchronizable Object

Reference Point

Synchronization Element

Wait Flag

Figure 5-11 — A synchronizable object

STOPPED

STARTED

PAUSED

start

pause

stop

resume

stop

WAITING

resume

stop

pause

Figure 5-12 — State transitions of a synchronizable object

95

pro-
 point
one

ef-

t

s the

t of
nd the
 The
 to
a

e
an-
bject

tical
 This
e order

efined
 such

of the

pan
set
d the

ol-
lue

r
loops
any associated synchronization actions are performed (in the order in which
they are defined on C). This means:

– Perform data presentation for any data identified by the points on the
gression space between the current position or the previous reference
and the next reference point (or the end point). Formally, this is again d
through the invocation of a protected operation, called processData.

– Invoke the callback operation on the Callback object, whose reference
is stored in the reference point, using the stored event as an argument.

– If the Wait flag stored in the synchronization element belonging to the r
erence point is set to true, the object’s state is changed to WAITING. If the
state of the object is set back, eventually, to STARTED, the stage continues a
this point.

2.2. If the required position is smaller than the end position, then this become
local position and the processing stage is finished.

While in PAUSED or WAITING state, the object can only react to a very restricted se
operation requests. The attributes of the object may be retrieved (but not set) a
resume or stop operations may be invoked, which may result in a change in state.
difference between PAUSED and WAITING is that, in the latter case, the object returns
the place where it had been suspended by a Wait flag, whereas, in the former case,
complete new processing stage begins. In other words, no new call to progressPosi-

tion occurs when returning from WAITING state. The differentiation between thes
two states, i.e., the use of the Wait flag, is essential. This mechanism ensures an inst
taneous control over the behaviour of the object at a synchronization point. If the o
could only be stopped by another object via a pause call, an unwanted race condition
could occur.

This description refers to the situation where the direction of progression is iden
to the inherent ordering of C. The direction can also be reversed by the client.
means that the roles of the span’s start and end points are reversed, as well as th
with which the reference points and the data presentation are considered.

What happens if the progression reaches the end of the span? Attributes are d
which control whether the object should loop at that stage or not. There are two
controlling attributes: a repeatFlag, which is a boolean, and a NLoop value, which is
a positive integer. When the required new position is greater or equal to the end
span, this is how the object behaves:

• If the repeatFlag is true, this means that the object repeats playing over the s
indefinitely while in STARTED state. In other words, the current position value is
to the start of the span (or the end of the span if progression is backward) an
next processing stage starts there.

• If the flag is set to false, the number of loops the object has to perform is contr
led by the nloop value. The object maintains an internal loop counter (whose va
can be inquired, by the way), which is initialized to the value of nloop when the
object enters the STARTED state from STOPPED. This counter represents the numbe
of times the object has to play the defined span. When the required number of

96

of the

antics
ough
he in-

esent
icated
either
. The
in-
mple,
g the

ng.
rre-
 en-
 object
Data

ified

bined

 com-
s.
m de-
re are
n-

he ob-

age to
have been played, the synchronizable object automatically changes its state to
STOPPED.

Note that two aspects of this specification are left hitherto unspecified in the definition
of Synchronizable:

• what “data presentation” means (i.e., the semantics of the processData opera-
tion), and

• what it means to progress through the reference points (i.e., the semantics
progressPosition operation).

Both these aspects should be specified in the subtypes of Synchronizable. The ab-
stract specification of a synchronizable object is such that no media specific sem
are directly attached to it. Subtypes, realizing specific media control should, thr
specialization, attach semantics to the object through their choice of the type of t
ternal coordinate system, through a proper specification of the processData and the
progressPosition operations. Processing data may mean, in simple cases, to pr
the data on a screen (e.g., to put the video frames into a window). In more compl
situations, however, processing the data may involve the control of other devices,
software or hardware. The following chapters will elaborate on this aspect further
operation progressPosition defines what it really means to “advance” along the
ternal coordinate system and also controls the granularity of progression. For exa
this progression may mean the generation of the next animation frame, decodin
next video frame, advance in time, etc. A good example for the roles of processData

and progressPosition is the way a simple MPEG decoder could work in this setti
The progressPosition operation can successively return the frame positions co
sponding to the key frames (“I–frames”, in the MPEG specification) in the MPEG
coding process. Indeed, key frames represent the natural points where an MPEG
could stop for synchronization in combination with its procedure to fetch data.
processing may then mean to display the frames between two keyframes.

The “target” object in the synchronization element (i.e., the object which is not
that the synchronizable object has reached a reference point) can be any PREMOCall-

back object. This means that, for example, a synchronizable object can be com
with various event handlers or controller objects; furthermore, the Synchronizable

object type is also defined to implement the Callback interface, i.e., the Synchro-
nizable objects can also notify one another when crossing reference points. The
bination of all these objects in one synchronization pattern offers very rich facilitie

Figure 5-13 shows a very simple example using the synchronization mechanis
scribed above. The three media objects (video, audio, and graphics) in the figu
subtypes of Synchronizable, as is the time line object. They all add specific sema
tics to this supertype. Reference points and synchronization points are set up for t
jects. The name of the operations eventually used through the callback operations are
denoted on the figure. The effective synchronization pattern is:

1. The video starts to play; when it reaches its reference point, it sends a mess
the audio object. The video object then continues to progress.

97

which

ism

n ap-
s with
ms of
a ap-
really
alled
cans
of real
 much
 two
2. As a result of the message received from the video object, the audio object begins to
play (in parallel with the video object). When it reaches its reference point, it sends
a message to both the graphics and the time line objects (the role of the event han-
dler object is to dispatch the same event among several targets). The audio object
then continues to progress.

3. The graphics appears on the screen and, in parallel, a timer begins to tick. The timer
has its own reference point set to, e.g., 15 seconds; when this reference point is
reached, the message “unmap graphics” is sent to the graphics media object,
unmaps the image from the screen.

Although this example is obviously a simplified one, it illustrates the main mechan
at work when event–based synchronization is used.

The reader may wonder why PREMO chose the event–based synchronizatio
proach as its basic model; most of the synchronization literature and practice deal
time–based synchronization only, i.e., where synchronization is expressed in ter
milliseconds, time intervals, etc. The reason is that there are important multimedi
plications where the purely time–based notions break down, where time does not
make sense. A real–life example is as follows. The application involves so–c
cineloops, which are a movie–like representation of a sequence of ultrasound s
made for medical purposes. Details of how these cineloops are created are not
interest here. They should be considered as special media objects which behave
like a sequence of images. Figure 5-14 shows a screen snapshot involving

video

audio

time linegraphics

“start audio”

“map graphics”
“start timer”

“unmap graphics”

event handler

“dispatch”

Figure 5-13 — A simple example for the use of synchronizable objects

98

. Syn-
 events
ization
 with-
ils of
es the
cineloops, taken by scanning the human heart. When a cineloop is recorded, one will
usually also record an ECG trace (an electrocardiogram), shown below the cineloop im-
ages. Also, in many cases, it is useful to compare cineloops recorded under different
conditions or at different times. For example, a stress test compares the movement of
the heart wall after a rest and just after the person has exercised, when the heart rate is
much higher. Figure 5-14 shows two such recordings, each with its corresponding ECG
trace.

The difficulty of playback, when these cineloops are used, is that physicians want to
see side by side a particular event of the heart beat, e.g., the start or the end of a contrac-
tion of a heart chamber. They are not really interested in the timing of the movements.
However, the different phases of movement that constitute a heartbeat do not speed up
with the same rate when the heart beats faster, i.e., it is not sufficient to just speed up or
slow down the cineloops. In other words, synchronizing between the two cineloops can-
not be done in terms of time. Indeed, the notion of time does not really make any sense
in this particular case.

The synchronization problem can be solved if event–based approach is used
chronization elements are set against reference points representing the required
in the cineloop (or can be set on the ECG playback, and have a close synchron
of a cineloop with its corresponding ECG), and the playback can be synchronized
in a framework using synchronizable objects and synchronization points. Deta
how this can be done can be found in the paper of Lie and Correia[63], which us

Figure 5-14 — A cineloop example

99

ch
 pro-

nima-
tant,
e
erality

nitor
for ex-
 from

r the
e
f

e-

re is

being
essed.
sub-

action

s, and
al-
efore
MADE toolkit[42] for this purpose in a real–life medical application involving su
cineloops (this toolkit uses a very similar synchronization mechanism to the one
posed by PREMO).

Similar examples can also be found in other application areas, e.g., computer a
tion, virtual reality, etc. Of course, time–based synchronization is extremely impor
and subtypes of the Synchronizable objects are defined in PREMO for that purpos
(see section 5.5.2 below) but choosing event–based synchronization gives the gen
which is necessary for a standard reference model for multimedia applications.

5.5.1.2 State Transition Monitoring

The mechanism described in the previous allows various PREMO objects to mo
media progress. This can be done in setting the appropriate reference points and (
ample) registering to the event handlers which might handle the events coming
that synchronizable object.

Independently from media progress, however, objects may also wish to monito
state transition of the Synchronizable object. For this purpose, much like in the cas
of Controller objects, references to Callback objects can be assigned to pairs o
states; whenever the Synchronizable object makes a state transition which corr
sponds to this pair, the callback operation on the registered object will be invoked.

5.5.1.3 Detailed Specification of the Synchronizable Object

The detailed (Java) specification of the Synchronizable object is not very complex,
once the underlying principles are understood. The only slightly complicated featu
how the exact type of the progression space is defined.

Remember that the progression space of a Synchronizable object can be based on
double, integer, or long integer values (see page 92). The choice of which type is
used is the subtype’s, and it depends on the semantics of the media which is proc
The Synchronizable object is abstract (i.e., it cannot be instantiated per se), and
types have the ability to fix the type through, e.g., their constructors.

In the Java interface specification, the (standard) Java class Number is used to access
points on the progression space. This class is a common superclass of the Double, Int,
and Long Java classes, that is it can provide the necessary generality and abstr
level. There is, however, one complication: for one specific Synchronizable in-
stance, the type to be used for its progression space must be the same for all call
this must be checked for all method invocations which involve a progression space v
ue. In our interface specification and implementation, all these methods may ther
throw the standard Java IllegalArgumentException in case the exact type of the
Number argument does not match the type of the progression space.1)

The Synchronizable object interface has the following inheritance structure:

1) For C++ connoisseurs: the original ISO PREMO document makes use of a template class like mechanism
at this point, where the type parameter makes the exact choice for the progression space type. In other words,
the type would then be checked automatically. However, Java does not have any templates, so an explicit
check, with a corresponding exception, had to substitute the template specification.

100
public interface Synchronizable
 extends CallbackByName, EnhancedPREMOObject, java.rmi.Remote

The only important point is that it is a subtype of CallbackByName, too. This means
that it is a Callback, and that the semantics of the callback operation is such that it
would use the name of the event in its argument to find the operation to be invoked in-
ternally (see section 5.3.3). This means that, if Synchronizable objects are bound to-
gether in various patterns, operations such as stop, pause, etc., can be coded into the
synchronization elements easily.

The methods defined in the Synchronizable interface can be grouped in various
categories. This categorization will be used in what follows to gain a better overview of
the methods.

5.5.1.3.1 Retrieve Only Attributes

Synchronizable objects define a number of internal attributes which are retrieve on-
ly, i.e., they are either constants, or they can be changed only by the object itself. They
are all related to the internal processing loop of the object.

int getCurrentState() throws java.rmi.RemoteException;

This operation returns the state of the object. The integer codes for the states are
grouped as final static integer values of the class State. The relevant constants are:

public static final int STOPPED = 0;
public static final int STARTED = 1;
public static final int PAUSED = 2;
public static final int WAITING = 3;

The operations

Number getMinimumPosition();
Number getMaximumPosition();

return the absolute minimal and maximal positions for the given instance. All position
values, when using this object instance, must be in this interval. The values MAX_VALUE
or MIN_VALUE may also be returned, denoting positive, or negative, infinity, respective-
ly.

The operation

Number getCurrentPosition();

returns, as its name suggests, the current position value, while the operation

int getLoopCounter();

returns the current loop counter value. Both these values change while the object
progresses in its processing loop.

101
5.5.1.3.2 Settable Attributes

These attributes control and/or modify the progression of the object along the progres-
sion space. All of them have in common that they can be set only if the object is in
STOPPED state, although they can be retrieved at any time. The exception WrongState
is thrown if an attempt is made to change these values in a wrong state. The semantics
of all these attributes must be clear by now.

void setDirection(Direction where) throwsWrongState;
Direction getDirection()

void setStartPosition(Number position)
throws WrongValue, WrongState, IllegalArgumentException;

Number getStartPosition()

void setEndPosition(Number position)
throws WrongValue, WrongState, IllegalArgumentException;

Number getEndPosition()

void setRepeatFlag(boolean flag) throwsWrongState;
boolean getRepeatFlag();

void setNLoop(int value)throws WrongState,IllegalArgumentException;
int getNLoop();

void resetLoopCounter() throws WrongState;

The operation resetLoopCounter sets the loop counter value back to NLoop, i.e., all
the loops will start all over again. Direction, which is used in some of the operations
above, is a simple enumeration:

public final class Direction extends premo.impl.utils.PREMOEnumeration
{
 public static Direction Forward;
 public static Direction Backward;
}

One more operation should be listed in this category, insofar as it modifies the current
position value:

void jump(Number position)
throws WrongState, WrongValue, IllegalArgumentException;

The difference is that this operation can also be issued when the object is in PAUSED
state and not only in STOPPED state.

5.5.1.3.3 Management of Reference Points

Operations in this category can add or delete reference points and their corresponding
synchronization element. There are basically two ways reference points can be defined:

• specifying a synchronization element at an absolute position, or

• specifying a repeated (periodic) synchronization element.

102
The second possibility means that the same synchronization element is (conceptually)
repeated at the points:

until an endRefPoint value is exceeded. The value of p is the periodicity of the synchro-
nization element.

Reference points can be set or deleted only when the object is in STOPPED or PAUSED
state. The WrongState exception is thrown in all other cases. All operations make use
of the simple PREMO object:

public class SyncElement extends SimplePREMOObject {
 public Callback eventHandler;
 public Event syncEvent;
 public boolean waitFlag;
}

to describe a synchronization element. The operations themselves are as follows:

void setSyncElement(Number position, SyncElement syncElement)
throws WrongState, WrongValue, IllegalArgumentException;

void deleteSyncElement(Number position)
throws WrongState, WrongValue, IllegalArgumentException;

void setPeriodicSyncElement(Number startRefPoint,Number endRefPoint,
Number periodicity,
SyncElement syncData)

throws WrongState, WrongValue, IllegalArgumentException;
void deletePeriodicSyncElement(Number startRefPoint,

Number endRefPoint,
Number periodicity)

throws WrongState, WrongValue, IllegalArgumentException;

A separate operation is defined to inquire the synchronization elements in a specific in-
terval. This operation can be invoked at any time (note the use of an inner class in the
specification):

public class SyncInfo {
public SyncElement syncElement;
public Number position;

}
public SyncInfo[] getSyncElements(Number posMin, Number posMax)

throws WrongValue, IllegalArgumentException;

5.5.1.3.4 Management of Action Elements

The following two operations are related to state transition monitoring actions. They set
and delete an action element to a pair of allowable states. An action element is identical
to the structure used for Controller objects:

public class ActionElement extends SimplePREMOObject {
public Callback eventHandler;
public String eventName;

}

startRefPoint p+ startRefPoint 2 p⋅+ … startRefPoint n p⋅+, , ,

103

 point

o a

 in the

e op-

will

ail is
bject
he au-

tion of
quire
eved
 spe-

 The
ts how
Using this action element means creating an Event instance with the specific name. The
event data (which is a key–value pair) uses the key “Transition” the pair of states,
which has just been used for transition, as value.

The operations themselves are quite simple; just as in the case of reference
management, they can be invoked in STOPPED or PAUSED states only.

void setActionOnPair(int stateOld, int stateNew, ActionElement action)
throws WrongState;

void removeActionOnPair(int stateOld, int stateNew)
throws WrongState;

Again, a WrongState exception is thrown if one of the arguments does not refer t
valid state.

5.5.1.3.5 General Reset

This category has only one operation:

void clearSyncElements() throws WrongState;

which deletes all reference points and action elements. It can be issued in STOPPED or
PAUSED states only, of course.

5.5.1.4 Synchronizable Objects as Callbacks

A Synchronizable object has been defined as a subtype of CallbackByName. This
means that other objects (most often other Synchronizable objects) may call the var-
ious state transition operations, such as start, resume, etc., through their respective
reference points. This is done by simply setting the name of the event being used
callback to the right call.

There is, however, a subtle but very important difference between calling thes
erations directly, or doing it indirectly, through the callback method. All operations
on Synchronizable are defined as synchronous, i.e., the caller of the operation
be suspended as long as the operation is not performed. By contrast, however, call-

back is essentially asynchronous (see section 5.3.3), i.e., the caller is not suspended
when the state transition operation is invoked through this mechanism. This det
very important in practice; if this was not the case then, for example, the video o
on Figure 5-13 (see page 97) would be unnecessarily suspended while starting t
dio.

5.5.2 Time and Synchronizable Objects

The synchronization model presented in section 5.5.1 is event–based, i.e., the no
time is not part of the abstraction level in that model. Clearly, applications also re
a more elaborate version, which would allow them to reason with time. This is achi
in PREMO through the specification of a separate hierarchy of time objects and the
cialization of a basic synchronizable object which would include the notion of time.
time objects have already been presented in section 5.4.3. This section presen
PREMO combines the notion of time with that of synchronization.

104

o ob-

xist?

n
r. The
a
y of

th
ns,

oo;

ct is
The combination of the two facilities is embodied in the TimeSynchronizable ob-
ject type, which implements both the Timer interface (see page 90) and the Synchro-
nizable interface, as defined earlier in this section. In other words, a
TimeSynchronizable has its own progression space with its own autonomous pro-
gression, as well as being essentially a stop–watch with its own notion of time.

Of course, implementing both interfaces is not enough; the semantics of the tw
ject types have to be reconciled. The semantic issues which arise are:

• How do the two finite state machines, represented by the two supertypes, coe

• What is the relationship of the progression space and the clock?

• How can the client control progression data in terms of time?

Let us take these questions one by one.

5.5.2.1 Stop–Watch and Progression

The Timer object is a finite state machine, whose state transitions are represented on
Figure 5-9 on page 90. The Synchronizable object’s state transitions are depicted o
Figure 5-12 on page 94. The two state machines are very similar to one anothe
most noticeable difference is that the Synchronizable state machine has one extr
state (WAITING), with some extra state transition operations. A straightforward wa
defining a “derived” state machine for the TimeSynchronizable object is to adopt the
state machine of Synchronizable, and identify the states of the stop–watch wi
states of the Synchronizable. This is shown on Figure 5-15. What this merger mea
semantically, is that

• while the object progresses along its progression space, the clock is running, t

• “pausing” the progression means pausing the clock as well; also, if the obje
waiting on a reference point, the clock is paused;

• stopping progression means stopping and resetting the stop–watch, too.

STOPPED

STARTED

PAUSED

start

pause

stop

resume

stop

WAITING

resume

stop

pause

Figure 5-15 — State transitions of a time synchronizable object

TSTOPPED

TPAUSED

TSTARTED

105

ions”,
by an
at-
e. It is
d, that
ugh the

:

d

,
, etc.
The effects of the various state transition operations, inherited both from Timer and
Synchronizable are clear from the figure; resuming a clock and resuming progres-
sion is done simultaneously, etc.

5.5.2.2 Time and Progression Space

Merging the state machines does not yet create a link between two “progress
namely moving along the progression space and along time. This link is created
additional attribute, called the speed (see Figure 5-16). As its name suggests, this
tribute expresses the ratio between time and moving along the progression spac
the number of units on the progression space per clock tick. It must be emphasize
the value of the speed depends on the units used to measure time, settable thro
setTimeUnit operations (inherited from the Timer).

In general, the value of speed can be set and retrieved through the operations

void setSpeed(double speed) throwsWrongState;
double getSpeed();

These operations are defined as part of the TimeSynchronizable interface (setting
speed is possible in STOPPED state only, hence the WrongState exception in the spec-
ification). However, subtypes of TimeSynchronizable may not have a settable spee
(see the TimeLine object below, for example) in which case the setSpeed operation
is without effect. Most of the TimeSynchronizable objects do allow a variable speed
which can be used to speed up or slow down sound rates, animation frame rates

5.5.2.3 Reference Point Specifications in Time

The TimeSynchronizable object inherits a time register from Timer, too. In a Timer
object, this register is reset to zero either when the object leaves the TSTOPPED state, or
through an explicit reset operation. In the case of the TimeSynchronizable object,

Event Instance

Object reference

Synchronizable Object

Reference Point

Synchronization Element

Wait Flag

Figure 5-16 — A time synchronizable object

speed

106
resetting this time register has additional semantics; it also puts a conceptual marker
against the current position on the progression space as well as resetting the time regis-
ter1). This marked position on the progression space and the speed value together define
a linear transformation between the two spaces which makes an identification of time
and progression possible.

TimeSynchronizable defines two operations which can be used to convert pro-
gression space values into time and vice versa. These operations are:

Number timeToSpace(long time)
long spaceToTime(Number position) throwsIllegalArgumentException;

Using these two conversion methods, the client can choose to define reference points in
time, converting the time values into position values, and use the inherited reference
point management operations to set the reference points.

PREMO also defines a set of operations for TimeSynchronizable, which are the
semantic equivalents of the operations defined in sections 5.5.1.3.1, 5.5.1.3.2, and
5.5.1.3.3, with the notable exception that the type long is used instead of Number. Their
semantics is identical to their Synchronizable counterpart, except that positioning is
done in time and the current linear transformation between time and progression space
is used to identify the active reference points. The operations are (for simplicity, the ex-
ceptions are not listed this time):

long getTimeCurrentPosition();
long getTimeMinimumPosition();
long getTimeMaximumPosition();
void setTimeStartPosition(long position);
long getTimeStartPosition();
void setTimeEndPosition(long position);
long getTimeEndPosition();
void jump(long position);
void setSyncElement(long position, SyncElement syncElement);
void deleteSyncElement(long position);
public class TimeSyncInfo {

public SyncElement syncElement;
public long position;

}
TimeSyncInfo[] getSyncElements(long posMin, long posMax)
void setPeriodicSyncElement(long startRefPoint, long endRefPoint,

long periodicity,
SyncElement syncData)

void deletePeriodicSyncElement(long startRefPoint, long endRefPoint,
long periodicity)

Using these methods the client can, for example, make a jump in time directly, without
using the progression space.

There may, however, be a difference between using these operations explicitly, or
setting a synchronization element through the use of timeToSpace. Synchronization
elements defined in terms of time are also stored internally in terms of time. This be-
comes important if the client resets the time register through an explicit reset opera-

1) Note that, if the register is reset through leaving the TSTOPPED state, this position is the default start pos-
tion of the object.

107

play-
 if an
state
ony-

res-
pecif-

 the
ecid-
., of
ere-
 not

at-
er, in
ssion

tains
ect of
ration
ndard

ion
 ab-

arely
ent
 may

ces-
t. PRE-
cific

imer

 binds
tion. Indeed, resetting the time register means changing the linear transformation
connecting time to progression space; consequently, if this reset is done while “
ing”, some reference points may, for example, become “active” again. Of course,
explicit reset is never used, i.e., the linear transformation changes only through
transition from STOPPED, use of time or use of the progression space becomes syn
mous.

It must be emphasized that the abstract TimeSynchronizable object still leaves a
lot of implementation details for the specific subtypes of this object. How the prog
sion in time and progression in “space” are related to one another is often media s
ic. To take a simple example, let us consider at a (subtype of) TimeSynchronizable

managing a video frame sequence. When asked for the next frame (i.e., when thepro-

gressPosition operation is invoked), the object has to consider the local clock,
value of speed and, maybe, some specifics of the video frame sequence, before d
ing on the next “current” position. Sophisticated implementations of PREMO, i.e
the TimeSynchronizable object, might decide to generalize such mechanisms, th
by simplifying the task of the implementors of specific devices, but PREMO does
specify these details.

The TimeSynchronizable object has all the usual synchronization features
tached by various multimedia systems to their basic media representation. Howev
most of the systems, the distinction between (relative) time and the internal progre
space (e.g., video frames) is blurred, usually in favour of time only. PREMO main
this dual nature of media data, and leaves it to applications to decide which asp
media behaviour is more relevant in a concrete synchronization setting. This sepa
is one of the advantages of a clear object oriented specification offered by a sta
such as PREMO

5.5.3 Combining TimeSynchronizable Oobjects: Time Slaves

TimeSynchronizable objects are appropriate for creating complex synchronizat
patterns involving time. In an ideal world, where all local timers would represent an
solutely precise real time, this would be enough. However, multimedia systems r
operate in an ideal world, and in practice all local timers will have a slightly differ
speed, accuracy, etc. Hence the necessity of implementing mechanisms which
monitor possible discrepancies.

PREMO does not aim at offering a full solution for this problem, because the ne
sary reactions, the tolerated discrepancies, etc., are usually application dependen
MO defines the basic mechanism which allows applications to implement a spe
behaviour, and it does this in terms of a new object type, called a TimeSlave object.
What this object essentially does is to control its own behaviour in terms of the t
data of another TimeSynchronizable object..

As we saw in section 5.5.2.2, the notion of speed is the essential attribute which
the progression space of a TimeSynchronizable object and its own clock. The
TimeSlave object is a subtype of TimeSynchronizable, which allows the client to
set a master TimeSynchronizable object:

108

y
ect the
and,
e prop-

s.

 first
only
rtant
 inher-
itors
 can
public interface TimeSlave
 extends TimeSynchronizable, java.rmi.Remote
{

void setMaster(TimeSynchronizable master) throws WrongState;
TimeSynchronizable getMaster()

}

(as usual, the setting of such an attribute can be done in STOPPED state only, hence the
exception). The default value for the master is null, in which case the behaviour of
TimeSlave is exactly analogous to TimeSynchronizable. However, if the master is
not null, the speed value of the object, hence the transformations governing the refer-
ence point specifications, the progression speed, etc., is to be understood relative to the
clock of the master object. This means that, for example, if the progressPosition
operation uses the current time value to decide on the next position (see page 107), the
“current time” should refer to the master in this case. Also, if the client changes the wa
the master operates (e.g., changing the units of measurement) this change will aff
behaviour of all the TimeSlave objects attached to the same master. On the other h
because all slaves use the same clock, their behaviour in time is guaranteed to b
erly synchronized.

Does the internal clock of the TimeSlave object play any role in this case? It doe
Indeed, one should not forget that the internal clock of a TimeSynchronizable can
be seen as being the “ideal” clock for the object, that is why it is internal to it in the
place. Conceptually, the state machine for this local clock is still in effect, and it is
the progression in time which is “delegated” to the master. It is therefore very impo
to measure whether a discrepancy exists between the clock of the master and the
ent clock of the object. For that purpose, the TimeSlave object continuously mon
the alignment value between the two clocks. This alignment between the two clocks
be measured as follows:

Figure 5-17 — A time slave object

speed

TimeSlave

TimeSynchronizable (master)

109

a
ld val-

tting
arious

ourc-
where g() is a function which transforms the ticks of the master into the units of the
slave, and takes into account the tick value of the master when the reset operation has
been invoked on TimeSlave. A discrepancy occurs if this value exceeds certain thresh-
olds.

The client has two means of monitoring for a discrepancy. First of all, the alignment
may be inquired at any time through the operation:

long inquireAlignment();

which will return the value in the time measurement units of the TimeSlave object.
This can help the client in implementing various monitoring policies to react against in-
creasing discrepancies. However, this approach still requires an active inquiry; as an al-
ternative, the PREMO event handling mechanism can also be used. Through the
operation

public class syncHandler {
Callback handler;
long threshold;

}
void setSyncEventHandlers(syncHandler[] syncEventHandlers);

the client can set a series of callback references. The events are raised by the
TimeSlave object when thresholds are exceeded by the alignment. The events them-
selves have the following structure tags: event name is “OutOfSync”, event data con-
tains one key–value pair, using “Discrepancy” as key and the actual alignment as
float value. (By default, no events are raised, i.e., the client has to set the thresho
ues and the corresponding callback references through an explicit setSyncEventHan-

dlers operation request; by setting an empty array, the default is restored.) Se
appropriate event handlers the client, and indeed the application, can react to v
discrepancies instantaneously, by making the TimeSlave object jump over certain
frames, by slowing down the pace of the master, by trying to acquire additional res
es, etc.

5.5.4 Time–Lines

The TimeLine object of PREMO does not add any significantly new feature to PRE-
MO, but is a good example of how the abstractions of the various objects may be used
to derive a specific, and useful object type. A TimeLine object is defined as a subtype
of TimeSynchronizable, where the progression space is defined to be Long, and the
value of speed is set to be of constant value 1. In other words, the abstract progression
space and time are fully merged with one another in this case. This object can be used
to send events at predefined moments in time to dedicated PREMO objects, and may
thereby serve as a basic tool for time–based synchronization patterns:

public interface TimeLine
extends TimeSynchronizable, java.rmi.Remote

{}

Tickslave g Tickmaster()–

110

, i.e.,
ge dy-
iron-
tance

ehav-
e ap-
 an

O can-
pro-
 are

 about
ation

trad-
priate

com-
 speci-
l for
ment
bject
 top
le, the

o build
the ba-
ribed
e spec-
f ob-

if they

ttach
ed val-
ecifi-
ns
5.6 Negotiation and Configuration Management

One of the main challenges of distributed multimedia applications is to cope with an ex-
treme variety of environmental constraints. These constraints may include resource
problems (e.g., processor speed, memory sizes), availability of special hardware exten-
sions (e.g., graphics accelerators, MPEG coder and decoder hardware, audio exten-
sions), detailed capabilities of specific services, etc. Furthermore, a distributed
application may not be prepared to meet all these constraints at “compile–time”
when the application is defined and installed; some of these constraints may chan
namically, and the application may be required to adapt itself to a changing env
ment. This adaptation may mean starting up the most appropriate object ins
depending of the constraints at the time of activation, dynamically changing the b
iour of the client and/or service objects, etc. Another way of saying this is that th
plication is supposed to “negotiate” with its environment, and reconfigure itself in
optimal way.

This problem, as stated here, is very general and has numerous facets; PREM
not deal with it in its entirety. Indeed, this would, for example, require that PREMO
vides a detailed specification of a number of object–oriented services which
necessary for a “smart” application management, such as metadata information
objects, rich interface repositories, global access information, etc. These specific
are the subject of a series of ongoing work within, for example, OMG (so–called
ers, interface repositories, etc.; see, e.g. [70,86]) and it is very probable that appro
Java APIs will also be published in the near future. It is not the goal of PREMO to
pete with these. Instead, it should rely on the general concepts underlying these
fications. In line with the charter of PREMO, i.e., to provide a reference mode
“middleware” in multimedia, PREMO does not define general constraint manage
or negotiation algorithms either. Instead, it defines the necessary “hooks” in its o
specifications, which would allow the implementation of various algorithms on the
of the PREMO objects. These hooks should also be easily usable with, for examp
newest trader services of OMG or the future Java APIs.

To answer these challenges, the fundamental approach chosen by PREMO is t
upon the general notion of properties, described in section 5.3.4.2. Properties are
sic building blocks for various configuration and negotiation mechanisms; as desc
already, they provide a means to specialize object instances, beyond what the typ
ification can do. As a general principle, the parameters governing the behaviour o
jects in PREMO are described in terms of properties, rather than class attributes,
are subject to further dynamic negotiations.

5.6.1 General Notions

The properties services, as defined in section 5.3.4.2, give clients the ability to a
any property to an object instance. Both the keys used by the client and the attach
ues are at the client’s discretion. However, for the purpose of negotiations, the sp
cation of an object type may also require the existence of certain properties. This mea
that the object specification defines a number of property keys which are always present

111

lways
nd in-

rop-
eing
n.

 range
b-
xam-
roper
d for

n in
 ob-
erred
or
hich

re for
a key
lues
o
wever,

 on, as
e data,
 key

erties,
for a specific object (they are defined automatically when the object is constructed); fur-
thermore, the specification also defines the type of values which may be assigned to a
specific key, in the same way that the type of an object attribute is defined when it is
defined as part of an object type. The fact that these pre–defined properties are a
present makes it possible to define a negotiation mechanism based on setting a
quiring their values.

As a notational convention, we will refer to properties defined by clients, i.e., p
erties which are not part of the object type specification, as “private” properties. B
private means that no guarantee for the existence of these properties can be giveThis
chapter deals exclusively with non–private properties.1)

A negotiation based on properties requires that the client can inquire the possible val-
ues for a specific property key. This goes beyond what the object specification may pro-
vide; whereas the object specification may define the type of the property value, it
cannot specify the possible range of values. To refer to our audio example on page 72,
a property was defined to describe the possible audio formats an object may handle;
however, the maximum a formal object specification may contain is that the type of the
values are, as in our example, strings. Additional information may be necessary to de-
scribe that, e.g., the value of this property may contain the strings “AIFF”, “ AIFC”, and
only those. This additional piece of information is referred as the capability of the object
for a key.

Things can get more complicated. Indeed, the capability describes the possible
of property values for a specific type. However, when an object is instantiated, the o
ject may discover that not all admissible property values may really be used. For e
ple, the object may realize that the specific graphics hardware does not allow for p
texture mapping, which means that most of the properties, which may be define
texture mapping, may become meaningless for this instance. In other words, whereas
the object type is prepared for a full generality, the object instance, which has to ru
a specific environment, may not fulfill all the requirements which are defined in the
ject type. Consequently, there is a need for an additional piece of information, ref
to as the native property value for a key. This is the counterpart of the capability, but f
an instance and not for a type. The native property value constrains the values w
can be set for a property.

Finally, the object may have additional knowledge about what the best values a
a specific key on a specific instance. For example, the native property value for
describing the shading algorithm of a graphics renderer might include the va
“Phong”, “ Gourauld”, or “Flat”. In other words, the client does have the ability t
set any of the three shading methods, because all three values are permissible. Ho
the renderer object might be able to measure the load of the machine it is running
well as the resource requirements to perform a full Phong shading; based on thes
it can provide information to the client on what the optimal values are for a specific
(e.g., by stripping the “Phong” value, deemed to require too many resources).

1) Another general notational convention, adopted by PREMO, is that the names of non–private prop
as defined as part of the functional specification of objects, usually end with the character “K”

112
Figure 5-18 gives a schematic overview of the notions involved. The object may de-
fine, as part of its type specification, the possible values for a key on the type level; this
is the capability. An instance of the object type may restrict the possible values to the
native property values. Both the capability and the native property values, if defined by
the object specification, can be inquired by any client. If the client sets the values for
this property, these values will be constrained to the permissible ones. Finally, the object
may also return the set of preferred values, depending on the state of the environment.

These general notions are realized through two PREMO object types. The abstract
type PropertyInquiry, as its name suggests, allows the client to inquire the capabil-
ities and the native property values. The PropertyConstraint object, which is a sub-
type of PropertyInquiry, contains all methods which may constrain the values of
properties. These objects will be described in detail in the following pages.

Figure 5-18 — Type properties, capabilities, constraining properties

Capability
Possible values for a type

Native Property Values
Possible values for an instance

Constrained values

Preferred values via select()

Figure 5-19 — Objects for property-based negotiations

EnhancedPREMOObject

premo.std.part2

premo.impl.part2

EnhancedPREMOObject_Impl

PropertyInquiry_Impl

PropertyInquiry

PropertyConstraint

PropertyConstraint_Impl

113

ave
 view
–only
ther
tion
d
it
., the

.
dmis-

 a

at all
ay of
amic

, with
ecified

ce,

erties

type of
5.6.2 Property Inquiry Objects

PropertyInquiry object are subtypes of Enhanced PREMO objects so they inherit
the general property management operations described in section 5.3.4.2. Furthermore,
capabilities may also be defined for non–private properties. Although capabilities h
a well specified semantics (see the previous section), from a purely formal point of
they are no different from other properties: they are defined through special, read
properties. In other words, they are properties which provide information about o
properties.1) To differentiate capabilities from the other properties, a naming conven
is adopted: for a property name “NameK”, the corresponding capability can be retrieve
through the property key “NameCK”. The value of the property for a capability (yes,
does get a bit confusing sometimes; this refers to the array for the capability, e.g
array belonging to the property key “NameCK”…) is usually a list of admissible values
In some cases, the array may contain only two numerical values, referring to an a
sible numerical interval. This depends on the semantics of the object.

It must be emphasized that it is not required that all non–private properties have
corresponding capability. For example, a property is defined as “VendorTagK”, denot-
ing the vendor of a specific object (see below); although PREMO might require th
objects of a specific type should have this property defined, there is no sensible w
defining the capability to this property because the set of possible vendors is dyn
and possibly large.

Native property values are, essentially, copies of the corresponding capabilities
possibly some values omitted. They can be accessed through a special method sp
for the PropertyInquiry type and this is the only additional method on this interfa
compared to EnhancedPREMOObject. Here is the full specification of the type:

public interface PropertyInquiry
extends EnhancedPREMOObject, java.rmi.Remote {

Object[] inquireNativePropertyValue(String key)
throws InvalidKey;

}

Beyond the type specification, PREMO also requires the existence of some prop
for the type PropertyInquiry objects (and hence for all its subtypes). These are2):

1) Formally, capabilities might have been defined as special class variables, too, one per capability. However,
this would have meant defining a large number of accessor methods to those class variables (using direct
access to the class variables in a distributed setting is not really possible) which might have cluttered the
type specifications.
2) Formally, a property is defined as an array of values, see page 71. The “Type” column refers to the
the objects appearing in this array.

Key Type Read–only? Description

LocationK String yes Network location.

VendorTagK String yes Implementation dependent.

ReleaseK String yes Implementation dependent.

114

t they
the
n the
 an ex-

 “col-

d at-
 keys,
prop-
argu-

-
alue),
w set
ation.
er of
s

ative
cept-
ct per-
l to
The semantics of these properties are straightforward. The network location should be
a string which can be used to address a node on the network, e.g., the Internet (usually
the hostname, e.g., roeiboot.cwi.nl). The two other properties have no special se-
mantics attached to them.

5.6.3 Constraining Properties

Properties may be constrained through the methods defined in the PropertyCon-
straint interface.

First of all, this interface overrides the defineProperty and the addValue meth-
ods, both inherited from the EnhancedPREMOObject interface:

void defineProperty(String key, Object[] value)
throws ReadOnlyProperty, InvalidValue;

void addValue(String key, Object value)
throws ReadOnlyProperty, InvalidValue;

Compared to the “original” versions, both methods have one more exception tha
can throw, namely InvalidValue. This happens if the value or values are outside
range of the native property value of the object (for the specific key). The data i
exception returns the unacceptable values, and the properties are not changed if
ception is raised.

The type defines an additional property setting operation which can be used to
lect” a series of properties and set them all at once:

PropertyPair[] constrain(PropertyPair[] constraints)
throws InvalidKey, InvalidValue;

(The PropertyPair non–object type has been defined on page 72.) The metho
tempts to set all the properties as defined in its argument; however, for all property
it also checks the values, which should be within the range defined by the native
erty values. In other words, it takes the intersection of the property values in the
ment and the native property value for the same key. The InvalidValue exception is
only raised if one of the values is of an inappropriate type. Instead of raising an excep
tion if a value is not permitted (e.g., not listed as an acceptable native property v
the value will be simply ignored. On the other hand, the operation returns the ne
of values automatically, i.e., the client can check the result of the constraining oper
This operation is particularly useful in a distributed environment where the numb
operation calls should be kept low; using constrain the client can set the propertie
in a batch.

The select operation gives a much more active role to the PropertyConstraint

object. Formally, it is similar to the constrain operation above:

PropertyPair[] select(PropertyPair[] constraints)
throws InvalidKey, InvalidValue;

However, this operation not only calculates the intersection of the values with the n
property values; it may also apply some further selection, thereby restricting the ac
ed property values. Of course, the restriction depends on the exact type of the obje
forming this operation; obviously, by default, the effect of this method is identica
constrain.

115

es not
vided
e the
xam-
uch as

 media
e., the

 Mu-
the
ht, for
which
). Fi-
red to

e two

ed to
e cli-

 none
fines

hose
r

5.6.4 Dynamic Change of Properties

Constraining properties to specific values may also be related to the state of the object.
The problem is that the distinction between read–only and general properties do
account for the fact that, in some cases, the lifetime of an object may clearly be di
into a “configuration” phase and a real “working” phase; depending on the phas
object is in, a property may have to be static, i.e., read–only, or changeable. For e
ple, properties may control the sample size and the sample rate of some data, s
audio. These properties may be set in a configuration phase; however, once the
stream flows, neither the client nor the object itself should change these values, i.
properties should become (temporarily) read–only.

Changeable properties may again fall into two categories: mutable or dynamic.
table properties are such that no client should be able to change these values when
media stream flows, although the object itself may change them. Such values mig
example, change as a result of decoding a protocol found within the media stream
defines the mutable property value (e.g., the quantization matrix of an MPEG flow
nally, there may be properties which may be changed at any time. These are refer
as dynamic properties.

To manage these situations, the PropertyConstraint object should be viewed as
a tiny finite state machine which has two states: bound and unbound. There ar
methods to change the state of the object:

void bind() throws InvalidValue, java.rmi.RemoteException;
void unbind() throws java.rmi.RemoteException;

(the reader should disregard the InvalidValue exception for now, we will come back
to it in the next section). When in the bound state, properties which are not defin
be fully dynamic become read–only. The corresponding exceptions are raised if th
ent attempts to change these values through, e.g., the addValue method. Once the state
of the object becomes unbound again, the property values may be changed.

How does the client know which are the dynamic and the mutable properties, or
of the two? Of course, through additional read–only properties again… PREMO de
the following read–only properties for PropertyConstraint:

i.e., these properties may be inquired to find out which other properties are mutable or
dynamic. In other words, if the state of the object is bound, only the properties, w
keys are listed in the property value for DynamicPropertyK, can be changed; all othe
properties (the non–private ones, that is) become temporarily read–only.

These properties are the first examples where capabilities are also defined:

Key Type Read–only? Description

MutablePropertyK String yes List of mutable property
keys.

DynamicPropertyK String yes List of dynamic property
keys.

116

 How-
d this

f, say,
m-
at the

 de-

operty

es set

bject
le, the
 If all

These
cific

s on-
Of course, these capabilities have a limited interest only, because the corresponding
keys are read–only, i.e., the property constraining mechanism cannot be applied.
ever, because a capability is defined, a native property value is also available, an
may be of real interest. Indeed, if the native property value provides a subset o
what is listed in the DynamicPropertyCK array, this means that the object instance i
poses a further restriction on the changing of certain properties, compared to wh
object type allows.

At construction time (and only then, of course!) each subtype of the type Proper-

tyConstraint may add its own values to these capability arrays, i.e., if a key is
fined to be, e.g., dynamic, it remains dynamic in subtypes, too.

5.6.5 Interaction among Properties

The mechanisms described in the preceding section are missing a feature. All pr
constraining mechanism hitherto described refer to one property key only. In other
words, how one property value is set for a specific key is independent of the valu
for another key.

However, in reality, mutual dependencies also occur. Referring to an audio o
again, it may have two properties, say, sample size and sample rate. In our examp
sample size can be of 8 bits or 16 bits, while sample rate can be 8 KHz or 40 KHz.
combinations of properties are possible, then the possible options are

The complication is that, in practice, media objects abstract real media devices.
media devices often allow only restricted combinations of property values for a spe
instance. The audio device, for example, could support the following combination
ly:

Key Type Description

MutablePropertyCK String Type dependent list of
mutable properties

DynamicPropertyCK String Type dependent list of
dynamic properties.

Sr=8KHz Sr=40KHz

Ss=8bit Sz=8bit, Sr=8KHz Sz=8bit, Sr=40KHz

Ss=16bit Ss=16bit, Sr=8KHz Ss=16bit, Sr=40KHz

Sr=8KHz Sr=40KHz

Ss=8bit Sz=8bit, Sr=8KHz

Ss=16bit Ss=16bit, Sr=40KHz

117

 each
 which
perty

which

 of
ues list-
the
earing
ob-
ot ap-
not
lly, if
ed

ne by
of the
tion
ject,

 ob-

n
pairs
ings

ull so-
 ex-
h this
, and
 team.
in other words, only certain combinations of property values are acceptable.
To remedy the problem, yet another pair of property and capability value is defined

for PropertyConstraint, which describes the permissible combinations of proper-
ties. The property is as follows:

What does this property describe? First of all, the property value is an array of the
“Type” in the table, i.e., it is an array of an array of property pairs. That means that
element of the array describes a sequence of possible key–value combinations,
refer to non–private keys of the object. When checking the correctness of the pro
settings, one of the elements of this outer array should describe a combination
fits with the current values.

What does it mean “fitting with the current values”? All non–private properties
the objects should be considered, and these values should be compared to the val
ed in the ValueSpaceNameK array element. If the current values are all subsets of
required values, than the values are accepted. If this is true for all elements app
in the ValueSpaceNameK array element, than the overall property settings for the
ject instance are accepted. (There are some boundary conditions: if a key does n
pear in a ValueSpaceNameK array element, this means that the combination does
impose any further constraints on this property, i.e., all values are accepted; fina
the full ValueSpaceNameK array is empty, than no mutual dependency is impos
upon the properties of the object at all.) A capability, ValueSpaceNameCK, is also de-
fined for the object with the obvious meaning.

A question remains: when is this mutual dependency check done? This is do
the bind operation. Recall that this operation (see page 115) changes the state
object from unbound to bound; essentially, this operation closes the “configura
phase” in the lifetime of the object. However, before changing the state of the ob
the operation performs the check on the property values of the object, using theVal-

ueSpaceNameK property, as described above. If a problem is found, the state of the
ject does not change, and an InvalidValue exception is raised. The exceptio
instance will contain an array of property pair classes, listing the key and value
which were not accepted. Using this information, the caller can check where th
went wrong in setting the properties of the object.

5.6.6 Some Conclusions on the Negotiation Facilities

The mechanism which has been described in this chapter by no means offers a f
lution for all possible constraint problems. For example, PREMO does not include
plicit management for general constraints, such as geometric constraints, althoug
might be a very important feature in practice. This decision was not easily made
was the result of long and sometimes passionate discussions within the PREMO

Key Type Read–only? Description

ValueSpaceNameK PropertyPair[] yes List of mutual property
dependencies.

118

nforma-
to an
object
rms.

us, the
con-

n be
famil-
easy
f this
MO

ajor

s cre-

d en-
bjects.
in-
istrib-
ted on
e, in

re, in
 refer-
d.
 area
 and
eneral
 PRE-
ary in
In the
y find-

t cre-
hen

 object
There is indeed a classic tension between the general requirements of constraint man-
agement and the essence of object–orientedness. Whereas the latter advocates i
tion hiding, the former requires a complete knowledge of all the attributes related
object (see, for example [27]). It was recognised that there is no widely accepted
model which would solve this problem in a satisfactory manner and in general te
Because PREMO is an international standard, i.e., a platform for general consens
development team finally decided not to include a fully general mechanism for
straint management.

However, the property constraining mechanism is a very powerful tool, and ca
used to implement a large number of algorithms. It uses concepts which are very
iar in the distributed object world, like the OMG property services, which makes it
to implement and match with external facilities. As we will see in other chapters o
book, its level of abstraction is quite appropriate for the kind of negotiations PRE
tries to cover, without requiring very complex concepts — this is, in fact, its m
strength.

5.7 Creation of Service Objects

All previous sections were silent on one important issue: how are PREMO object
ated?

This seems to be a simple problem at first glance. Practically all object–oriente
vironments, including Java, have language features to create new instances of o
In Java, for example, one uses the new statement which creates a new and properly
itialized instance of a class. However, when an application is embedded into a d
uted environment, things are much less obvious. An object may have to be crea
another node on a network (i.e., within another instance of a Java Virtual Machin
the case of Java) which cannot be done directly with new. The newly created object
must be “exported” somehow as a server object on the network, etc. Furthermo
most cases, the caller (i.e., the object which initiates object creation) receives a
ence to “stub” object rather than to the real object itself. This must also be handle

Obviously, the intimate details of object creation belong to the somewhat grey
which separates the pure PREMO world from its implementation environment,
PREMO cannot control all aspects of this process. Just as in the case of the g
property and negotiation management facilities (see page 110), the approach of
MO is to specify only a few, rather abstract objects which describe what is necess
terms of PREMO, and leave all the details for the implementors of these objects.
case of object creation, two such objects are defined: generic factories and factor
ers.

5.7.1 Generic Factory Objects

The purpose of the generic factory object is to provide a wrapper around the objec
ation facilities, but taking a list of property requirements into consideration, too, w
creating an object. These properties describe the required characteristics of the
to be created.

119

ed.
nter-
object
al in-
n object

e
MG

ic
The interface of the object is relatively simple:

public interface GenericFactory
extends PropertyInquiry, java.rmi.Remote

{
PropertyInquiry createObject(Class objectType,

PropertyPair[] constraints,
Object initValue)

throws InvalidCapabilities, CannotMeetCapabilities,
InvalidType, IncorrectInit;

}

however, this apparent simplicity hides a very complex operation. The semantics of the
call is as follows.

The goal is to create an instance of the type objectType, and to initialize this object
instance with the value initValue (through the initialize operation, see page 64).
This object creation may be remote, i.e., the object instance itself may run on a remote
node, and only a reference to this remote object (or its stub) is to be returned. In other
words, the factory implementation should hide the peculiarities of remote object crea-
tion.

Furthermore, a single factory instance may have the ability to instantiate various em-
bodiments of the same object type. For example, the factory may have access to all com-
puters within an internal network and it could therefore create an instance on any node
of this network. Which node should it choose? How should it control the choice?

This is where the constraints argument comes into play. This argument is an array
of property keys and corresponding values; the goal is to control the properties of the
object to be created. To be more precise, the native property values of the new object
instance should be a superset of the values appearing in the constraint array. Recall
(see section 5.6.2) that the native property values tell us the possible values for a prop-
erty an object instance may have. The role of the constraint argument is therefore to
define some kind of a minimal capacity of this object. Of course, the factory may not
be able to fulfil all these requirements; various exceptions are defined to designate fail-
ure. These exceptions are quite self–evident.

A full–blown implementation of a generic factory object may be very complicat
It relies on a complex infrastructure governing a distributed object environment. I
face repositories should be available where descriptions of the various possible
instantiations are made available to factories, which can then choose the optim
stances; access to remote instantiation procedures should be provided to create a
on a remote node (by setting the LocationK property within the constraint argu-
ment, the caller of the createObject method can control where the new instanc
should run!), etc. Fortunately, such infrastructures are emerging, both in the O
world, as well as within Java1), which makes the implementation of powerful gener
factories feasible.

1) At the time of writing, the interface repository facilities of Java are quite simple, but we can be sure that by
the time this book appears on the bookshelves, much better facilities will be available.

120

 are,
cts,
e cre-

 for the

erence
factory
The attentive reader may have realized that the return type of createObject is
PropertyInquiry, and not EnhancedPREMOObject. Indeed, only these objects have
a native property value defined. This also means that a majority of the objects defined
in Part 2 of PREMO cannot be instantiated through a generic factory. They have to be
instantiated locally, albeit making them available to the full distributed setting. This
may seem as a restriction at first glance. However, as it will become clear in the chapters
to come, all “big” objects, abstracting virtual multimedia devices, renderers, etc.,
in fact, PropertyInquiry objects. They may have internal instances of other obje
such as event handlers, which may have to be exported, but they usually control th
ation of these simpler entities. As a consequence, factories are not really needed
creation of the objects which are not PropertyInquiry objects, too.1)

5.7.2 Factory Finders

Of course, to use a factory, the caller must have access to it. In other words, a ref
to a factory object has to be located. This is done by a separate object, called the
finder object, whose specification is as follows:

1) Strictly speaking, this is not always true. Exporting an object through RMI in Java requires some addi-
tional calls beyond the simple construction of the objects. Of course, these statements could be added to the
constructor of all the objects, thereby hiding the problem. However, experience shows that access to objects
which are exported as RMI servers is somewhat slower than accessing them directly, especially if accessed
within the same JVM. As a consequence, optimization may require to separate object creation from their
export through RMI, and this separation leads to separate facilities for object creation. This is, however, and
optimization issue which is not, and should not be, addressed by PREMO.

Object

Factory

ClientClient

Factory
Finder

Factory

Object

1) Client requests a reference to a factory capable of
satisfying a capability list passed as parameter.

2) Factory Finder returns a Factory refer-
ence.
3) Client requests the creation of an object
from the Factory, with a constraint list on the
object to be created.

4) Factory possibly creates the ob-
ject and returns reference to its cli-
ent.

5) Later, the client destroys the
reference, and the object itself.

Figure 5-20 — use of factory finders and factories

121

-

roper-

ot

e ar-

 idea
. The
f fac-
 oper-

essary
ptions

t, a
ow-
n can

ell as
n the
en-
tory

s on a
ities,
y help
public interface FactoryFinder
extends EnhancedPREMOObject, java.rmi.Remote

{
GenericFactory[] findFactories(

Class objectType,
PropertyPair[] objectConstraints,
PropertyPair[] factoryConstraints)

throws InvalidCapabilities, CannotMeetCapabilities,
InvalidType;

}

The goal is to locate an set of factories, which have the following characteristics:

• they can all create an object type of objectType (which must be a subtype of
PropertyInqiry);

• the capabilities of the objects of type objectType should be a superset of the prop
erty values described in objectConstraints argument; and

• the capabilities of the factory objects themselves should be a superset of the p
ties described in factoryConstraints argument.

All three arguments may be null, meaning that the corresponding constraints do n
apply. For example, the value of objectType may be null, governing the Factory-
Finder object to locate a set of factories with general capabilities described by th
gument factoryConstraints.

The semantics is a bit similar to the behaviour of the generic factory itself. The
is to locate a set of factories which will be able to create certain types of objects
constraints used for this purpose are simply more specifically tailored to the need o
tory access. Here again, just like in the case of the factory objects themselves, the
ation may not find the appropriate factories, either because it does not have nec
information available, or because appropriate factories are not accessible. Exce
are raised in this case with an obvious meaning.

Of course, the “recursion” could continue; in order to find a factory finder objec
finder of factory finders should be defined, etc., and this could go on ad infinitum. H
ever, PREMO stops at this point. It is implementation dependent how an applicatio
access a factory finder.

5.7.3 Use of Factories and Factory Finders

We emphasized on page 119 that the full–blown implementation of a factory (as w
of a factory finder, as a matter of fact) can be very complex, and it relies heavily o
facilities provided by the implementation environment of a specific PREMO implem
tation. In what follows, only a very simple scheme is shown how factories and fac
finders may operate in practice. We emphasized in Chapter 4 that this book relie
prototypical implementation only, which waives a number of issues and complex
concentrating on the main points only. However, even such a simple scheme ma
in understanding how these object may cooperate.

122

her
VM
va
ze
to the
t refers
of
es

mple-

hown
VMs,
by the

e
to ex-
d Java
 fa-
me in
Figure 5-20 gives a schematic view of how a client, a factory finder, and a factory
cooperate in the life cycle of a PREMO object instance. In fact, this scheme is still in-
dependent of any implementation, and reflects the general notions described earlier.
Figure 5-21 shows how factories operate in our practice. Each box represents a separate
Java Virtual Machine, running PREMO, and cooperating through Java RMI. In this ex-
ample there is only one JVM running on a specific network location (i.e., one JVM per
machine) which simplify the identification of a JVM. Each virtual machine runs one in-
stance of a generic factory, and only one. This instance is also exported to RMI, i.e., it
operates as a service over the network. The restriction in our case is that a factory in-
stance can create objects within its own JVM only.

If an object, running in JVM marked “A” on the figure, wants to instantiate anot
object within the JVM marked “B”, it must refer to the factory objects assigned to J
“B”, and invoke its createObject operation (this invocation goes through the Ja
RMI facilities). The factory object of JVM “B” will create an object instance, initiali
it, export its reference to RMI to make it a service object, and return the reference
object to the caller. To be somewhat more precise, the request to the factory objec
to an object type as defined in PREMO, i.e., it refers to an interface defined in one
the premo.std.partX packages. In view of our “dual” scheme of object interfac
and their implementation (see section 4.2.1), the factory will instantiate the “_Impl”
counterpart of the interface, i.e., its implementation, and a stub reference to this i
mentation instance will be returned to the caller.

Each node also runs one and only one instance of a factory finder object (not s
on the figure). The role of the factory finder objects is to locate the various Java J
using their network location name. This network location name can be requested
user of the factory finder object by filling in the “LocationK” property in the facto-
ryConstraint argument of the findFactories call. Because in our example ther
is only one generic factory running per network location, the hostname is enough
trapolate the name of the generic factory object, and locate it through the standar
RMI facilities (the details are not really of importance here). Slightly more complex
cilities can also be easily implemented (e.g., underspecifying the host domain na
the location, allowing the localization of a range of factory objects, etc.).

GenericFactory

Client

GenericFactory

GenericFactory

GenericFactory

Client

A B

C D

Network

1
3

2

Figure 5-21 — Simple use of factories

123

s
essary
Using these facilities, here is how a generic factory, running on the host called
“hydra1.cwi.nl”, can be located (the PREMORuntime class, used in the example, i
an object which collects some general, static variables and methods which are nec
to start–up and run PREMO applications):

FactoryFinder fFinder = PREMORuntime.localFactoryFinder;
PropertyPairlocs[] = new PropertyPair[1];
Object[] vals = new Object[] { “hydra1.cwi.nl” };
PropertyPairlocation = new PropertyPair(“LocationsK”,vals);
locs[0] = location;
GenericFactory CWI = (fFinder.findFactories(null,null,locs))[0];

of course, this is a bit long, because all data structures had to be created from scratch.
If, as a next step, the factory on the node “minster.york.ac.uk” is to be located, this
is simply done by:

location.vals[0] = “minster.york.ac.uk”;
GenericFactory York = (fFinder.findFactories(null,null,locs))[0];

Note that no further constraints have been imposed on the factories this time, not even
for the type of objects they can create.

Using the factories retrieved above, new object instances are created easily (again,
the property constraint features are not used):

AudioDevice vDev = (AudioDevice) CWI.createObject(audioClass,null);
Renderer ren = (Renderer) York.createObject(rendererClass,null);

which will create a virtual device and a renderer object, one on a machine on the CWI
domain in the Netherlands, the other on a machine at York, in the UK (audioClass
and rendererClass are supposed to be Class objects referring to the relevant PRE-
MO interfaces). Provided the network throughput is fast enough (which is never the
case!) the two authors of this book can then cooperate through these objects for the pur-
pose of multimedia rendering…

124

me-
el
ul-
ater,

dard.
O,
ith its

e-
ling
ent”.
 with
ative
ov-
edia
rt of

 so–
-1).
rding
 links
ia

reams
vice
ima-
output
 does
Chapter 6

Multimedia Systems Services Component

6.1 Introduction

“Multimedia Systems Services” (MSS) was the name given by the Interactive Multi
dia Association (IMA)1) to a model for distributed multimedia applications. This mod
was specified by a working party of IMA which grouped representatives of various m
timedia technology and content providers as well as workstation manufacturers. L
in 1995, this specification was submitted to ISO to be included in the PREMO stan
After some major editing work, which significantly influenced other parts of PREM
MSS has become a core component of PREMO (as Part 3 of the document), w
original name retained.

The original goal of the MSS was to provide “an infrastructure for building multim
dia computing platforms that would support interactive multimedia applications dea
with synchronized, time–based media in a heterogeneous distributed environm
Operation in a distributed environment was considered to be very important, in line
the significant trends in the computer industry towards client/server and collabor
computing. While achieving the original goals, the model put forward by IMA has pr
en to be very powerful, and potentially applicable as a conceptual model for multim
processing in general, not only for distribution. This is the role it now plays as pa
the PREMO standard.

The conceptual model of MSS is based on a dataflow network of devices, the
called virtual devices, each of which is an autonomous processing unit (see Figure 6
The nature of the processing (capture, encoding, filtering, display, etc.) varies acco
to the specific device object (and is implemented through subtyping). The directed
among the virtual devices are the media streams, which serve as a way to send med
data from one node to the other. Each virtual device has a number of ports, which can
be either input or output, and which are used to convey the content of the media st
to and from virtual devices. The number of ports, as well as their “direction”, is de
specific. A device may have no input port at all (for example, by producing an an
tion sequence on its output port, based only on some internal data), or have no
port (for example, a graphics display engine, which receives data to display, but

1) The Interactive Multimedia Association (IMA) is a large, international trade association of multimedia
technology providers, multimedia content providers, and users. For further details, see their web page:
http://www.ima.org.

126

ices
nali-

MSS
onal

ecial
en
vices
y may
e same
emen-

tems
ribed
VS,
true
eaks

w in
is not
 com-
that,
s for
n co–
the na-
on is
not forward media data to other MSS devices). By “plugging” various virtual dev
together, complex processing networks can be created with extremely rich functio
ties.

It must be emphasized that, although the word “distribution” has been used,
does not require that the virtual devices be necessarily distributed in the traditi
sense, i.e., over a physical network. If we refer to parallelism as the application of more
than one processor to carry out a solution of a problem (of which distribution is a sp
case), and to concurrency as carrying out a set of activities which overlap in time, th
the MSS model refers to concurrency rather than parallelism. Although virtual de
may indeed run on different machines on a wide–area or a local–area network, the
also run as concurrent processes within a single machine, or as threads within th
process. The model does not specify any of these choices, and it is up to the impl
tation of MSS whether they provide all these facilities or only some.

The use of a dataflow model for the description and control of multimedia sys
was not invented by MSS. The approach taken in the multimedia framework desc
in [65] (see also [34]), or in various packages for scientific visualization, such as A
is very similar to that of MSS. This model is also very natural when dealing with
distribution, where any sort of synchronous control of concurrency essentially br
down.

MSS defines the so-called VirtualDevice object type, shown in Figure 6-2. This
consists of a collection of input and output ports, through which media data can flo
and out. The real processing of a device (the “processing element” in the figure)
specified within PREMO as an object type, nor is the means by which this element
municates with its resources specified. The goal of MSS is simply to ensure
through a well specified interface, virtual devices can cooperate properly. Device
specific media are to be defined by subtypes of virtual devices. To ensure a clea
operation, various objects are associated to each port that together characterize
ture of the communication that may take place via that port. This characterizati

Modeller

Video processing

GraphicsSurface modeller

Audio rendering

Video rendering

Figure 6-1 — Dataflow network of virtual devices

127

ream
n and
MO,
ample,
coded

g
 can
ream

ent is
com-
the

s” in
g, Java
done through object properties. These objects are instances of the types Format, Pro-
tocol, QoSDescriptor, and StreamControl (all these object types will be de-
scribed in more detail later in this chapter).

One of the fundamental features of MSS is that clients can configure a dataflow net-
work. This configuration is done in a negotiation phase, when a client retrieves infor-
mation about the virtual devices it has at its disposal, and tries to “plug” a media st
into a matching pair of ports. This mechanism is based on the general negotiatio
configuration management tools provided by the foundation component of PRE
see section 5.6 (page 110). Using these tools, the client can make sure that, for ex
the media format produced on a port of a virtual device can be understood and de
by the receiving port. MSS defines general objects (so called virtual connection ob-
jects), which give finer control over this mechanism.

MSS does not define the detailed behaviour of media streams in terms of networkin
or other forms of communication. It only defines the ways through which a client
control and possibly synchronize the flow of media data on either end of the st
(there is no such object as a “Stream” in PREMO). From the point of view of MSS,
streams are abstract communication channels among devices. The only requirem
that they must provide an order–preserving and reliable communication. How the
munication is actually realized will depend on the kind of environment in which
PREMO system is running.1)

1) Unfortunately, there is an conflict of terminology here: “streams” in the PREMO sense and “stream
the Java sense are not identical although they have similarities. To make things even more confusin
streams may indeed be used to implement PREMO streams…

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

StreamControl

Callback

Port

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

Port

Protocol

Format

QoSDescriptor

StreamControl

Port
Callback

Port

Figure 6-2 — A virtual device

Configuration

Processing Element

128

ther
y ob-
r-
e the
essed

del
 these
h MSS
ting
 spec-

e like
ity. In
etail;
se ob-
parate

-
 ob-

mple,
CP,
tting
.

MSS does not define what the content of the media data is either. The goal of the
MSS is to concentrate on the facilities for configuration, negotiation, etc.. The details
of the data formats which constitute the media data are left to the specific devices. This
is one point where various other multimedia specifications and standards meet with
PREMO. As an example, while the ISO MPEG specification describes the details of a
video format (in the terminology of PREMO, it describes the media data details flowing
through a media stream), PREMO concentrates on how an MPEG coder/decoder
(which can be abstracted by a virtual device) can be used together with other media
processing entities.1)

MSS also provides tools to create hierarchies of dataflow networks. A special sub-
class of virtual device, called a logical device, may contain a full dataflow network of
virtual devices, which is invisible to the external observer. Ports of such logical device
are merely transition points toward ports of “internal” devices. MSS also defines o
object types which help to manage, create, or control dataflow networks. In a trul
ject–oriented fashion, MSS defines the virtual resource object type as a common supe
type for virtual devices, logical devices, and various controlling objects. These ar
objects which are typically created (through an object factory mechanism) and acc
directly by the client.

All in all, MSS is a real middleware, in the sense that it provides a standard mo
for various entities to cooperate, but it does not specify the detailed behaviour of
entities. This also means that there is a delicate balance in the specification of eac
object; it should not be too detailed, otherwise it would restrict the family of coopera
entities, but it should not be too vague, either. This strive for balance underpins the
ification of each object described in this chapter.

Figure 6-2 also shows that virtual devices, and virtual resources in general, ar
puzzles, insofar that they aggregate a number of MSS object into one logical ent
what follows, the basic constituents of virtual resources will be presented in more d
these are the so–called configuration objects and the stream control objects. The
jects are then used to build up the virtual resources, which will be presented in a se
sub–chapter.

6.2 Configuration Objects

The family of MSS object types, categorized as configuration objects, are used as in
formation depositories for other objects (see Figure 6-3). The role of configuration
jects is to act as placeholders for the necessary parameters, i.e., for information, which
allow other objects to function properly. These parameters may describe, for exa
media coding (AIFF, MPEG, JPEG, CGM, etc.), communication protocol types (T
NETBIOS, ATM), and the like. One could view them as sorts of attributes whose se
and retrieval follow a more complicated pattern than simply read and write values

1) It must be noted, however, that Part 4 of PREMO (i.e, the Modelling, Rendering, and Interaction compo-
nent) goes beyond this, and it does define, up to a certain extent, the content of media flow with a particular
application area in mind. However, it is perfectly feasible to build up valid applications using the facilities
provided by the MSS only. It is therefore important to keep this distinction in mind.

129

ich
 ob-
.e,
 prop-

tanc-
. These

RE-
rough
nfigu-
 ob-

ative
jects

nfig-
nt al-

e de-
e not
This “attribute–like” behaviour is realized through the subtyping relationship wh
binds configuration objects to the rest of the PREMO hierarchy. All configuration
jects are subtypes of PropertyConstraint objects (see section 5.6 on page 110), i
the various values they provide to clients are stored and manipulated through the
erty constraining mechanisms which characterize the PropertyConstraint objects.
Typically, configurable MSS objects, such as virtual resources, contain several ins
es of configuration objects, whose references can be accessed by external clients
clients can then set the required values for the configuration objects through the con-

strain and select operations.
The use of configuration objects is the basic mechanism for configurability in P

MO. Clients may inquire the key–value pairs associated with these objects and, th
the property constraining and selection mechanism, may restrict these values. Co
ration objects do not define additional methods. Various subtypes of configuration
jects differ from one another only through the property keys, capabilities, and n
property values they define. This might give the impression that configuration ob
are simple. However, one should not forget that the behaviour inherited from Proper-

tyConstraint objects, especially the constrain and select operations (see
page 114), represents a significant level of complexity when it comes to specific co
uration objects. Subtypes of configuration objects may be defined with a constrai
gorithm, which is made available through the select operation. These algorithms may
take into consideration the full set of configuration objects associated with the sam
vice, or with a set of cooperating devices. However, details of these algorithms ar
specified by PREMO (beyond the inherited behaviour of the select operation).

premo.std.part3

premo.impl.part3

premo.std.part2

PropertyConstraint

Format

IntraNodeTransport

MultimediaStreamProtocol

QoSDescriptor

InterNodeTransport

Format_Impl

IntraNodeTransport_Impl

MultimediaStreamProtocol_Impl

QoSDescriptor_Impl

InterNodeTransport_Impl

Figure 6-3 — Configuration objects

130

ate

fixed.
ins to
an-

epa-
 are
irtual

e at-

 clients
. This
s
s con-
perty

elves.
irtual

n ob-

mple,
ideo
As PropertyConstraint objects, configuration objects also act as tiny two–st
finite state machines. Objects can be “bound” through the bind operation (see
page 115), which means that even writable properties may become temporarily
Typically, configuration objects are automatically bound when the media data beg
flow. This will be more fully explained later. What this means, however, is that the m
agement of the information through configuration objects is typically done in a s
rate, “negotiation” phase, prior to any media flow. It is only when the negotiations
over that the media data is allowed to enter or leave a virtual device, or a set of v
devices.

Configuration object instances belong to a virtual resource instance just lik
tributes belong to object instances. Clients are not supposed to create configuration ob-
jects. Instead, these objects are created by the virtual resources themselves, and
can retrieve the configuration objects related to a specific virtual resource instance
view is reinforced by the concept of semantic names. Semantic names are simply string
and are used to identify configuration objects used by a virtual resource. To acces
figuration objects, virtual resources (e.g., all virtual devices) have a separate pro
which lists the semantic names of the configuration objects they define for thems
Using the standard property inquiry operations, clients can retrieve these names. V
resources also have an operation called resolve:

PropertyConstraint resolve(String semanticName)

which can be used by clients to get the object reference of a specific configuratio
ject instance.

As an example, the semantic name for a specific device might include, for exa
the strings “MPEG” or “ATM”. This means that the device can operate with these v
formats. The call

PropertyConstraint protocol = dev.resolve(“ATM”)

will return a reference to a configuration object, representing an ATM protocol descrip-
tion, but characteristic to the device which “owns” it. Details of all these operations
will be given later.1)

Configuration objects of PREMO fall into three categories:

1. Format objects

2. Transport and Media Stream Protocol objects

3. Quality of Service objects

In what follows, the use of each of these categories will be presented.

1) There is no way in Java, or in most of the object oriented environments for that matter, to restrict which
other object can create a specific object instance (defining a constructor to be protected or to have a pack-
age visibility only may be much too restrictive in practice). Consequently, this restriction on configuration
object creation cannot be reinforced by the environment. It can only be a convention when using PREMO.

131

 (note
 de-
ich
n dis-
sed in
s GIF,

-

bjects

et the

ich

s keys
6.2.1 Format Objects

Format objects are the most genuinely multimedia configuration objects; their role is to
give information on the media formats (that is, the organization of the bitstream) of a
particular device, or at a particular port of a device (see Figure 6-2 on page 127). The
characteristics of a specific media format are described in the form of object properties.

The formal specification of a Format object is simple:

public interface Format
extends premo.std.part2.PropertyConstraint, java.rmi.Remote {}

which corresponds to the fact that configuration objects do not define any more opera-
tions beyond those which are inherited from PropertyConstraint. Furthermore,
PREMO defines a read–only property for a Format object, namely:

An example should help in understanding the structure and use of format objects
that, in the example below, we anticipate methods for virtual devices which will be
fined more formally later). In this example, we take a very simple virtual device, wh
has only one input port. The device can receive a digital image on this port and ca
play the image on a screen. Because there is a large number of image formats u
practice, the device is prepared to receive image data in various formats, such a
JPEG, PNG, TIFF, etc.

For each of these formats, a separate Format object type is defined by the implemen
tation of the device, e.g.:

public interface JPEGFormat extends Format, java.rmi.Remote { }

with, of course, the corresponding implementation classes. Each of these format o
should have an appropriate semantic name, say, the strings “GIF” , “JPEG”, “PNG”,
“TIFF” , etc.

The client can find out which formats the device can use through the call:

ConfInfo[] confs = dev.getProperty(“ConfigurationNamesK”);

The structure ConfInfo (specified on page 141) contains the available semantic
names. In other words, the strings “GIF” , “JPEG”, etc., are contained in the elements
of the confs array. This means that the client can find out which image formats the de-
vice is able to handle. Based on some environmental constraints, the client may choose,
for example, “GIF” to be its preferred image format. This can be expressed by setting
the so–called port configuration of the device’s port, which essentially means to s
“GIF” format instance for the port (details of this step will be given later).

The GIFFormat object may have a number of properties which characterize GIF
images. For example, it may have a property key “GifVersionK”, with possible values
“87a”, “ 89a”, differentiating between the two versions of the GIF specifications wh
are widely in use. It may have boolean property values for the key “Transparency”,
denoting whether the device instance can handle transparency or not, propertie

Key Type Read–only? Description

NameK String yes Semantic name of the object.

132

al-

ct:

e
t
 con-
 Ob-
cated

, like
ed,
tions
s con-
 point
ssible
e.

twork,
ral in-

quires
ose,

urce,
tions.
r

 ob-
ong

rious
tions

ecifi-
for normal vs. interlaced images, colour characteristics, etc. Some of these properties
have mutual dependencies because not all combinations are allowed (e.g., transparency
is only supported by GIF version 89a). The permissible combinations are described
through the “ValueSpaceNameK” property (see page 117). In short, the properties
low for a very rich characterization of the format.

If necessary, the client can also obtain the object reference for the format obje

GIFFormat gifFormat = (GIFFormat) dev.resolve(“GIF”);

and use this reference to access these property values and, if necessary, set them. How
these properties are used depends on the client. In some cases, these properties are used
for information only. In other cases, these properties are also set through the property
constraining mechanism. In our example, the client may want to connect the image dis-
player device to another device which produces the images. If the GIF version accepted
by the image displayer is “87a” only, and this information is conveyed through th
“GifVersionK” property, then the client must set this value on the GIF format objec
belonging to the image producer, otherwise a discrepancy will occur. This type of
figuration setting must be done for all different format objects in a device network.
viously, managing and matching all the format characteristics may be very compli
but, unfortunately, this is the reality in multimedia processing.

The core PREMO document does not define format objects for specific media
the JPEGFormat, GIFFormat formats above. Only the general mechanism is defin
and other expert groups, standardization bodies, or simply PREMO implementa
are supposed to define the details. However, an informative annex of PREMO doe
tain an overview for some typical format objects, which can be used as a starting
for a more precise specification. It is not the purpose of this book to describe all po
details. The interested reader should consult the ISO PREMO document for thes

6.2.2 Transport and Media Stream Protocol Objects

It has been emphasized before that virtual devices may be distributed over a ne
or over several processes within the same machine (in terms of Java, over seve
stances of Java virtual machines). Connecting two devices through a network re
some careful considerations, involving the exact communication protocol to cho
how to connect the devices, etc. PREMO defines a distinct type of virtual reso
whose only purpose is to connect devices through, possibly, network connec
These objects, called virtual connection objects, will be described in more detail late
in this chapter (see section 6.6).

The purpose of the Transport and Media Stream Protocol (MSP) configuration
jects is to provide information on which protocol is used to convey media data am
processing nodes. It is not the role of MSS to give a detailed specification of the va
possible communication protocols, only references to existing protocol specifica
are made.

MSP objects are configuration objects, which means that their formal object sp
cation is again very simple:

public interface MultimediaStreamProtocol
extends premo.std.part2.PropertyConstraint, java.rmi.Remote {}

133

rious
RTP,
The object specification also includes three properties:

The purpose of the semantic name has already been explained. The version number al-
lows for future revisions of MSP objects, in case new types of communication protocols
come to the fore. Finally, the byte order property refers to the byte order in 16 bits inte-
gers. This property has a natural capability defined, too:

Although PREMO is not meant to give a detailed characterization of communication
protocols, it does go one step further than the bare MSP objects by defining two sub-
types of MSP:

1. IntraNodeTransport objects, which refers to communication among nodes tak-
ing place through shared memory (for example, two nodes processing in the same
address space of a workstation, e.g., using DMA). In the case of Java, this refers to
virtual devices sharing the same Java virtual machine.

2. InterNodeTransport, which refers to communication among nodes taking place
over a network, or through some inter–process communication means. The va
protocol names which can characterize these protocols include IPC, UDP,
ATM, or NETBIOS.

Formally, the two objects are defined as follows:

public interface IntraNodeTransport
extends MultimediaStreamProtocol, java.rmi.Remote {}

and

public interface InterNodeTransport
extends MultimediaStreamProtocol, java.rmi.Remote {}

Furthermore, the semantic names of InterNodeTransport protocol objects are fixed
through an extra capability for this object:

Key Type Read–only? Description

NameK String yes Semantic name of the object.

VersionNumberK Integer yes Implementation dependent value.

ByteOrderK String no

Key Type Value

ByteOrderCK String[] {“LittleEndian”,

”BigEndian”}

Key Type Value

NameCK String[] {“TCP”,”UDP”,”RTP”,

”ATM”,”BigEndian”}

134

ter–
P ob-
occur
anism

rectly

urces
lly not
bsys-
es. Be-
erably,
ource.

y of

 con-
ase
d is on
It must be noted that, in the case of our prototypical implementation, where all in
process communication takes place through Java RMI, the role of the various MS
jects is minor. Indeed, the Java RMI layer hides all the discrepancies which might
between different machines, such as byte order. However, if a more general mech
were used (for example, connecting Java JVM’s to other processing entities di
through sockets), use of the MSP objects would become important.

6.2.3 Quality of Service Descriptor Objects

In order for a virtual resource to be useful, it must obtain the required physical reso
required to do its job. Resources include both system resources that are typica
multimedia specific, such as those provided by the CPU, memory, and network su
tems, as well as specialized multimedia resources such as audio and video devic
cause the quality of service that can be provided by many resources varies consid
the client must also specify the desired quality of service when requesting a res
This is done by setting the properties of a special configuration object, called the QoS-

Descriptor object. Though quality of service can take on many meanings, man
them media and device specific, the MSS defines a core set of QoSDescriptor prop-
erties that can be used by a client to specify the desired quality of service.

Formally, the Quality of Service descriptor object is defined through:

public interface QoSDescriptor
extends premo.std.part2.PropertyConstraint, java.rmi.Remote {}

The core set of properties are as follows:

The guaranteed level property is an indication of the performance required on the
nection. A “Guaranteed” connection will reserve resources to handle worst–c
needs for the media transfer in order to make sure that the data always arrives an
time. A “BestEffort” connection will provide the best possible performance while

Key Type Read–only? Description

NameK String yes Semantic name of the object.

GuaranteedLevelK String no Indicates the required per-
formance.

ReliableK boolean no Is the delivery of data relia-
ble or not? Is there a possibil-
ity of data loss?

DelayBoundsK Integer[2] no Amount of time incurred
between transmission of the
data and its receipt.

JitterBoundsK Integer[2] no Delay variance.

BandwidthBoundsK Integer[2] no Minimum and maximum
bandwidth.

135

in the
ction
.
d to

 might
. By
ini-

mum

cific
e ca-

s that
ld be

er, and
nt at

hese
at is
using optimistic amounts of resources. This may produce situations where the data oc-
casionally arrives late. “NoGuarantee” uses the minimum amount of resources for the
connection and do as well as possible.

Delay is the amount of time between the transmission of the data and the receipt of
the data. Different applications will have different requirements. For instance, an audio
conference would be unwilling to live with a 2 second delay, whereas a non-interactive
video playback application might find it acceptable.

Jitter is the amount of delay variance. For example, an ISDN channel that presents a
“slot” of data every 125 microseconds has a jitter of 0, since there is no variance
arrival time of the data. If an application requests a jitter close to 0, then the conne
will try to find an isochronous network connection between the two virtual devices

Bandwidth is the amount of data per unit time that the connection will be require
support of, in the case of an input port, to expect. For example, a video conference
require 384 Kbits/second while an MPEG stream might require 1.5 Mbits/second
defining the range of the bandwidth required, the connection will understand the m
mum rate it must provide (in the case of an output port), or the minimum and maxi
burst it must expect (in the case of an input port).

QoSDescriptor objects or, to be more precise, their subtypes defined by spe
virtual devices, are supposed to define capabilities for all these properties, too. Th
pability for the GuaranteedLevelK property is defined by the PREMO document:

whereas, for the delay, jitter, and bandwidth properties, the standard only require
the range of allowed minimum and maximum values (e.g., for jitter bounds) shou
defined through a capability.

Finally, two more capabilities are defined for QoSDescriptor:

The keys for these capabilities are “inherited” from the PropertyConstraint object
(see section 5.6.4 on page 115). What these capabilities mean is that the delay, jitt
bandwidth bounds (which are all writable properties) may be changed by the clie
any time whereas, once the media starts to flow (i.e., the QoSDescriptor object is
“bound”), the client cannot change the performance and reliability properties. T
two can be still changed by the “system” (e.g., by the virtual device), however. Th

Key Type Value

GuaranteedLevelCK String[] {“Guaranteed”,”BestEffort”,
“NoGuarantee”}

Key Type Value

MutablePropertyListCK String[] {“GuaranteedLevelK”,

”ReliableK”}

DynamicPropertyListCK String[] {“DelayBoundsK”,

”JitterBoundsK,

”BandwidthBoundsK”}

136

ub-
mental
 more

n” is
f spe-
à–vis
tation

he
 off,
, this
 hap-

ata
next
des

ilities

ces.
l
d only

 These

 of the

-12
exactly what the notion of mutable property means. By setting an event callback to be
triggered when these properties are changed (using the setPropertyCallback meth-
od, see page 71), the client can monitor the performance and reliability, though.

6.3 Stream Control

The issues and problems related to multimedia synchronization have already been ad-
dressed in section 5.5, which also introduced the object types Synchronizable,
TimeSynchronizable, and TimeSlave. Theses objects serve as the basic building
blocks for synchronization in MSS, too.

Synchronization concerns multimedia data, i.e., in terms of MSS, the flow of multi-
media data through streams. In line with this “media flow” view, MSS defines two s
types of the synchronizable objects. These extensions do not change the funda
nature of the synchronization mechanism described in Chapter 5, they merely add
control over the flow of data.

Remember that in the specification of synchronizable objects “data presentatio
only an abstract notion (see page 94). The specification and the implementation o
cific presentation techniques are left to subtypes. The specialization in MSS, vis–
the “simple” synchronization objects, is to add more semantics to this data presen
step, while still retaining its abstract nature. The added semantics are as follows.

• Ability to “switch off” real data processing without suspending the flow of t
media. This “mute” effect is well known from household devices; one switches
for example, the sound on the TV, while the display still goes on. In terms MSS
means that the media still flows through the streams, as if presentation really
pened, but this has no sensible effect on the surroundings.

• Ability to temporarily “buffer” data. This means that, e.g., the incoming media d
is put into a temporary buffer, instead of processing or forwarding it to the
device. Clients may use this facility if, for example, the quality of service degra
on the receiving end of a stream due to a high incoming load. Of course, fac
should also be provided to empty the buffer.

Much like configuration objects, stream control objects “belong” to virtual resour
What this means is that clients are not supposed to create instances of stream contro
objects. Instead, these objects are created by their “owner” virtual resources, an
their references are exported.

MSS defines two objects, called StreamControl and SyncStreamControl, to
add these additional features to the synchronization model (see also Figure 6-4).
objects form the next elements of the puzzle in building up a virtual resource.

6.3.1 The StreamControl Object

Technically, the extensions, referred to above, are realized through an extension
TimeSynchronizable object. The StreamControl object in MSS is a subtype of
TimeSynchronizable, where the original state transition diagram (see Figure 5

137

 the
aves

her
s are
 of

 in
sion

media
g the
”

on page 94) is modified. The new transition diagram is shown on Figure 6-5. Three new
states are added to the state machine, namely MUTED, PRIMING, and DRAINING, togeth-
er with new state transition operations.

The states MUTED and PRIMING are refinement states of the STARTED state of Time-
Synchronizable. Refinement means that all three states (i.e., STARTED, MUTED, and
PRIMING) behave identically in terms of synchronization. The additional semantics in
the “new” states is only related to the notion of data presentation. Although
StreamControl object does not specify what presentation means either (and le
the details to the subtypes of StreamControl), the specification of MUTED and PRIM-
ING gives a somewhat finer control on the behaviour of the StreamControl object.
This refinement is as follows:

• No presentation occurs in MUTED state, i.e., the media data are disregarded. In ot
words, “progression” on the stream does occur (and all synchronization action
performed) but the processData operation, which represents the abstract notion
processing media data, is not invoked.

• No presentation occurs in PRIMING state either, but the media data are buffered
an internal buffer instead of being simply disregarded. In other words, progres
on the stream occurs (and all synchronization actions are performed) and the
data are stored internally instead of being presented, i.e., instead of callin
processData operation. If the internal buffer of the object is full (the “high mark

premo.std.part3

premo.impl.part3

premo.std.part2
TimeSynchronizable

StreamControl

Figure 6-4 — Stream Control objects

TimeSlave

SyncStreamControl

premo.impl.part2TimeSynchronizable_Impl

TimeSlave_Impl

StreamControl_Impl

SyncStreamControl_Impl

138

s and
so

ed.

r, cli-
vely
is reached), then no stream data can be stored any more, and the object makes an
internal state transition to PAUSED.

The third additional state, DRAINING, is the counterpart of PRIMING in buffer control.
When set to this state, the object empties the buffer filled up by a previous PRIMING
state. When the buffer is empty (i.e. the “low mark” is reached), the object make
internal state transition to PAUSED. While emptying the buffer, presentation of data al
occurs. The operation drain is defined to set the StreamControl object into DRAIN-
ING state.

As seen on the state transition diagram, a transition to STARTED state from both
PRIMING and DRAINING states is possible through resume. Conceptually, the internal
buffers are to be instantaneously emptied before the normal media flow is resum

Note that, as a subtype of Synchronizable, the StreamControl object inherits
the ability to monitor state transitions (using the callback mechanism). In particula
ents can be notified if internal buffers become full or empty while priming, respecti
draining (in both cases an internal state transition to the state PAUSED takes place, which
may be monitored).

Figure 6-5 — State transition diagram for a StreamControl object

STOPPED PAUSED

start, mute, prime

pause
stop

resume

stop

WAITING

resume

stop

pause

MUTED

STARTED

PRIMING

prime

mute

DRAINING
drain

Refinement of the
STARTED state

STARTED

resume

start

mute

resume

primeprime

stop

139

t de-
.

r

ple-
e to

n space
 fact
ured
Subtypes of StreamControl may add additional semantics to buffer control. As a
typical case, if the streams are aware of their position within a dataflow network, some
of the operations, like prime or drain, may also generate private control flow among
the stream control objects in this network. For example, prime on a StreamControl
may also generate control information to the StreamControl object “up–stream”, i.e.,
the stream providing the data. Whether such additional protocol is defined or no
pends on the subtypes of the StreamControl object and it is not defined by PREMO

The Java specification of a StreamControl object’s interface is very simple:

public interface StreamControl
extends premo.std.part2.TimeSynchronizable, java.rmi.Remote

{
int getCurrentState();
void mute() throws WrongState;
void prime() throws WrongState;
void drain() throws WrongState;

}

i.e., the three new state transition operations are simply added. The operation getCur-

rentState is inherited from Synchronizable. In this case, it can return the intege
codes for the three new states, too.

We close discussion on raw stream control with a note on the pragmatics of im
menting and using this object type. Looking ahead, a key of stream control will b
underpin the management of media streams between devices, i.e., the progressio
of a stream control object will be linked to specific media content. At this point the
that the concept of time for a stream control object is relative time, i.e., time meas

Figure 6-6 — States in a stream control object

“low mark”
“high mark”

“presentation”

STARTED MUTED PRIMING DRAINING

140

, can
ing of

us ob-

of
-

e

 (see

stems

al

mon-
. The
chapter
along the media content, not along the real time taken to deliver that content, becomes
important. When the throughput of a media stream is reduced below a certain limit, such
an object may choose to enter its PAUSED state, effectively suspending progression
through the media content as well as time, and go back to STARTED state when data be-
comes available again. PREMO provides mechanisms through which the divergence
that will result between this media–relative time, and any global measure of time
be detected, e.g, through the monitoring of state transitions, through the monitor
drifts in time measurements when time slaves and masters are involved, etc.

6.3.2 SyncStreamControl Objects

A SyncStreamControl object is used to permit the synchronization of multiple media
streams. Although this sounds complicated, its specification is based on the vario
jects we already have defined. It is simply a common subtype of both a StreamCon-

trol object and a TimeSlave object (see section 5.5.3). The “multiple” aspect
synchronization is fulfilled by the semantics of the TimeSlave object. The Java spec
ification is simply:

public interface SyncStreamControl
extends premo.std.part2.TimeSlave, StreamControl, java.rmi.Remote

{}

The SyncStreamControl adds the time slaving facilities to StreamControl. Anoth-
er way of putting it is that it extends the TimeSlave objects the same way as th
StreamControl object extends the TimeSynchronizable object.

6.4 Virtual Resources

The “major” MSS objects are re–grouped under the virtual resource hierarchy
Figure 6-7). The top level of this hierarchy is the VirtualResource object, which is
an abstraction of a physical resource in a very general sense. The Multimedia Sy
Services defines four basic subtypes of virtual resources:

1. virtual devices, which abstract media processors.

2. virtual connections, which abstract connections among virtual devices.

3. groups, which provide a convenient way to interact with a collection of virtu
devices and connections.

4. logical devices, which make it possible to build a hierarchy of virtual devices.

These four subtypes represent very different semantics. There are, however, com
alities which make it worthwhile to re–group them into the same subtype hierarchy
current section concentrates on these common features, whereas the rest of this
will describe each of the resource types individually.

141

-
 done
s

ct, as

ty
6.4.1 Property Control of Configurations

The VirtualResource object is a subtype of PropertyInquiry. However, and this
is very important to note, a virtual resource object is not a subtype of the type Proper-
tyConstraint. In other words, a virtual resource object may have associated proper-
ties, capabilities, native property values, etc., which can be inquired and used, but the
rich facilities to constrain properties are not at the client’s disposal as far as virtual re
sources are concerned. Instead, configuring and adapting a virtual resource is
through separate PropertyConstraint objects. This is where configuration object
and their semantic names fit into the puzzle (see also page 130).

To achieve this, PREMO defines the tuple

public final class ConfInfo implements java.io.Serializable {
public String semName;
public Class objectType;

}

to characterize a configuration object: it contains the semantic name of the obje
well as its class (the Java Class object must refer to a subtype of Format, Multime-
diaStreamProtocol, or QoSDescriptor). Each virtual resource also has a proper
of the form:

premo.std.part3

premo.impl.part3

premo.std.part2PropertyInquiry

Figure 6-7 — Hierarchy of virtual resources

premo.impl.part2PropertyInquiry_Impl

VirtualResource

VirtualDevice VirtualConnection Group

LogicalDevice

VirtualDevice_Impl VirtualConnection_Impl Group_Impl

LogicalDevice_Impl

VirtualResource_Impl

142

 of ab-
les in-

n audio
l enti-
which lists all the configuration objects which are associated with the virtual resource.
It is through these configuration objects that the virtual resource can be adapted to its
environment, that it can be configured, etc.

Very often the list of semantic names is quite enough for the client, and it does not
really need access to the object references themselves. We will see simple examples for
this in later sections. However, if the client intends to more precisely configure the vir-
tual resource, the real object references can also be accessed through the operation:

PropertyConstraint resolve(String semName) throws InvalidName;

(obviously, an exception is thrown if the name does not refer to a valid configuration
object for that virtual resource instance).

Virtual resources, as subtypes of PropertyInquiry objects, are usually created
through object factories (see section 5.7.1), which enables the client to choose among
available virtual resources at run–time. For example if “fact” refers to a factory object
instance, the following code fragment creates a device which is capable of handling im-
ages in GIF and/or PNG formats:

// Construct the two possible audio configurations: GIF and PNG
ConfInfo possible1 = new ConfInfo(“GIF”,Class.forName(“GIFFormat”));
ConfInfo possible2 = new ConfInfo(“PNG”,Class.forName(“PNGFormat”));
// Build a property pair for constraint. The key is
// ConfiguratonNamesK, and the value is the array of possible devices.
Object[] types = new ConfInfo[] { possible1, possible2 };
PropertyPair request = new PropertyPair(“ConfigurationNamesK”,types);

// An array of constraints has to be created for the factory object;
// currently, there is only one constraint:
PropertyPair[] constraints = new PropertyPair[1] { request };
// The device is a fictious image displayer device:
Class devT = Class.forName(“ImageDevice”);
// Instruct the factory to create a device, which has a format for
// GIF and PNG (at least).The third parameter is null, indicating that
// no special initialization is required.
VirtualDevice theDev;
theDev = (VirtualDevice) fact.createObject(devT,constraints,null);

6.4.2 Resource and Configuration Management

The term “virtual resource” refers to the fact that these objects manage some sort
stract resource. These resources can be very different from one another, examp
clude managing processing power, a shared file system, access to a display or a
device. From the point of view of PREMO, these resources are purely conceptua
ties, and the document does not contain any detailed specification for these.

Key Type Read–only? Description

ConfigurationNamesK ConfInfo[] yes Semantic names and types of
all associated configuration
objects.

143

t be
tual
 must
ed to
al re-

olled

audio

r-

-
e in-

nd-
ually
ccur
figu-
le this
:

From a client’s point of view, however, the act of “acquiring” a resource mus
made explicit. This is related to the strongly configuration–oriented behaviour of vir
resources in the MSS. Indeed, much like configuration objects, virtual resources
be treated differently when they are configured, i.e., when they are to be prepar
“acquire” a resource, then when the resource is already acquired, i.e., the virtu
source processes the media data. For that purpose, the VirtualResource interface de-
fines two operations:

void acquireResource() throws ResourceNotAvailable;
void releaseResource();

which changes the state of the object.
Each configuration objects acts as a two–state finite state machine, contr

through the bind and the unbind operations. The effect of the acquireResource op-
eration for a virtual resource is twofold:

1. it tries to acquire the resource associated with the object, e.g., get hold of the
device.

2. it invokes the bind operation for all configuration objects associated with the vi
tual resource.

Obviously, the role of releaseResourse is to invert these actions, including the un
bind action on all configuration objects. The state of the virtual resource can also b
quired at any time. The operation

ResourceState getResourceState();

returns a PREMO enumeration instance of the type:

public final class ResourceState
extends premo.impl.utils.PREMOEnumeration

{
 public static ResourceState ACQUIRED;
 public static ResourceState RELEASED;
}

As we have seen in section 5.6.4 (on page 117), the bind operation, defined on a Prop-

ertyConstraint objects (i.e., for all configuration objects), also performs a depe
ency check on the properties defined on a single object, detecting mut
incompatible property value settings. The same incompatibility problem might o
for a virtual resource, too, although on a higher level: are the combination of con
ration objects and their respective properties, as set by the client, viable? To hand
situation, yet another operation is defined for a virtual resource interface, namely

public class ProposedValues implements java.io.Serializable {
public String semanticName;
public PropertyPair[] replacement;

}
public class ValidationResult implements java.io.Serializable {

public boolean result;
public ProposedValues proposedValues;

}
ValidationResult validate();

144

bject
urned.
bjects

lient
ities

 con-

 con-
tion

ual
s step

nding

 will

 con-

ort of
 across
ontrol
ctions
tream
Although the definition is a bit convoluted, the intention is straightforward. If the vali-
dation reveals no problems, the result field of the output structure is true. Otherwise
a “replacement” for the property values is proposed: for each configuration o
(identified with its semantic name) a sequence of acceptable property pairs is ret
Using these values, the client can be sure that the properties of the configuration o
will be set to optimal values. Much like the select and constrain operations defined
for each configuration object, the interface of the validate operation may hide a sig-
nificant complexity in finding optimal these values.

It is worth, at this point, to summarize all the various configuration steps the c
may want to use for a virtual resource. This illustrates the rich configuration facil
offered by PREMO. Here are the possibilities a client may use:

1. A factory is accessed through a factory finder. The access of a factory may be
trolled through constraints on the type of objects the factory may create.

2. A virtual resource is generated through a factory. This generation may be
strained through properties, e.g., through the choice of specific configura
objects.

3. The client may inquire the list of configuration objects available for the virt
resource instance and, if applicable, may select among those (details of thi
will be described in later sections).

4. For each configuration object the client may

– set/retrieve individual property values.

– properties may be examined through the matchProperties operation.

– properties may be constrained to some specific values through the constrain

operation.

– the configuration object may be instructed to set the best–fit values, depe
on its local knowledge about its environment (through the select operation).

5. The virtual resource object can validate the property values through the validate

operation, and possibly suggest a replacement for some key–value pairs.

6. If the client is satisfied with all the values, the resources are “acquired”, which
also put all configuration objects into bound state.

Clearly, the various possibilities offered by PREMO can be used for very complex
figuration procedures.

6.4.3 Stream Control

Typically, virtual resources are involved in the generation, consumption, or transp
media data. As we have already seen, the flow of media data through a device or
a connection can be thought of as a stream. The synchronization and the buffer c
of this stream can be achieved using the stream control objects introduced in se
6.3.1 and 6.3.2. To achieve this control, a virtual resource object has a global s
control object. This stream control object is created and contained by the VirtualRe-

145

luc-
 to im-

g., the
ach

urce is
lient.
d

of the
bility

ervice
s of
now,
ients
llback
ccur
ses,

 object
must
curs.

hose

n of
source object instance (i.e., this object is not created by an external client). The refer-
ence to this overall stream control of the virtual resource can be retrieved through the
operation:

StreamControl getStreamControl();

which is defined for the VirtualResource interface.
The semantics of stream control is very much dependent on the exact nature of the

virtual resource, on its behaviour and its role in a network. Subsequent sections will pro-
vide more details on this. For some virtual resources the notion of global stream control
is not even meaningful, e.g. getStreamControl returns null in this case.

6.4.4 Monitoring Resource Behaviour and Quality of Service Violations

In an ideal world, once the resources are set and the media data is flowing, the client
may just “sit back and watch”. However, in a real world, resource availability may f
tuate, speed or space problems may occur. The client must be notified about these
plement some emergency measures.

One of the common problems which might happen is to loose the resources (e.
network is down). To monitor this situation, the client may attach a callback to e
VirtualResource object through the operations:

void setResourceEventHandler(Callback e);
Callback getResourceEventHandler();

If such a callback object has been assigned to the virtual resource, and the reso
lost, an event will be raised through this callback, which can be caught by the c
The name of this event is “ResourceLost”. If, subsequently, the resource is acquire
again, another event is raised named “ResourceAcquired”.

Unfortunately, losing and acquiring resources represent only the two extremes
spectrum. A finer control of resources, and the reaction to the changes in the availa
of these resources, is a more complex issue, commonly referred to as Quality of S
(QoS) control. Procedures for maintaining specific quality of service characteristic
media flow are still the subject of active research. Perhaps not surprisingly by
PREMO does not define any detailed policy for QoS management. This is left to cl
(it would not make sense to impose one approach over the other). The general ca
is used by the virtual resource to notify the client about any problem which might o
(in fact, subtypes of virtual resources define additional callbacks for specific purpo
but this “global” callback is always available).

As we have already seen, a specific configuration object type, the QoSDescriptor,
is used to set QoS requirements for a resource. An instance of such a descriptor
is available for a virtual resource. PREMO specifies that a virtual resource object
raise an event through its global callback if a violation of these requirements oc
This event has the name “QoSViolation”.

• The event data should contain the key–value pairs (i.e., the properties) w
requirement have been violated.

• If the QoS management is attached to a port of a virtual device, an identificatio
the port is also attached to the event data.

146

edia
data.
 “me-

 facil-
f con-
ecific
 global
evice
 with

con-
ork,
-

unc-
 sub-
EMO
How-
nding

pters
ke it

nd-
Specific subtypes of VirtualResource may add additional data to this event. Note
also that it is not specified by PREMO that this global callback should be used for QoS
management purposes only. Subtypes may define additional use of the very same call-
back object. However, by using the constrained registration mechanism for event han-
dlers (see section 5.4.1.2), special QoS agents can be created which react only to QoS
violation events.

6.5 Virtual Devices

Virtual devices are the “core” elements of MSS. They are the nodes in the multim
dataflow network, they embody the processing, capture, or display of multimedia
Virtual devices are roughly analogous to what other multimedia systems often call
dia” objects.

Virtual devices are extensions of virtual resources and, as such, they inherit the
ities described in the previous chapter. They have a global stream control, a set o
figuration objects, callback facilities. Specialized devices can easily add media–sp
semantics to these general concepts, and this chapter will also specify how these
configuration objects can be set by the client. The major extension of the virtual d
interface is the existence of ports, which enable virtual devices to communicate
other devices in a network.

The remainder of this chapter on virtual devices is divided into two parts. The
figuration of devices, i.e., their run–time adaptation to a complete multimedia netw
is described first. In fact, the interface specification of virtual devices in MSS is exclu
sively concerned with configurability.

The more “semantic” aspect of virtual devices, i.e., their internal organization, f
tioning, etc., is not detailed in the PREMO document, simply because the various
types represent a large variety of possible devices (for example, in Part 4, PR
defines a range of different virtual devices adapted to modelling and rendering).
ever, examples of how specific devices may be realized should help in understa
the possibilities. Such examples are presented in the second half of this chapter.

6.5.1 Configuring Devices

Device configuration follows the approach already described in the previous cha
on configuration and virtual resource objects. The interface of virtual device ma
possible to put this into practice, in terms of explicit operations.

Devices may be configured on two levels: through the “global” (i.e., port indepe
ent) aspects of the device (these are, essentially, inherited from VirtualResource)
and through the port specific details. These are described separately.

6.5.1.1 Global Configuration

The virtual device object defines the following operations for global configuration:

147

dia
vice,
t in-
 PRE-

s fol-
void setResourceEventHandler(Callback e);
Callback getResourceEventHandler();
void setConfigurations(ConfInfo[]);
ConfInfo[] getConfigurations();

The first two operations are inherited from VirtualResource, and are listed here for
completeness only. The global (i.e., port independent) configuration objects are set and
retrieved through the setConfiguration and getConfiguration operations, re-
spectively. These configuration objects (such as QoSDescriptor objects) are used by
the virtual device for, e.g., monitoring quality of service violations (see section 6.4.4).
The exact semantics of their use depend on the specific subtypes.

A property is also defined for each virtual device of the form:

which informs the client which configuration objects can be used globally. A capability
is also defined:

which tells the client what configuration types are available for global settings. Sub-
types may impose further restrictions on this capability.

6.5.1.2 Port Configurations

As said before, ports of a virtual device are standard “openings”, through which me
data can flow in or out a device. As shown on Figure 6-2 (page 127), a virtual de
while retaining the global control and configuration objects, has additional objec
stances assigned to specific ports. To simplify the management of these objects,
MO defines a separate structure called PortConfig, which is used as a tool to
configure individual ports.

6.5.1.2.1 Port Configuration Structures

The fundamental data structure, which is used in port configuration, is defined a
lows:

Key Type Read–only? Description

GlobalFormatTypesK ConfInfo[] yes Types of configuration
objects which can be
assigned on a global level.

Key Type Value

GlobalFormatTypesCK Class[] {QoSDescriptor,

Format}

148

uire-

ch
rvice
tion,

 may
jects),
rnal

he
 can
lidity
 time

el.
e

bjects
tance
public class PortConfig extends SimplePREMOObject
{

public ConfInfo qos;
public Callback eventHandler;
public ConfInfo protocol;
public static class formatData {

public long time;
public ConfInfo name;

}
public formatData[] formats;
public StreamControl streamControl;

}

[Note: The ConfInfo structure has already been defined on page 141. It is a tuple of a
semantic name and a Class instance for a configuration object]. This structure groups
all the objects which are relevant for the configuration of a port. None of these objects
are really different from what has already been described for general virtual resources,
but it is still worth going through each of them in more detail:

• The qos object refers (through the ConfInfo tuple), to a QoSDescriptor object
(see section 6.2.3). Its role is to act as a depository for Quality of Service req
ments on a specific port.

• The eventHandler object is used by the virtual device if problems occur whi
are specific to that port. Its primary use is to provide a handle for quality of se
monitoring on the port, much the same way as monitoring global QoS viola
described in section 6.4.4.

• The protocol object refers to an instance of a MultimediaStreamProtocol

object (see section 6.2.2). Whereas the quality of service and format objects
have a general meaning for the device at large (i.e., as global configuration ob
MSP objects are typically useful on a port only, being intimately related to exte
connections.

• formats is an array of Format objects (see section 6.2.1), referred through t
respective ConfInfo structures, and ordered in time. This means that the client
not only control and assign specific formats to a port, but can also set a va
interval for a format, i.e., have the formats change over time. The value of the
is related to the flow of time on the port’s stream control object.

• The streamControl object is the entry point for synchronization on the port lev
As a subtype of TimeSynchronizable, it also has its own timeline, with settabl
time units, used to order the Format objects in the formats array in time.

Just as in the case of global configuration and stream control objects, none of the o
in the port configurations are created by the client. Instead, the virtual device ins
creates them, and the client can access their semantic names or references.

149
6.5.1.2.2 Configuring Ports

Each port of a device is identified by an integer, referred to as a port identifier. The op-
eration

int[] getPorts();

may be used to retrieve all available port identifiers. Using a port identifier, the client
can retrieve the current port configuration through the operation:

public static class PortDescr
{

public PortConfig config;
public PortType type;

}
PortDescr getPortConfig(int portId) throws InvalidPort;

(The exception InvalidPort is thrown, obviously, if the portId value does not refer
to a valid port of the device.) The PortConfig structure has been described in the pre-
vious section; PortType is a simple PREMO enumeration of the form:

public final class PortType
extends premo.impl.utils.PREMOEnumeration {

 public static PortType INPUT;
 public static PortType OUTPUT;
}

The port configuration can also be set by the client, using the operation:

void setPortConfig(PortConfig config)
throws InvalidPort, InvalidName, InvalidPosition;

Obviously, exceptions are raised if the content of the config object is invalid (e.g., one
of the configuration objects cannot be assigned to the port, the time value used in the
Format array is invalid, etc.).1)

We have already described, on page 144, the general configuration facilities the cli-
ent has at its disposal when dealing with MSS objects. These facilities involve, to a large
extend, the property management mechanism on configuration objects. Port configura-
tions add another level of configurability to MSS, insofar as a fine control over the con-
figuration objects on a port by port basis becomes possible.

Additional properties are also defined for virtual devices to help the client in its con-
figuration task. A separate data type is necessary for these properties, namely:

public class PConfInfo implements java.io.Serializable {
int portId;
ConfInfo config;

}

which is simply a tuple of a port identification and configuration object description. Us-
ing this structure, the corresponding properties are:

1) There is, actually, an awkwardness in the PREMO specification at this point: although the PortConfig
class specification includes a reference to the port stream control object, too, the client is not supposed to
change that reference when setting the port configuration.

150

 con-
 on a
ck for

 con-
ation
n ob-

ated
Capabilities are also defined:

Note that the real values for these capabilities are defined in the specific subtypes of vir-
tual device.

The virtual device inherits the validate operation from virtual resource (see
page 143). This operation checks whether the current combination of configuration ob-
jects are “valid”, i.e, the properties on these configuration objects do not lead to
flicting requirements. Because the configuration of a virtual device is also done
port by port basis, an additional operation is necessary to restrict this kind of che
a port. This operation, called portValidate, checks whether a specific Format object
is “compatible” with the quality of service and protocol requirements, as set by the
figuration objects in the port configuration structure. If this is not the case, the oper
returns a proposed “replacement” for the property values for these configuratio
jects, which might make the requirement on the port viable.

The formal specification of this operation involves the same, somewhat complic
inner classes of VirtualResource:

Key Type Read–only? Description

InputPortK int yes Number of input ports.

OutputPortK int yes Number of output ports.

InputFormatK PConfInfo[] yes Types of configuration
objects which can be used in
conjunction with specific
input ports.

OutputFormatK PConfInfo[] yes Types of configuration
objects which can be used in
conjunction with specific
output ports.

Key Type Value

InputPortCK int Maximum number of input
ports.

OutputPortCK int Maximum number of output
ports.

InputFormatsTypesCK Class[] Allowed configuration objects
on input ports.

OutputFormatsTypesCK Class[] Allowed configuration objects
on input ports

151

r ex-
 have

ision
ntrol,
e some
, when
ways

l ob-
thods
 con-

icant
bal
SS:

global
e im-

bed in
l vir-
e of
public class ProposedValues implements java.io.Serializable {
public String semanticName;
public PropertyPair[] replacement;

}
public class ValidationResult implements java.io.Serializable {

public boolean result;
public ProposedValues[] proposedValues;

}

Using these classes, the specification of portValidate is:

ValidationResult portValidate(int portId, String formatName)
throws InvalidName, InvalidPort;

6.5.2 Examples of Virtual Devices

The PREMO document does not stipulate any specific architectural approach for the
implementation of virtual devices. As long as an object implements the interface de-
tailed in the previous chapters, i.e., the device is properly configurable, this object can
be considered PREMO compliant. The term “Processing Element” appearing, fo
ample, on Figure 6-2, is purely a conceptual entity, just like a port, which does not
any interface specification.

One of the major design decisions, when planning for a new device, is the div
of control and work among the various stream control objects: the global stream co
and the stream control objects assigned to the ports. There are cases (we will se
examples below) when these object references refer to the very same object, i.e.
there is, in fact, only one stream control object in the device. However, this is not al
the case.

Although MSS does not specify in detail what the relation among these contro
jects is, it does say that the client should be able to focus all inquiry and control me
concerning data stream at the global stream control object. The role of the stream
trol objects on the ports is therefore slightly less important, and becomes signif
only when very fine grained synchronization is necessary. This “priority” of the glo
stream control object is reinforced by an additional requirement formulated in M
this requires that all port related stream control objects must be subtypes of the
stream control. In the Java case this means that, for example, if the virtual devic
plementation defines an MStreamControl interface, which extends the StreamCon-

trol interface, and the the global stream control implements MStreamControl, then
all port related stream control objects must also implement the MStreamControl in-
terface.

This chapter gives some examples for virtual devices. None of these are descri
the PREMO document in detail, but they are all possible incarnations of the genera
tual device concept. Our prototypical implementation of PREMO implements som
these, too.

152

lled
ion

 (the
ta into
other
ence
device
oder

chro-
nsible
r the
ation
6.5.2.1 Simple Media Devices

Although a large portion of the previous chapters concentrated on how device ports are
set up and configured, it should be emphasized that a device without a port is a very im-
portant concept by itself, too. As an example, consider a simple audio device which
reads an audio file directly, and plays it (see Figure 6-8/(a)). Because no media data
transfer occurs between this device and other devices, such a device would indeed have
no ports. Nevertheless, the device can be configured for its format (through the general
configuration objects), possible quality of service violations can be monitored (through
the interplay of QoSDescriptor objects and the callback facilities, see section 6.4.4
above), resource allocation can be controlled (resource allocation would mean, for ex-
ample, finding and opening the audio file, for example) and, last but not least, synchro-
nization facilities are available through the global StreamControl object of the device
(the global stream control object is depicted by the white stripe on the figure). A way of
looking at such a device is to say that it is a configurable wrapper around a Stream-
Control object (i.e., a Synchronizable object), whose progression (see
section 5.5.1 on page 92) results in the display of the media data. Control over this pro-
gression (i.e, start, stop, pause, resume, mute, etc.) gives control over the media display.
The “processing element” in this case is virtually identical to the active entity contro
by the Synchronizable object, and which is responsible for the details of progress
and media presentation.

Figures 6-8/(b) and 6-8/(c) show two complimentary devices. The first device
audio encoder) receives audio data directly from a microphone, and turns the da
an audio format suitable for the multimedia network. The audio decoder, on the
hand, receives audio data on its input port, and plays it. The only functional differ
between this device and the audio player is that the audio data arrives at the
through the network and not directly from a file. Both the audio encoder and dec
have a very similar structure to the audio player. They have global control for syn
nization, control over progression, etc. Because there is only one input port, a se
choice of the device implementation is to define only one stream control object fo
device, i.e., the global stream control and the one which is part of the port configur
would refer to the same object.

Audio Player Audio DecoderAudio Encoder

(a) (b) (c)

Figure 6-8 — Simple virtual devices

153

using
irtual
 make
ecod-
hone
 them,
urse,
is!).
 port,
n re-
output
d, we
large

pro-
u-
 help

f PRE-
sent-

deed,
 of

t con-
e facil-
Obviously, the audio encoder and decoder objects could be “piped” together by
a virtual connection to connect their ports (see section 6.6 below for the details of v
connections). The port configuration process, described in earlier chapters, should
it sure that the audio format produced by the audio encoder is understood by the d
er. Whether this connection is done within the same machine, joining the microp
and the speaker on the same workstation, or whether there is a network between
is immaterial. The functional behaviour of both devices remain unchanged (of co
the level of service quality might become different, and the client should monitor th

Devices become more complex when they have both an input and an output
e.g., when they act as filters or format converters. The “processing entity” is the
sponsible to read the data from the input port, convert the data and send it to the
port. Instead of going into the details of how such a device could be implemente
will present a slightly more general device type, which is a good example for a
family of virtual devices.

6.5.2.2 Transformer Devices

Transformer is the name of a virtual device type, developed in the course of our
totype implementation. This device has not been defined as part of the PREMO doc
ment (it is not a standard object), but it has proven to be a useful abstraction to
implement a whole range of other devices, such as the devices defined in Part 4 o
MO (see Chapter 7). Although, throughout the book, we restricted ourselves to pre
ing only standardized PREMO objects in detail, we make an exception here. In
through the Transformer object we hope the reader will gain a better appreciation
how virtual devices may be implemented. The goal of the Transformer object is to act
as a supertype for media filters and media processors for multimedia data. Forma
verters are obvious examples. Other examples include wrappers around databas
ities, image filters, geometric processors, etc.

Figure 6-9 — Inner structure of the Transformer object

input port StreamControls
output port StreamControls

general StreamControl

tim
e

tim
e

time
time

154

 not
 gen-
nits,
ed of

r the
gen-
quire-
 the

data
ssion
queues
 level
ture
enta-

n re-

 syn-
art of
 them
Figure 6-9 shows the internal structure of a Transformer object (to simplify the fig-
ure, the configuration objects are not shown). The complexity of the implementation
comes from the exact distribution of work among the possible stream control objects
represented by the white stripes on the figure. Obviously, there are stream
control objects in a Transformer object, where n is the number of input, and m is the
number of output ports, respectively. To be more precise, the control objects assigned
to the ports are all SyncStreamControl objects in this case, i.e., their timelines may
be slaved. In a Transformer, they are all slaved to the general stream control object,
which may or may not be of SyncStreamControl type. This means that all stream
control objects in a Transformer refer to the same clock for synchronization purposes.
The availability of the TimeSlave interface (see section 5.5.3 on page 107) for the port
stream control objects allows the client to monitor any drift in time between this object
and the general stream control, thereby detecting possible starvation due to upstream
congestion or failure.

Stream control objects (as TimeSynchronizable objects) are all active entities. In
the Java case, they all run in their own thread of control. It is the interplay of the various
threads which build up the functionality of the object. The central role is played by the
global stream control object. Another way of putting it is that the abstract processing
unit in Figure 6-2 essentially can be identified with the thread of control of the global
stream control object.

A stream control object assigned to an input port transfers the input data into a (mul-
tiplexed) data queue. Each piece of datum is stored in this queue together with a tag de-
noting its “origin”, i.e., the port it arrived from. The input port stream control does
do any processing, its role is merely to transfer data (using the terminology for the
eral Synchronizable objects, its progression space is the sequence of input data u
and its “presentation” step is simply copying data into the internal queue). The spe
this transfer is controlled by this object (using its speed attribute), it can react to a mute

operation request by simply ignoring the data, and, more importantly, it can monito
quality of service of the data transfer itself (e.g., by monitoring its own clock, it can
erate an error if the data-rate on a particular port doesn’t meet the bandwidth re
ment). If callbacks are set for quality of service violations, the object will raise
necessary events.

The global stream control object is the real “worker”. It sequentially reads the
from the multiplexed input queue (which plays the role, in a sense, of the progre
space of this object), it transforms the data, and puts the results into separate
which connect the general stream control object to output ports. Of course, on the
of the Transformer object, some details of this step are left abstract. The exact na
of processing and the choice of the target output ports are left to subtype implem
tions. While doing the transformations, the object can react to all synchronizatio
quests. This is inherited from the behaviour of Synchronizable objects (as said
before, the general stream control is the focal point of the device for multimedia
chronization). Finally, the role of the output stream control objects is the counterp
the input stream control objects: they read the data from their queues to forward
to the output streams.

n m 1+ +

155

utput

 archi-
tc.

n prac-
e vir-
dia
e out-
ani-

EMO
hared
 for
kages

ction.
een
 and

n be-
er nec-
ristics

client.
n of
ty of
n dif-

hared
ice
uld

e
d to
Depending on the exact nature of the Transformer subtype, the state transitions of
the global stream control, as induced by an external client, may internally change the
states of the port stream control objects, too. For example, if the global stream control
object is stopped, all stream control objects are to be stopped, too. If it is muted, this
should “mute” the output stream control objects to avoid transferring data to the o
ports.

Of course, lots of details are not addressed here, such as how to optimize the
tecture to avoid busy waiting in the various threads, how to avoid memory overflow, e
However, this short overview of the Transformer objects will hopefully help the read-
er to have a better understanding of the issues involved in virtual devices.1)

6.6 Virtual Connections

6.6.1 Overview

So far, the media stream has always been presented as a purely abstract entity. I
tice, streams are realized through communication facilities which connect the activ
tual devices. Although, conceptually, it is the role of virtual devices to “move” me
data, an additional mechanism should be provided which transfers the data from th
put port of a device to the input port of another. There may be a large variety of m
festations of this mechanism, depending on the implementation environment PR
runs in. It may use network facilities, remote procedure calls, remove objects, s
memory, etc. It is obviously not the role of PREMO to give a detailed specification
all these various communication facilities. There are numerous standards and pac
that do this already.

However, the client needs a focal point to set up and to dismantle such a conne
Although the details of the communication mechanisms may widely vary betw
PREMO implementations, a PREMO application still needs to have a unified view
control over communication. This is the role of the VirtualConnection object.
Through an instance of a virtual connection object, a client may set up a connectio
tween two ports, and may also disconnect the ports when the streams are no long
essary. Because a virtual connection is also a virtual resource, the QoS characte
of the connection can also be monitored, which may be of great importance to the

The virtual connection also plays an important role in the proper modularizatio
virtual devices. Two virtual devices, connected by a stream, might run in a varie
settings: they may share the same virtual or physical processor, or they may run o
ferent nodes of a local or wide area network. They may communicate through s
memory, ATM, TCP/IP, etc. However, the implementation of a specific virtual dev
should not depend on its particular position in such a web of communication. It sho
be able to write or read data regardless of the mechanism which physically delivers th
data itself. It is the role of the virtual connection to hide these specific details, an

1) It is interesting to note that the internal structure of the Transformer bears a lot of similarities with the
basic processing blocks described in the ISO Computer Graphics Reference Model[47]. Similar functionali-
ties lead to similar architectures…

156

s an
nding
con-
 Vari-
stics
types

li-
aster

rily an
ation
 both

e
his

s, the

le on
carried
provide a unified interface to the virtual device. Details are of course implementation
dependent and are invisible to the client. As an example, we will show later how this
feature was achieved in our prototypical implementation.

Beyond the “physical” communication, connecting two device ports also involve
“agreement” between the ports regarding the media data format they transfer. Fi
this “agreement” is also the task of a virtual connection. In other words, a virtual
nection embodies some of the configuration tasks which characterizes PREMO.
ous PREMO implementations may differ on the quality of configuration characteri
they can provide and, of course, a PREMO application may also define its own sub
of the VirtualConnection objects to adapt them to their needs.

6.6.2 Detailed Specification of Virtual Connections

Formally, the interface of a virtual connection object is defined as follows:

public interface VirtualConnection
extends VirtualResource, java.rmi.Remote {
void connect(VirtualDevice master, int portMaster,

VirtualDevice slave, int portSlave)
throws ConfigurationMismatch, PortMismatch,

ResourceNotAvailable, InvalidPort;

void disconnect();

public class EndpointInfo {
public VirtualDevice device;
public int port;
public boolean isMaster;

}
EndpointInfo[] getEndpointInfoList();

}

Obviously, it is the connect operation which requires most of the explanation. The c
ent calls this operation to create a connection between two ports, identified as m
and slave ports, respectively. The term “master” does not mean that it is necessa
output port. It means that, in the course of the configuration steps, it is the configur
belonging to the master which prevail, if a choice must be made. For example, if
ports can manage “LittleEndian” and “BigEndian” byte orders (as specified
through the properties with key “ByteOrderK” in the MultimediaStreamProtocol
object instances assigned to the port), but the select operation of on the master’s sid
yields “LittleEndian” (meaning that this is preferred format of the master), then t
value will be chosen.

Setting up the connection involves the following steps.

1. The exact format of the media flow may have to be negotiated. To achieve thi
virtual connection object inquires the available Format objects on both ports to find
appropriate matching pairs. We have already seen a more detailed examp
page 131 on how the various formats can be matched. These actions may be
out by the virtual connection object.

157

tion”

ually
 the

ow-
unica-

ction
serv-

slave
own
vio-

.
sar-

ses or
e

e.

. The

on

ep up,
may
ncep-
It is not required, however, that only virtual connections perform such configuration
steps. In some cases, the client can perform a much finer configuration setting based
on its own application semantics. Consequently, subtypes of virtual connections can
be defined by an implementation which relies on configuration being performed by
the application.

2. A communication mechanism has to be set up between the ports in the “direc
dictated by the output and input ports (a PortMismatch exception is thrown if, for
example, both ports are input ports). In contrast to the previous step, clients us
have no real control over how this is done; the details are deeply rooted in
implementation environment of PREMO. The virtual connection may consult, h
ever, the MSP objects assigned to both ports, to decide upon the best comm
tion channel.

3. Quality of service requirements are set for the connection. The virtual conne
object is also a virtual resource, which means that the client may set quality of
ice requirements for the connection through its QoSDescriptor objects. Further-
more, similar configuration objects are available on both the master and the
ports. Based on this information, the virtual connection object may set up its
quality of service management, which will influence, for example, when a QoS
lation event will be raised. The three QoSDescriptor objects may also impose
restrictions which cannot be fulfilled by the connection instance. A Configura-

tionMismatch exception is thrown in this case.

Subtypes of VirtualConnection may add additional connection control, of course
Formally, the connect operation only sets up the connection, which is not neces

ily “alive” yet on return from the connect operation. This distinction is important if,
for example, the connection involves some active entities, e.g., separate proces
threads, which have to be activated separately. This activation is done through thac-

quireResource operation, inherited from VirtualResource. When releasing the
resources, these active entities may also be suspended.

A single VirtualResource instance can manage only one connection at a tim
The ResourceNotAvailable exception is raised by the connect operation if the cli-
ent attempts to connect a pair of ports without disconnecting the previous one
Group object (see section 6.7) can be used to group several VirtualConnection ob-
ject. This may be necessary, for example, in order to “synchronize” the acquireRe-

source operation on all of them.

6.6.3 Examples of Virtual Connections

It is worth looking at some examples of connection setups, to make the role of a Vir-

tualConnection object clearer. We will concentrate on the details of step 2
page 157, i.e., on the physical connection being set up between two ports.

In the first example, shown on Figure 6-10, a separate buffer is necessary to ke
e.g., with the quality of service requirements of the client. The virtual connection
then set up a separate buffer manager (invisible to the client) and, although data co

158

ay”
er. Of

tion
roto-
eous

f
6-12
men-

ng

jects

con-
s are

to con-
tually flows from Device 1 to Device 2, the real data flow is from Device 1 to the buffer
manager, and from the buffer manager to Device 2. The buffered manager itself is an
active object which has to be activated by the virtual connection explicitly when its re-
sources are acquired.

The second example, on Figure 6-11, shows what may happen if the two virtual de-
vices run on two distinct machines. Depending on the characteristics of the communi-
cation facilities, the virtual connection may have to instantiate two “gatew
processes, whose role is to forward the media data from one system to the oth
course, these gateway processes are invisible to the client.

The task of implementing a virtual connection is much easier if the implementa
environment provides advanced networking facilities already. For example, our p
typical implementation makes use of the fact that all our objects run in a homogen
(i.e., purely Java) environment, and that the standard java.net package takes care o
most of the local specificities of communication (for example, byte order). Figure
shows the solution we have adopted to connect two ports in our prototypical imple
tation. When asked to connect two ports, the implementation of the VirtualConnec-

tion object shown in Figure 6-12 does the following:

1. The VirtualConnection checks whether the two virtual devices are runni
within the same Java Virtual Machine. If yes, a pair of PipedOutputStream and
PipedInputStream objects are used to connect the two ports (both these ob
are part of the java.io package).

2. If the two virtual devices are running on different Java Virtual Machines, the
nection establishes a dedicated socket pair between the two JVM’s (facilitie
provided by the java.net package). The java.net.Socket object also provides
stream access to these sockets in the appropriate direction, which are used
nect these sockets to the ports.

Device 2Device 1

Virtual Connection

Device 2Device 1

Buffer Manager

Figure 6-10 — Buffered connection

conceptual view

implementation

159
Virtual Connection

Device 2Device 1

Gateway

Figure 6-11 — Networked connection

implementation

Gateway

System 1 System 2

Device 2Device 1

conceptual view

Device 2Device 1

conceptual view

Device 1 Device 2

Device 1 Device 2

VM 1 VM 2

piped streams

sockets and streams

Figure 6-12 — Connections in Java

160

, this
adcast
In both cases, the streams may be combined with the buffered output and input streams
of java.io, if necessary, i.e., a separate buffer manager, as shown on Figure 6-10, is
not necessary1). As a result of this construction, virtual device objects have access to
standard Java Stream objects only (not to be confused with PREMO Streams!) when
moving data, regardless of the position of the communicating devices within the net-
work. This also ensures the proper modularization of device implementations. Of
course, the Java implementation of such a VirtualConnection object requires care-
ful consideration (see section A.2.1 for further details), but the result is conceptually
simple.

6.6.4 Multicast Connections

In more precise terms, the virtual connection described in the previous sections repre-
sents a unicast connection, i.e., data always flows from one output port toward one input
port. In practice, multicast connection is also often required, meaning that, for example,
data leaving one output port arrives to several input ports, conceptually copying the
content of the media stream (see Figure 6-13). This copying should be oblivious to the
source of the data. The behaviour of a virtual device should not depend on whether its
generated data goes to one input device or more. A typical example for such setting is
the well–known Internet Mbone service. A live video recording is done somewhere
data is broadcast to the Internet, and listeners can “attach” themselves to this bro
if they wish.

To fill this need, a subtype of the VirtualConnection object is defined in MSS,
called VirtualConnectionMulticast:

1) To be more precise: the buffer manager is automatically provided by the java.io classes!

Device 2

Device 1

Figure 6-13 — Multicast connection

Device 3

Multicast Connection

161

t port
sarily
timi-

 (as
 con-

sured,
kages
ple-
 de-

ailed

ec-
jects.
gres-
 large

net-

bjects
l of a
antics
act as
public interface VirtualConnectionMulticast
extends VirtualConnection, java.rmi.Remote {
void attach(VirtualDevice device, int portID)

throws ConfigurationMismatch, PortMismatch,
ResourceNotAvailable;

void detach(VirtualDevice device, int portID)
throws PortMismatch;

}

The interface of the operations is quite simple. Through the attach operation, the cli-
ent can attach a new slave to the master port (remember that the connect operation of
the VirtualResource object not only creates a connection between two ports, but
also identifies a master and a slave port, see page 156). Setting up a new connection to
the new slave involves the same steps and constraints as setting up the original connec-
tion. Obviously, one of the slaves can be detached from the master through the detach
operation.

It should be emphasized, however, that behind this simple interface there may be a
significant complexity when it comes to the realization of the multicast connection. The
implementation of the kind of multicast connection depicted on Figure 6-13 is still rel-
atively easy; some kind of “copying” engine has to be inserted between the outpu
of Device 1 and the stream. “Where” this copying should take place is not neces
a simple issue, because one should try to minimize network traffic, but various op
zation schemes are possible.

An especially difficult problem is encountered when the connection is “fan–in”
opposed to a “fan–out” connection on the figure), i.e., when several sources can
tribute to the same input port. Indeed, the integrity of the media data must be en
i.e., the media content should be “packaged” in a meaningful way, and these pac
should be, essentially, atomic. Implementations of PREMO may choose not to im
ment a fully general “fan–in” multicast virtual connection. Instead, subtypes may be
fined closer to the application domain, thereby making use of a more det
knowledge about the content and the structure of the media data.

6.7 Groups

A more complicated network of virtual devices, with the corresponding virtual conn
tions, can be very complex, and may include a large number of virtual resource ob
Controlling all these objects, such as acquiring their resources, stopping their pro
sion, etc., may become a tedious task for the application program: it has to issue a
number of operation invocations repetitively to control the behaviour of the full
work.

Group objects have been introduced by the MSS to ease this task. These o
(which are virtual resources themselves) offer a single entry points for the contro
number of other virtual resources. Groups, by default, do not have any special sem
(although subtypes of groups may, of course, introduce special behaviour). They
some kind of “proxies” for other virtual resources.

162

” oper-
exam-
t is

 of
Resources are added to a group by the operation:

void addResource(VirtualResource resource);

and are removed by the operation:

void removeResource(VirtualResource resource)
throws ResourceNotAvailable;

Alternatively, the operation

void addResourceGraph(VirtualResource resource);

recursively adds to the group the resource, as well as all virtual connections and vir-
tual devices which are connected, directly or indirectly, to resource1). Such a resource
graph can be removed from the group through the operation:

void removeResourceGraph(VirtualResource resource)
throws ResourceNotAvailable;

Finally, all resources, managed by the group, can be inquired by:

VirtualResource[] getResourceList();

Because they are virtual resources, groups also have global stream control objects, and
they also implement operations such as acquireResource. However, in the case of
groups, the only task these objects and operations have is to dispatch the “same
ation to the relevant methods of all virtual resources managed by the group. For
ple, if the stop operation of the group’s global stream control is invoked, the effec

1) Note that the virtual device and the virtual connection types define the getConnection
and the getEndpointInfoList operations, respectively, which help the reconstruction
the full graph.

Device 2

Device 1

Device 3

stop

stop

stop

sto
p

Figure 6-14 — Effect of a group’s global stream control

163

ace”
rchies

t like
an be

have
o the
 the

gical
with
ould
vice.

client
al”
to issue the stop operation on the global stream control objects of all constituent virtual
resources (see Figure 6-14). Similarly, acquiring resources means to acquire the re-
source of all virtual resource objects managed by the group.

6.8 Logical Devices

Groups do not impose any restriction on the type of objects they manage. Also, in the
inheritance hierarchy of virtual resources (see Figure 6-7), they represent an independ-
ent type both from virtual devices and virtual connections, i.e., they cannot “repl
any of those. Consequently, they are not usable, by themselves, to build up hiera
of networks.

To construct hierarchies, logical devices can be used. The LogicalDevice type is
a special subtype of Group, which is also a subtype of VirtualDevice. This means
that a logical device can manage a collection of devices and connections, jus
groups do, but they are also virtual devices themselves, which means that they c
included into a full multimedia network on their own right.

In order to communicate with other virtual devices, logical devices should also
(input or output) ports, and, to function properly, these ports should be related t
ports of the devices which are “managed” by the logical device. All this is done by
(only) extra operation defined for a logical device, namely:

int definePort(VirtualDevice refVirtualDevice, int portId)
throws InvalidPort, InvalidDevice;

This operation refers to an existing port of one of the devices managed by the lo
device, and instructs the logical device to create a new port which is “identified”
the argument port (the port ID for the new port is returned by the operation). One c
also say that the internal port is “exported” beyond the boundaries of the logical de
This means that:

• The port configuration of the new port (as accessed and managed by a
through the virtual device interface of the logical device) is identical to the “re
port of the device contained by the logical device.

Device 2

Device 1

Device 3

Figure 6-15 — Logical device

164

red

used
ther
on-
om-
• All data flowing through the logical device’s port is, conceptually, transfer
unchanged to the “real” port.

Note that “internal” ports are not automatically exported; some ports, which are
for internal communication only, may stay hidden from the outside world. In o
words, the logical device may also play the role of “information hiding” when c
structing multimedia devices and therefore plays an important role in building up c
plex media networks.

grate
t 4 of
s in-
vices
ilar

tent of
oncepts
onent,
a, and
ices
prim-
vice
 pres-

s por-
video
ice
ese
g net-
ice is
ollec-

struct
deller

ta, or
t. The
Chapter 7

The Modelling, Rendering, and Interaction Component

7.1 Introduction

PREMO was initially envisaged as a new standard for computer graphics based on ob-
ject-oriented technology. It was soon realised, however, that an equally significant prob-
lem in the design of “next generation” graphics applications was the need to inte
other media with graphics at a fundamental level, under the control of an API. Par
PREMO, the Modelling, Rendering, and Interaction (MRI) Component is where thi
tegration takes place in the standard. Thus, while the Multimedia Systems Ser
Component provides architectural support for viewing graphics processing in sim
terms to other media processing applications, it does not directly address the con
the data used to describe the presentation. Instead, it defines streams and the c
of processing resources that are independent of media content. In the MRI comp
these facilities are used to define generic objects for modelling and rendering dat
basic facilities for supporting interaction. To support interoperability between dev
for processing various media, the MRI component defines a hierarchy of abstract
itives for structuring multimedia presentations. Finally, it defines a specialised de
for coordinating processing activities that operates on a heterogeneous multimedia
entation.

The interaction between the ideas in this chapter, and the concepts of MSS, i
trayed in Figure 7-1 which shows how a number of devices might be used in an
composition tool1). Each of the oval shaped objects is a particular kind of MRI dev
and an MRI device is itself a subtype of the VirtualDevice object type from MSS. Th
devices extend the facilities defined in MSS and can be organised into a processin
work, connected to each other by media streams. The main feature of an MRI dev
the type of data that its streams carry: data that describes media derived from a c
tion of abstract primitives defined in the MRI component.

In the system, an audio modeller and a graphics modeller are being used to con
mono-media components of a presentation, which are stored in a database. A mo
in MRI is simply any device that can produce a stream of MRI primitives; a modeller
may be a sophisticated interactive tool for constructing and editing presentation da
nothing more than a device for accessing primitives stored in some external forma

1) This and other examples in this chapter have been set up to illustrate aspects of the MRI component. They
do not necessarily represent the most appropriate architecture for implementing such a system or facility.

166

rver.
isual
s of a
e re-
ompo-
rocess
onsist
econd
te a

nd a
ternal
ixing

a video
f the

s fun-
an be

er, are
 inter-
roc-
y the
modellers, and the database that holds their output, are organised into an MSS logical
device, along with an engine for processing video data. This device can be thought of
as the “production” side of the composition tool, and might be implemented on a se

The other ‘side’ of the system is concerned with mixing and rendering audio/v
data, and could be implemented on a client machine. At the top level, it consist
single instance of an MRI device type called a Coordinator. A coordinator devic
ceives a stream of presentation data, and is then responsible for allocating the c
nent parts of that presentation to a collection of local resources that are able to p
particular parts of the overall presentation. In the example, the local resources c
of an MSS logical device (B) that handles audio processing and rendering, and a s
logical device (C) for video mixing and rendering. Both logical devices encapsula
pair of MRI devices: an engine for processing specific kinds of media primitive, a
renderer that can take a stream of media primitives and convert it into some ex
representation, for example output on a display or through a sound system. The m
engine in the example takes presentation data from the coordinator, and also has
feed that can be switched by an MRI routing device between the video engine o
source, and some external camera device.

As the example suggests, the infrastructure provided by the MSS component i
damental to the approach taken in MRI. Most of the devices used in the example c
defined as straightforward specialisations of the MSS VirtualDevice object type.
The two exceptions are the Scene database and Coordinator, each of which will be
considered in some detail in this chapter. What Figure 7-1 does not show, howev
the primitives carried by the media streams between the devices. These primitives
act with the definition of the MRI devices at a number of levels; while the devices p
ess primitives, some of the functionality of the device is determined or influenced b
form that the primitives take.

audio
engine

video
engine

scene

mixing
engine

A

B

C

Coordinator

audio
modeller

graphics
modeller

audio

graphics

camera

Figure 7-1 — A configuration of MRI Devices

renderer

renderer

device

167

 point

 as
 a

rimi-
thin

en, on
ntly
truc-
range
ore

 of
ut (or
 re-
olour,
etc.,
trans-
 ap-
RML,
pt of
 be
 water
7.2 Primitives

In computer graphics, a primitive is a basic building block for producing a picture. What
exactly constitutes a ‘primitive’ depends of course on the graphics system, and the
within the ‘rendering pipeline’ being considered. For example;

• an API for rendering may allow the programmer to specify arbitrary polygons
geometric modelling primitives, but might internally convert all polygons into
collection of triangles to simplify processing;

• geometrical solids such as cylinders and pyramids might be considered as ‘p
tives’ within one API, but be viewed as programmer-definable abstractions wi
another.

The tension in the design of rendering primitives can be characterised as betwe
the one hand, a “minimal” set of orthogonal primitives that can be rendered efficie
by hardware, but which require programmer effort to organise them into larger s
tures, and on the other hand, a “comprehensive” set of primitives that provide a
of geometric building blocks, but for which a renderer has to do comparatively m
complex processing within software.

Orthogonal to the “minimality” discussion is the question of what the notion
‘primitive’ includes. Standards such as GKS and PHIGS distinguish between outp
rendering) primitives that define geometry to be displayed, and input primitives
turned by an input device such as a pick or locator. Attributes of a model, such as c
material properties (e.g. diffuse and specular reflection coefficients), line width,
are separate from primitives in GKS, PHIGS, and also OpenGL, as are geometric
formations and constraints. However, with the development of object-oriented
proaches to rendering, as realised in systems such as Open Inventor and V
primitives, attributes and transformations have been abstracted into the conce
nodes within a scene graph that gives a declarative representation of the model to
rendered. For example, Figure 7-2 shows the scene graph for a simple model of a

Figure 7-2 — A Scene Graph for a Water Molecule

translate material sphere translate sphere material sphere

group (H) group (H) group (O)

camera light group (molecule)

separator (root)

168

e de-
and

primi-
 dis-

er of

syn-
plify
es a
, for

ent
out in

ms.
 ISO
practice
 are
tand-
apart
ded to
provi-
t was
ether

t-
radi-
rers.
roc-
tation

 can
 that

on to
enta-
e ren-
y not
could
molecule (using the node conventions found in [89]). While the meaning of each type
of node clearly determines how nodes can be assembled to produce sensible results, the
fact that all kinds of data – geometric detail, attributes, and transformations – ar
fined in similar terms means that there is great deal of flexibility in constructing
processing such a representation.

7.2.1 The Role of Primitives in PREMO

Whatever model is adopted, an API for computer graphics must support a set of
tives that is sufficiently complete to allow the programmer to produce output on a
play. So what set of primitives should PREMO support? There are a numb
possibilities:

• PREMO could define a new set of primitives. As PREMO aims to integrate
thetic graphics with other media, such a combination could be tailored to sim
the job of combining media. The problem with this approach is that it impos
large overhead on a PREMO implementor. A powerful and efficient renderer
example for PHIGS PLUS or Open Inventor, is a significant software developm
problem, and in the case of PREMO, is only one part of the requirements set
the standard!

• PREMO could adopt an existing set of primitives. This would create two proble
First, which set of primitives should be selected? Both GKS and PHIGS are
Standards, and there is a case that a new standard should use established
where possible. However it could equally well be argued that GL or Inventor
more widely used, or that VRML or Java3D are a new generation of graphics s
ards and will therefore define future practice. The second problem is that,
from Java3D, these systems address only synthetic graphics. PREMO is inten
facilitate the design of multimedia presentations. Java3D does contain some
sion for streaming media such as video and audio with synthetic graphics, bu
not available at the time PREMO was designed; nor is it obvious even now wh
the facilities it provides would address all of PREMO’s needs.

• PREMO could define abstract primitives. Rather than the PREMO standard dicta
ing the capabilities of a graphics renderer by fixing a set of primitives, a more
cal and productive approach is for PREMO to interoperate with existing rende
A PREMO presentation could thus be constructed from the set of primitives p
essed by the renderer available to a PREMO user. Indeed, a PREMO presen
could include primitives drawn from a collection of renderers, provided that we
ensure that a particular renderer only receives primitives it can deal with, or
renderers can deal with unrecognised primitives in a graceful way.

The third approach is particularly appealing, since it also allows a presentati
contain non-geometric primitives (for example, the description of an audio pres
tion), provided that there is a way for these primitives to be recognised by a suitabl
derer. It also means the standard is fundamentally extensible; for example, b
committing to any one primitive set, new technologies such as haptic rendering
be incorporated without ‘breaking’ a pre-defined model.

169

ve”
s ap-
 how-
t an
jects,
ted by
harac-

en port
eous
es. To
e level
tive

e dif-
er.
 the

e a
ndard
y a

edia
 this

ient
from
MRI
edia
 the

 for

itive

-sec-
It might seem from this discussion that there is actually no need for PREMO to de-
fine any kind of primitive set, it just needs to define an abstract type called “primiti
and allow primitives specific to a renderer to be identified as subtypes of this. Thi
proach might be feasible if we consider a PREMO system as a single black box,
ever, the fundamental model of PREMO set out in the MSS component is tha
application consists, in general, of a network of processing devices. Devices are ob
and therefore can be created to satisfy given requirements. Devices are connec
data streams, and if we are to interconnect devices, we must have some way of c
terising the media data carried on a given stream, or produced / accepted at a giv
of a device. Finally, if a PREMO presentation consists of a collection of heterogen
media, it may be necessary to coordinate that presentation across multiple devic
describe and manage the required coordination, it is necessary that there be som
of common organisation imposed on the underlying primitives. The PREMO primi
hierarchy meets these needs in two ways:

1. It defines an extensible collection of abstract object types for characterising th
ferent kinds of primitive that a device within a PREMO network might encount
These object types provide a small common ‘vocabulary’ for approximating
capabilities of various devices and the content of media streams.

2. One branch of the hierarchy introduces a minimal set of primitives that giv
declarative model of a multimedia presentation. These are included in the sta
since such facilities are not typically available within the primitive set provided b
particular renderer. A more detailed model of the overall organisation of multim
content is also needed for the definition of the coordinator device defined in
Part (see Section 7.7).

To emphasise a point made previously, PREMO primitive hierarchy is not suffic
in itself to build a working presentation, but provides the abstract supertypes
which a set of concrete primitives could be derived by inheritance. The PREMO
component is not itself a rendering engine, but rather a framework for integrating m
processing and rendering, performing a service for digital media somewhat like
service that a coordination framework, such as Linda [15] or Manifold [4], provide
concurrent processing.

7.2.2 The Hierarchy in Overview

Primitives are structures, that is, the object type Primitive inherits from SimplePRE-
MOObject. At the top level, PREMO distinguishes between the seven kinds of prim
shown in Figure 7-3: Captured, Form, Tracer, Modifier, Reference, Structured and
Wrapper. Each of these types of primitive is described in depth in a separate sub
tion. The specification of the abstract type Primitive is simple:

public class Primitive extends SimplePREMOObject {}

170

mpo-

ive is
 or be
ibil-
po-

will
ta can
f the

ort
7.2.3 Captured Primitives

Captured primitives form the primary interface between the notion of multimedia
presentation defined by the MRI component, and the various standards for digital media
encoding and transport that are in widespread use, for example ALAW, MIDI, MPEG,
and ULAW to name a few. Computer graphics metafiles, including formats such as
CGM or VRML, are also supported through the Captured object type. In general, a
captured primitive is one for which some or all of the perceivable aspects of the primi-
tive have been encoded in a format defined externally to PREMO. Rather than being
synthesized, the presentation will be obtained ‘ready-made’ from some other co
nent within a PREMO application.

As far as a PREMO application is concerned, the source of a captured primit
immaterial; it may come from an external feed, e.g. a network or device interface,
the product of some other processing device within the application itself. This flex
ity is realised with the aid of the port and virtual device concepts of the MSS com
nent. A Captured primitive thus consists of a reference to some virtual device that
produce the media data and a reference to a port of that device from which the da
be obtained. An application can determine detailed information about the format o
captured data by accessing the Format object attached to the port. The device and p
references form the protected state information of the Captured object type:

public class Captured
 extends Primitive
{
 protected VirtualDevice srcDevice;
 protected int srcPort;
}

premo.std.part4

premo.std.part2

SimplePREMOObject

Figure 7-3 — PREMO Primitives: Top Level

Primitive

Modifier

Structured

Captured Tracer

ReferenceForm

Wrapper

171
7.2.4 Form Primitives

In contrast with captured primitives, where the presentation has been encoded in some
internal format, the presentation described within a form primitive has to be somehow
synthesised. For example, a graphical model might be described in terms of the geom-
etry of polygonal surfaces. The actual appearance of the geometry as it is presented to
an end user must then be synthesised from this geometric model, possibly taking into
account other primitives such as visual modifiers (Section 7.2.6) that could alter the ap-
pearance of the geometry. The Form object type is abstract:

public class Form extends Primitive {}

In general, subtypes of Form can be said to describe structures in visual, audio, haptic
or temporal space using the abstractions that characterise the space. For example, geo-
metric primitives are usually described in terms of spatial coordinates or operations on
simpler spatial structures (e.g. extrusions). The hierarchy of Form primitives is shown
in Figure 7-4. Additional kinds of form primitives could be added in future to include
other categories such as olfactory and taste (for example, olfactory rendering has poten-
tially valuable applications in perfumery). The various specialisations of Form are de-
scribed in the remainder of this section.

Audio Primitives

Audio rendering is now developing into a discipline in its own right, and involves a
range of issues that go beyond the scope of this book or indeed PREMO. Some forms
of audio presentation can be expressed as captured primitives, for example an ALAW
file which carries a recorded signal. Other forms of audio primitive however represent
an abstract encoding of audio information. Synthesized sound can be described using
some abstract representation that operates in terms of the constituents of the sound. It
can be divided into two general categories, music and speech. In the case of music, a
typical example of a representation used for synthesized and sampled sound is MIDI.
In PREMO, a music primitive contains information about the kind of instrument to be

premo.std.part4

Figure 7-4 — PREMO Primitives: Form Hierarchy

Form

GeometricAudio Tactile

SpeechMusic

Text

172
used in realising the sound, plus the data that represents the encoding of the music.
Speech on the other hand consists of some textual representation of the words to be ut-
tered. Other characteristics of speech, for example properties of the voice that should be
used to render the text, are represented through a VocalCharacteristic object. This
is an example of a PREMO modifier primitive, to be discussed in Section 7.2.6. The
PREMO Audio, Music and Speech primitives are defined below.

public class Audio extends Form {}

public class Music extends Audio {

 public int instrument;

 public int score;

}

public class Speech extends Audio {

 public VocalCharacteristic voice;

 public String text;

}

By using Aggregate and TimeComposite objects to organise audio primitives into
larger structures, more sophisticated sound characteristics can be described, for exam-
ple by combining a number of audio primitives and acoustic effects into a score.

A MIDI hierarchy could be defined as an extension of the Audio primitive in order
to integrate MIDI more directly into PREMO presentations, also allowing generation of
MIDI scores with the use of PREMO primitives. This way, MIDI could be integrated in
a PREMO presentation either as a captured primitive or a MIDI primitive.

Geometric Primitives

Geometric primitives have already been used in this chapter to explain some of the dif-
ferences between PREMO and other standards, particularly in computer graphics. The
intention of the PREMO designers is that the geometric primitives used by a renderer
or needed by an application will be defined as subtypes of Geometric:

public class Geometric extends Form {}

For an object-oriented model of primitives, such as for example those underlying Open
Inventor [89], the PREMO Geometric class would effectively become the top of the
hierarchy.

7.2.5 Tactile Primitives

Tactile primitives describe parameters of touch-based interactions, for instance, tem-
perature, thermal conductivity and hardness. They are present to support developments
in haptic rendering, see for example [76].

public class Tactile extends Form {}

173
Text Primitives

Text in computer graphics is typically used to label drawings, or, in the case of logos or
other forms of advertising or labelling, as a geometric primitive in its own right. For a
multimedia presentation, text has potentially wider roles, including for example subti-
tles on a video stream, or captions on figures or images. At an abstract level, a PREMO
Text primitive simply contains a character string that is to be rendered on some display.
No statement is made about properties of the text such as font, size, style or the direction
in which it is drawn.

public class Text extends Form {
 StringBuffer characters;
}

Facilities for structured and/or formatted text can be realised by PREMO applications
in at least two ways. Subtyping can be used to extend the text primitive or to indicate
that the character string contains a particular kind of markup information. For properties
such as font and character size that affect the presentation of the entire string, a new kind
of modifier primitive (see Section 7.2.6) could be defined.

7.2.6 Modifier Primitives

Modifiers in PREMO are a generalisation of attributes within computer graphics. A
Modifier primitive has no perceivable representation itself. Instead, modifiers affect
the presentation of other primitives that are combined with the modifier through aggre-
gation, which is described in Section 7.2.9.1. The modifier object types defined by
PREMO are abstract, and therefore could have all been defined as direct subtypes of
Modifier. The hierarchical organisation, shown in Figure 7-5, reflects the kind of ef-
fect each modifier produces, and the kind of primitives to which it can be applied.

public class Modifier extends Primitive {}

premo.std.part4

Figure 7-5 — PREMO Primitives: Modifier Hierarchy

Modifier

CoordinateAcoustic TimeFrame

VocalCharacteristic

SoundCharacteristic

Visual

Transformation Constraint

Light Material Shading Texture

174

c-
of its
odu-

odi-

 the
es of

 mod-
sen for

r ex-
s of
es:

ne
tions

rimi-
l of

ic co-
 sub-

n the
r in
ation
n are
itive.
Acoustic Modifiers

Acoustic modifiers alter the presentation of captured or synthesised sounds. Two kinds
of acoustic modifier are represented by abstract subtypes of Acoustic.

• A SoundCharacteristic is a modifier that is defined in terms of the physical chara
teristics of a sound, for example its amplitude, envelope or other properties
waveform. It could also represent the properties of a waveform which in turn m
lates another, e.g., a sawtooth wave which modifies the amplitude (another m
fier) of a sound.

• A VocalCharacteristic is a modifier that applies to synthetic speech, and affects
way in which the constituents of a given speech object are realized. Exampl
possible vocal characteristics include sex, age, intonation and dialect.

The Java class definitions are again abstract. How information about acoustic
ifiers is represented in a concrete class may depend on the representation cho
sound within any Audio primitive, or within a captured audio stream.

public class SoundCharacteristic extends Acoustic {}
public class VocalCharacteristic extends Acoustic {}

Structural Modifiers

Structural modifiers affect the interpretation of coordinate values representing, fo
ample geometric structure or time, within some collection of primitives. Two kind
structural modifiers have been identified, and are represented explicitly as subtyp

• Transformation objects, which include, but are not limited to, the common affi
and projective transformations. These include the ‘standard’ geometric opera
such as translation, scaling, rotation and shearing.

• Constraint objects that serve to constrain the appearance of other geometric p
tives. Constraints may be used to implement clipping, shielding, culling, leve
detail objects or the definition of stencils.

Concepts of transformation and constraint can also be applied to non-geometr
ordinates such as time, or colour. The structural modifier primitive and the given
types are abstract object types:

public class Structural extends Modifier {}
public class Transformation extends Structural {}
public class Constraint extends Structural {}

The structural modifications supported by a given application will depend in part o
dimensionality of the primitives used (see Section 7.3). Applications may also diffe
whether they support an explicit representation, for example encoding a transform
as a matrix, or an implicit approach in which the parameters for the transformatio
stored in the primitive and are then extracted by the device that processes the prim

175
TimeFrame Modifiers

While the approach used by PREMO to represent multimedia presentations does not ex-
plicitly use any notion of a temporal primitives, the TimeComposite primitive and its
subtypes that are described in Section 7.2.9.2 do refer to time units. In a distributed set-
ting different clocks may be available, offering varying degrees of accuracy, and with
different concepts of the current time. References to time within the description of a
multimedia presentation must therefore be reconciled against some clock, and indeed
different parts of a presentation may need to refer to distinct clocks. Rather than require
that every reference to a time unit be accompanied by a reference to a clock, the MRI
component provides a modifier, TimeFrame, that contains a reference to a clock. This
can be combined with primitives using for example the Aggregate object type (see
Section 7.2.9.1) to indicate that when processing the presentation, the media processor
should use the clock given by the primitive.

public class TimeFrame extends Modifier {}

Visual Modifiers

Visual modifiers in PREMO represent information that a renderer uses to affect the sur-
face appearance of geometric primitives. In a graphics renderer, this encompasses ma-
terial properties, settings such as colour and line width, and rendering parameters such
as the shading model employed. Like other PREMO modifiers, these need to be com-
bined with appropriate primitives through some form of aggregation. All visual modi-
fiers are abstract object types.

public class Visual extends Modifier {}

public class Light extends Visual {}
public class Shading extends Visual {}
public class Texture extends Visual {}
public class Material extends Visual {}

1. Light is an abstract supertype for properties related to light. PREMO makes no
commitment to any specific lighting model. It is up to an application to extend this
type in a suitable way.

2. Shading is intended to represent information about the shading model or parame-
ters that should be used to render some or all of a primitive structure.

3. Texture supports the definition and use of information representing surface detail,
for example texture or bump maps.

4. Material is defined as a container for properties such as translucency and trans-
parency.

176
7.2.7 Wrapper Primitives

Although it is not stated or required in the PREMO standard, primitives derived from
many of the PREMO primitive object types can describe a multimedia presentation. An
application may also want to treat input as a stream of primitives, and it is therefore use-
ful to allow for this in the MRI component. However, there is even less consensus about
input primitives than about output, in part because of the growing range and variety of
output devices that are available. Rather than attempt to structure the space of values
returned by input devices, PREMO provides a primitive called Wrapper that encapsu-
lates an arbitrary non-object value. In the standard, the value carried by a Wrapper ob-
ject is required to be of the non-object type Value that represents the union of the
possible non-object types. As noted in Section 5.2.1, this union type is represented in
the Java binding by the Object class:

public class Wrapper extends Primitive {
Object content;

}

The data carried by a wrapper primitive will typically represent the measure obtained
from some input device (e.g. the position of a locator as a Coordinate object, or the
position of a valuator as a real value (represented by a Java Double object).

7.2.8 Tracer Primitives

The Tracer primitive is distinct because rather than defining it as a starting point for de-
riving application primitives, it has been defined as an object type to help the MRI com-
ponent make use of the MSS facilities. A Tracer object contains a single variable that
refers to an Event object (defined in Section 5.3.2.1):

public class Tracer extends Primitive {
public Event trace;

public Tracer(Event trace) {
this.trace = trace;

}
}

The eventName attribute of the event is set to "TracerEvent", and the event-
Source attribute is set to reference the Tracer primitive object in which the event is
contained. This linking of the event to the containing Tracer object can be facilitated
by the constructor.

The role of Tracer primitives will be explained when we describe MRI devices in
Section 7.4. Briefly however, they allow such devices to determine the progress of prim-
itives through a network built from the MSS components. We note in closing that when
using Tracer primitives to monitor progress of data through a network, one must be
aware that sending and processing a Tracer will itself require some finite time, which
have to be taken into account when using these for synchronization. However, this du-
ration is likely to be small in comparison with the time needed to process the data actu-
ally used to generate a presentation.

177

 that
erlying
iting
7.2.9 Structured Primitives

The object type Structured is defined in PREMO as the supertype of a group of object
types, shown in Figure 7-6, that group together a number of simpler primitives. There
are two main reasons why we want to group primitives, which are reflected in the two
branches of the hierarchy below the supertype:

1. We may wish to group form or captured primitives with modifier primitives, to
define or delimit the scope over which the modifier is applied, or simply to provide
a level of hierarchy in the construction of the model.

2. We may wish to build an overall multimedia presentation by arranging primitives
within some framework which indicates the order in which presentation should
occur, and any temporal constraints that apply.

All structured primitives contain a collection of primitives, which in the Java model are
stored as an array of Primitive objects. Each structured primitive also contains a
Name object. For the present, it suffices to say that this provides a way of labelling the
primitive. The role of Name is explained in more detail in Section 7.2.10.

public abstract class Structured extends Primitive {
Primitive[] components;
Name label;

}

Note that any type of primitive can be a member of components, including further struc-
tured primitives. The standard does not explicitly rule out the creation of cyclic struc-
tures, so an implementation need not test for cycles when adding new primitives. The
order in which primitives are stored as a component of a structure may be significant
for some applications.

7.2.9.1 Aggregate Primitives

Most graphics API’s provide some means of organising primitives into structures
can be reused in multiple contexts and can be edited to reflect changes in the und
model (e.g. structure editing in PHIGS [29]). Aggregates also have a role in delim

premo.std.part4

Figure 7-6 — PREMO Primitives: Structured Hierarchy

Structured

Aggregate TimeComposite

Sequential ParallelAlternate

178

.g. a
 to de-

ture

s
cause

ient
rimi-
IDI
 dis-
n of

re-
mula-
n in

 ac-

gation
as
cause
ple-
the effect of transformations or attributes. For example, as shown in Figure 7-2, a
‘group’ node in Open Inventor can be used to combine geometric primitives (e
sphere) with a property node that, for example, sets the material properties used
termine the appearance of the sphere when rendered.

Aggregates in PREMO allow a number of primitives to be combined into a struc
without imposing an interpretation on the meaning of the structure. The Aggregate ob-
ject type does not add features to the Structured object type, but is intended to act a
a marker to show that this collection of primitives has been grouped together be
the group conveys some meaning to a renderer.

public abstract class Aggregate extends Structured {}

Aggregate itself places no interpretation on its components. This will not be suffic
in general because there are different ways of interpreting a given collection of p
tives. For example, the combination of a 3D point (a geometric primitive) and a M
file (a captured primitive) could either be rendered by displaying the point on some
play and playing the contents of the file, or by interpreting the point as the locatio
the sound within the scene when 3D audio rendering is employed.

Although an Aggregate contains a sequence of primitives, PREMO does not p
scribe the order in which modifiers are applied, and whether or not they are accu
tive or override previous modifications. For example, in the two hierarchies show
Figure 7-7, there is no requirement that Mod-A be carried out before or after Mod-B, and
in the case of the second hierarchy, whether in fact Mod-B overrides any effect of Mod-
A on the primitive P. Thus, the precise semantics of aggregation will depend on the
tual renderer or device used to process the data. Different subtypes of Aggregate may
be created to designate different effects. In particular, some models conflate aggre
with modification; a VRML [54] Transform node for example would be considered
both a modifier (a transformation) and an aggregate in the PREMO framework, be
the transformation specified by the node is applied to each of its children. An im
mentation of VRML that is built on the PREMO primitives could implement a Trans-

form class by subtyping from both Aggregate and Transformation.

Aggregate

Modifier

Mod-A P Primitive

Key:

Mod-B Mod-A

PMod-B

Figure 7-7 — Scope of modifiers

179

pres-
 is de-
d

nts in
ms of
-
d by

hin
d.
y be
nd
 infi-
eces-
 Java
ing
7.2.9.2 TimeComposite

Although animation is a fundamental area of application for computer graphics, most
graphics renderers operate on primitives that make no reference to time. Instead time is
handled by separate language or system dependent mechanisms. This implicit approach
is not satisfactory when we extend the presentation model towards dealing with multi-
media data in general. Time and temporal extent are fundamental to multimedia pres-
entation and, in general, a multimedia presentation will consist of media data that need
to be synchronized. Time affects multimedia presentation at a number of levels. For ex-
ample, the time at which a primitive is presented may be adjusted dynamically to satisfy
quality of service requirements, while synchronization requirements might be realized
by placing synchronization elements in TimeSynchronizable components of a PREMO
system. Time thus plays a specialised role within multimedia which is not reflected, for
example, in geometric coordinate spaces. Object types that define and manipulate tem-
poral aspects of a presentation must therefore have a standard and efficient means of
representing and accessing this information.

Object types for working with time at a low level have been described in Chapter 5.
At the level of the MRI component, we are concerned with how a multimedia presen-
tation is “laid out” in time. This information is represented in the TimeComposite ob-
ject type and three specific subtypes. TimeComposite is itself a subtype of
Structured, and therefore contains component primitives that are parts of some
entation. Exactly how the presentation of such components should be coordinated
fined in the subtypes of TimeComposite. PREMO recognises sequential, parallel an
alternative composition, the meaning of which are defined later. All TimeComposite

objects have certain characteristics, present in the superclass as shown below:

public class TimeComposite extends Structured {
long min, max;
long startTime, endTime;
Callback monitor;

}

All TimeComposite objects contain a reference to an event handler (the monitor var-
iable) that can be used in a PREMO system to keep track of when significant poi
the structure of a presentation have been reached during rendering or other for
processing. Subtypes of TimeComposite define particular points in their temporal lay
out at which the monitor will be notified of an event when they are being processe
a suitable kind of device. The other components of the TimeComposite class are as
follows (please refer also to Figure 7-8):

1. min and max are time values (i.e. numbers of ticks) that define a duration wit
which the contents of the TimeComposite object should be presented / processe
The clock used to measure this interval is not specified by the primitive; it ma
given by a TimeFrame modifier somewhere in the specification, or it may depe
on the context in which the primitive is processed. The standard allows for an
nite interval, in which case an implementation is free to use as much time as n
sary to process the components. This possibility has not been included in the
binding described here, as it would complicate the definition of time without add

180

s the

ion or
ld be

is

-

much illumination. The simplest approach would be to create a Java class which,
like the built-in java.lang.Double class, defines constants that may be used to
denote plus or minus infinity. In cases where the interval is finite, processing
devices will need to deploy a suitable strategy to ensure that presentation takes
place within the specified bounds. To keep activity within the allowed maximum
interval, a device may need to use the temporal flexibility allowed for within the
component primitives, or may have to degrade the quality of service that it pro-
vides. In the case that the processing cannot be performed at a required quality of
service within the time allowed, the device may take some application-dependent
action, for example raising an exception or aborting the task.

2. startTime is an offset that allows some latency between the point at which a proc-
essor receives a structured primitive and when it begins to operate on the first of its
components. An event should be generated once the startTime offset has elapsed,
and be sent to the event handler designated by monitor. The event name is set to
"compStart", and the data consists of a single key–value pair that associate
key "TimeComposite" with a reference to the TimeComposite object being
processed. The event source is set to the processing device.

3. endTime is an offset between the time that the last component of a TimeCompos-

ite is processed, and the time at which processing of the TimeComposite itself is
deemed to be complete. It allows a processing device to carry out any finalisat
housekeeping before the end of the period in which the composite media shou
processed has elapsed. As with the startTime offset, an event is generated, in th
case on completion of the presentation of the components, before the endTime

delay begins. The event is similar to that used for startTime, except that the event
name field takes the value "compEnd".

Each of the three subtypes of TimeComposite inherit these features but process com
ponents in a different manner.

startTime endTime

clock

components

Figure 7-8 — Attributes of a TimeComposite primitive

"compStart" event "compEnd" event

monitor

max

min

181

g”
 prim-

etail
-9.

om-
mpo-
er

 key–
7.2.9.2.1 Sequential

In a sequential presentation, each component of the structured primitive is presented in
turn, in the order in which they appear in the component array. A typical example of
this kind of composition would be a film, with a title, content, and then credits, or a busi-
ness presentation consisting of a sequence of slides or segments of other media. The
overall structure of the sequence is given by the state inherited from TimeComposite;
the PREMO Sequential object type adds attributes that specify temporal “paddin
between the constituents, and describes how, if at all, the contents of component
itives might be allowed to intrude into this padding or indeed be truncated.

public class Sequential extends TimeComposite {
long startDelta, endDelta;
OverlapType overlap;

}

startDelta and endDelta both represent intervals of time; overlap is an enumer-
ated type that effectively has three possible values: left, right and never. Its imple-
mentation follows the scheme set out in Section 5.2.2, and will not be given in d
here. The meaning of the attributes is explained below, with reference to Figure 7

1. startDelta defines an offset between the time that a device selects the next c
ponent of the primitive to process, and the time at which processing of that co
nent begins. At the end of startDelta an event is sent to the event handl
referenced by monitor (inherited from TimeComposite). The event name is
"seqStart", the source is the processing device, and the data consists of two

component of a TimeComposite

start-delta

end-delta

overlap:

never

left

right

Figure 7-9 — Organisation of a Sequential TimeComposite primitive

182

 of all
or
tion is

how

the
value pairs: the key "sequential" is bound to a reference to the Sequential
primitive, and the key "position" is bound to the index of that component within
the sequence of components.

2. endDelta is an offset between the time a device completes processing the data of a
component, and the time at which it selects the next component. An event is gener-
ated once the component data has been processed, before the start of the delay. The
structure of this event is similar to that used for startDelta, except that the event
name takes the value "seqEnd".

3. The values taken by the overlap attribute define how, if needed, the delays on
either side of a Sequential primitive component can be used when processing a
component.

3.1. The value left allows a processing device to reduce the endDelta delay allo-
cated to a component to allow additional time to complete processing of the
data associated with that component. If by using all of the endDelta buffer
there is still insufficient time to process the data as required, some application-
specific action such as raising an exception, or an event, may be taken.

3.2. The value right allows the startDelta buffer to be reduced to provide addi-
tional processing time for the component data.

3.3. An overlap value of never requires a device to respect the startDelta and
endDelta offsets for all components.

It may seem that a processing device requires some form of oracle to determine
whether or not to intrude into start or end deltas when it is allowed. If a device is
processing a continuous data stream directly, it may not be able to use overlap infor-
mation. The main role of this information, however, is to inform devices such as the
Coordinator (see Section 7.7) that may schedule the components of a structured
media primitive before carrying out the processing according to that schedule.

7.2.9.2.2 Parallel

Parallel presentation of data is one of the hallmarks of multimedia, for example video
and audio, or audio and animation (synthetic graphics). Indeed, separate elements of an
animation can be seen as parallel ‘tracks’ of synthetic graphics. The presentation
components of a Parallel primitive occur concurrently. Even in a single-process
system where presentation is by necessity realised through time slicing, the inten
usually that the media streams be perceived as truly parallel.

public class Parallel extends TimeComposite {
boolean startSync, endSync;

}

The Parallel object type introduces two boolean-valued attributes that describe
processing of the starts and ends of the component primitives should be aligned.

1. When startSync is true it indicates that the presentation of all components of
Parallel primitive must start at the same time. When it is false, a processing

183

-

r-
 ap-
 will
device can impose a delay before commencing to process some of the components.
Such a delay may be helpful if startSync is false but endSync is true.

2. When endSync is true, it indicates that the presentation of all components of the
primitive should end at the same time. Otherwise, processing of components can
end at arbitrary times.

The interplay between startSync and endSync is shown in Figure 7-10. Note that
here, as with Sequential, devices that carry out a scheduling step before processing
media content will benefit the most from this information. In the case that both start-
Sync and endSync are true, a device may have the freedom to realise this requirement
by altering how it processes the media content. For example, if a component is itself a
TimeComposite primitive, the various delays or temporal buffers within the primitive
might allow the presentation to be stretched or compressed to fit the required interval.
For other media, sampling or interpolation of content may be possible. However, there
is no guarantee that a device will be able to satisfy such a constraint, and in all cases the
startSync and endSync flags are understood not as hard constraints, but as requests
for a device to make the “best possible” effort to align the processing.

The temporal extent of a Parallel primitive is taken to be the maximum of the ex
tents of its components. When a component of a Parallel primitive is presented, and
one of startSync and endSync is false, the “gap” between the start/end of the ove
all presentation, and the start/end of that primitive’s presentation, will be filled in an
plication-specific way. For example, the unused time allocated to an audio stream

Figure 7-10 — Organisation of a Parallel TimeComposite

startSync endSync

false

true

true

false

false

true

true

false

184

t be

-

 primi-
assed
tech-

of an

ect is
ralises

te of

ex of
usually be filled with no sound at all. For a video stream, the video presentation might
be “switched off” to leave a blank display area, or the final frame of the video migh
continued until the remainder of the Parallel primitive has been presented.

7.2.9.2.3 Alternate

Unlike the Parallel and Sequential primitives, in which each component is proc
essed and presented, only one of the components of an Alternate primitive is proc-
essed by a given device. The component is selected based on the state of a Controller

object, referenced from within the primitive (the Controller object type is described
in Section 5.4.2). The state is checked by a device when it begins to process the
tive. Clearly care is needed when changing the state if the primitive is being p
through a network of devices. There are a number of well known applications or
niques that can be implemented using a facility such as that provided by Alternate,
including:

• interactive media, where user input determines the presentation content

• alternative presentations, for example providing a text option to use in place
image if a device is incapable of displaying that image

• level-of-detail objects, where a representation of, for example, a graphical obj
selected based on the distance between the object and the viewer – this gene
to other media such as audio.

The definition of the Alternate type is as follows:

public class Alternate extends TimeComposite {
Controller selector;
AlternateSequence[] options;

}

The decision over which component primitive to process is determined by the sta
a Controller object referenced by selector. Because the states of a Controller

are identified by strings, there is a need to define a mapping from a string to an ind
a primitive within the component sequence inherited from TimeComposite. This
mapping is defined in the Java binding as an array of AlternateSequence objects,
each of which contains a string, and an integer:

optionsselector

stateA 1

stateB 2

stateC 3

stateD n

stateA

stateB

stateC

...

Figure 7-11 — Organisation of an Alternate TimeComposite primitive

stateD

components

185

e in
tions,
ructure
[89],
O
 a

, it
r im-

hat is
rms)

 a
nism

pend

es or
or ge-
ry to
class AlternateSequence {
String state;
int stateValue;

};

An AlternateSequence object with state s and stateValue i within the options
array indicates that, when selector is in state ‘s’, the primitive components[i]
should be used. This arrangement is illustrated in Figure 7-11. The AlternateSe-

quence class is local to Alternate.

7.2.10 Reference Primitives

A fundamental technique in computer graphics is to define a modelling primitiv
some local coordinate system, and then re-use this primitive, subject to transforma
in various parts of a scene. This approach is supported by mechanisms such as st
invocation in PHIGS [29], multiple references to scene objects in Open Inventor
or the DEF/USE facilities in VRML [54]. This capability is reflected in the PREM
model through Reference primitives. These define an implicit link to some node in
structured presentation through a single variable which references a Name object. Name
objects can be associated with any subtype of Structured, and a Reference primi-
tive is thus interpreted as a link to the Structured node that contains a matching Name.

public class Reference extends Primitive {
Name label;

}

As PREMO is intended to interoperate with different sets of modelling primitives
provides a generic mechanism for dealing with naming, that can be interpreted o
plemented in a number of different ways. The label of a Name object consists of a se-
quence (i.e. array) of strings, and the object type provides a method, equal, t
required to return boolean value indicating whether or not the receiver (in Java te
and the parameter should be considered to represent the same name.

public abstract class Name extends SimplePREMOObject {
 String[] tag;
 public boolean equal(Name otherName);
}

By allowing for sequences of strings, the Name object type can be used to implement
directory-like naming scheme (where the order of names is important), or a mecha
like the GKS name set [48]. What PREMO does not define is how, given a Name prim-
itive and some hierarchy of primitives built from Structure and its subtypes, the
search for a matching name takes place (e.g. breadth first, depth first). This will de
on the renderer or media processor operating on the primitives.

7.3 Coordinate Spaces

PREMO primitives are abstract, so they do not contain explicit reference to valu
structures that characterise media data, for example vertices, normals or colour f
ometric data, volume or frequency for audio data, etc. However, it is still necessa

186

ent.
erties
etric

f this
 accept
ve a
 to the

roper-
 PRE-

e di-
hould

eneric
ompli-
d that

dimen-

nge is

 about
what
at

 range
cking
ing so

nsion
have some way of characterising “low level” media data within the MRI compon
The reason is that different devices that process MRI data may wish to define prop
in terms of the primitives that they can accept or produce. For example, a geom
modeller may produce output in either 2, 3 or 4 dimensional space. If the output o
modeller is to be passed to a renderer, it is important that the renderer be able to
primitives defined over the appropriate space. Similarly, it is convenient to ha
shared notion of how points in absolute coordinates are referenced (as opposed
relative durations or intervals used in the TimeComposite primitives).

7.3.1 Coordinate

To support property-based negotiation between devices, and the description of p
ties, such as absolute time, that are defined within some coordinate framework,
MO introduces the concept of a Coordinate object:

public abstract class Coordinate extends SimplePREMOObject {
static int dimensionality;
public int getDimensionality();
abstract public double[] getRange(int dimension);
abstract public void setComponent(int dimension, double value);
abstract public double getComponent(int dimension);

}

A Coordinate object represents a point in an n-dimensional coordinate space. Th
mensionality of the space is given by a read-only attribute of the object type, and s
be fixed by subtyping from Coordinate. In the standard, Coordinate is defined as a
generic type; the values that appear in the various dimensions are drawn from a g
parameter that can be instantiated to some arbitrary (ordinal) type. Rather than c
cate the Java binding by incorporating this level of generality, we have assume
each dimension of the Coordinate object type is a double value. Three operations
can be used to get / set attributes associated with each component (i.e. a given
sion) of a Coordinate:

1. The range of values that can be stored in a dimension can be queried. The ra
represented by a minimum and maximum value, stored as a 2-element array.

2. The value of a component can be set.

3. The value of a component can be enquired.

The standard does not define the result of attempting to access or set information
a component outside the dimensionality of a given primitive, nor does it state
should happen if setComponent is called with a value outside of the range for th
component. The reason for this is that for applications that use Coordinate objects for
large-scale data sets, the overhead of checking that values are within a specified
may be prohibitive. Therefore, PREMO provides an interface that allows such che
to be carried out, but leaves it to an implementor to decide whether the cost of do
can be justified. Of course, an implementation could define a subtype of Coordinate

that does in fact implement the check and takes some appropriate action if a dime
or component value falls out of bounds.

187
7.3.2 TimeLocation

Two specific kinds of coordinate space are defined in MRI component as subtypes of
Coordinate. The first, TimeLocation, is a 1-dimensional space that represents loca-
tions in time by a number of ticks relative to some clock. The clock is not specified as
part of the TimeLocation object because the storage overhead would be prohibitive
for some applications. Those that wish to keep an explicit link to the reference clock can
subtype TimeLocation and include a reference to a Clock object.

abstract public class TimeLocation extends Coordinate {
 static {
 dimensionality = 1;
 }
}

The TimeLocation class simply fixes dimensionality to be 1.

7.3.3 Colour

To provide devices with a minimal capability to negotiate colour models, an object type
called Colour is defined which represents a point (i.e. a colour) within a specified 3-
component colour model. The colour model is defined as a read-only attribute of a col-
our object, and can take on one of four values: RGB, CIELUV, HSV, and HLS. The fact this
is a minimal framework for describing colour is reflected in the lack of support for an
alpha channel.

abstract public class Colour extends Coordinate {
static {

dimensionality = 3;
}
public String getColourModel();
public void setColourModel(String newColourModel);

}

A number of constants are defined in the standard to provide symbolic names for the
components of each colour model, for example ColourRGBR, ColourRGBG, Colour-
RGBB are numerical constants that map the three dimensions of RGB colour space into
dimensions of a PREMO Colour object.

7.4 Devices for Modelling, Rendering and Interaction

The MSS component defines the concept of a virtual device and provides a collection
of object types whose services support the implementation of a network of devices.
However MSS makes no commitment about the content carried on the streams that link
devices. As explained in the introduction to this chapter, the MRI component uses the
VirtualDevice concept as a basis for specialised processing devices, as shown in
Figure 7-1. Having described the PREMO model of multimedia content, we can now
introduce the kinds of devices that can operate on that content.

188
7.4.1 MRI_Format

The devices defined in the MRI component for processing media data form a hierarchy
that extends the VirtualDevice type of MSS. As shown in Figure 7-12, all such de-
vices in the MRI component extend the type MRI_Device. Because all devices defined
in the MRI component are virtual devices, they can be integrated into the kind of
processing network supported by MSS, and where sensible, can interoperate with me-
dia-specific devices. The characteristic of an MRI device that distinguishes it from oth-
er kinds of virtual devices is that it has at least one port at which it can accept or produce
a stream of primitives that are derived from the Primitive object type described ear-
lier in this chapter.

Recall from Chapter 6 that each format that can be accepted or produced by a Vir-
tualDevice at a given port is characterised by a Format object. Although the MRI
component does not prescribe how primitives are transported across media streams1), it
does define an object type, MRI_Format, that represents a specialisation of the MSS
Format object type for representing information about the transport of MRI data. Two
properties are associated with MRI_Format objects and can be used, as with any other
property, to negotiate the setup of an MSS network.

1) One way of handling this in the case of the Java binding is to use Java serialization and to use
java.io.ObjectOutputStream and java.io.ObjectInputStream to write and read the primitives.

premo.std.part4

premo.std.part3

VirtualDevice

Figure 7-12 — MRI_Device hierarchy and MRI_Format

Renderer

InputDevice

Modeller Scene

MediaEngine

Router

Format

MRI_DeviceMRI_Format

Coordinator

premo.std.part2

Controller

189

nd”),

ome
e of a
h

ked
The data type DimInfo is used to represent the combination of a primitive type (repre-
sented in Java by a Class object) with an integer representing the dimensionality of that
kind of primitive. It is implemented in Java as a simple class. Note that an implementa-
tion should ensure that the Class object stored as primitiveType corresponds to
Primitive or one of its subtypes.

public final class DimInfo implements java.io.Serializable {
public Class primitiveType;
public int dimensionality;

}

Each of the properties has an associated capability:

For a specific device, these capabilities define the combination of dimensionality and
kinds of primitive that can be accepted by the device at a particular port.

7.4.2 Efficiency Measures

In a rich multimedia environment, more than one device may be available to process a
given set of primitives. Other constraints aside, one way of selecting among devices is
to consider the efficiency with which they can process different kinds of primitive.
Rather than attempt to prescribe some particular metric (e.g. “polygons per seco
an MRI device is equipped with an EfficiencyMeasure object. This object has two
roles:

1. It provides a location where information about the efficiency of the device for s
given characteristic can be stored. PREMO does describe how the performanc
device is to be encoded. EfficiencyMeasure objects should be associated wit
particular property keys of a device.

2. It defines an operation that accepts an EfficiencyMeasure (from another device)
and produces one of four results: worseThan, equivalentTo, betterThan,
notComparable. The result indicates how the receiver’s device should be ran
relative to the argument’s device in terms of the criteria on which the Efficien-

cyMeasure is defined.

Key Type Read–only? Description

DimensionsK DimInfo[] no The dimensionality of the
space in which a given kind
of primitive will be defined.

PrimitivesK String[] yes The kinds of primitive that
can be accepted by the port.

Key Type Value

DimensionsCK DimInfo[] Not defined by PREMO

PrimitivesCK String[] Not defined by PREMO

190
The definition of the interface is given below:

public interface EfficiencyMeasure {
public ComparisonRes compare(MRI_Device alternative);

}

For completeness, here is the enumerated type:

public final class ComparisonRes
extends premo.impl.utils.PREMOEnumeration {

public static ComparisonRes worseThan;
 public static ComparisonRes equivalentTo;

public static ComparisonRes betterThan;
public static ComparisonRes notComparable;

}

7.4.3 MRI Device

The main difference between the interface of VirtualDevice and that of
MRI_Device is the presence of ports that accept MRI_Format, it should not be surpris-
ing to find that this is the focus of the main behavioural difference between the two
types. When a port of an MRI_Device is configured to use MRI_Format (either for in-
put or output), the device is required to monitor the primitives passing through the port.
When a Tracer primitive is encountered, the event associated with the Tracer is dis-
patched to the event handler associated with that port.

This behaviour is motivated by a need to track the progress of primitives through a
processing network. For media such as video that is transmitted as frames of an absolute
size, the StreamControl object type associated with a device port can provide a meas-
ure of progress through the media. Although PREMO does not define the structure of
the format used to communicate primitives across streams, in practice we expect most
approaches to work by serializing the primitive and then using some form of object
stream. In this case, it is more difficult to measure the progress of the transfer. Further-
more, the stream facilities provided by the MSS component provide no built-in means
for acknowledging receipt, so the sender must make its own arrangements to be in-
formed when media data has successfully arrived. It can do this by registering itself with
the event handler of the port to which it is sending MRI primitives, and then placing a
Tracer primitive on the stream to that port immediately after media data. MSS streams
are required to preserve the order of content, so when the sender is notified of the arrival
of the Tracer primitive, it means that the preceding primitive has also arrived.

MRI_Device places no requirements on whether MRI_Format is supported on input
ports, output ports, or both. The constraints on what type of port needs to be
MRI_Format capable are encapsulated within specialised devices, which are consid-
ered next.

7.4.4 Modeller

Modeller is an MRI_Device subtype for which at least one output port is capable of
supporting MRI_Format. The PREMO concept of modeller is a generalisation of that
found in computer graphics, where a modeller is a software package or interface that

191
allows the creation of primitives, typically via specialised operations or services provid-
ed by the software. In PREMO terms, a modeller is a device that accepts input in some
form undefined within the MRI component, but which can produce MRI primitives as
output. It thus serves as a bridge from the application world into MRI devices and
processing. Because the differences between MRI_Device and Modeller are in the re-
sources that an object of the type provides, the Java interface for the Modeller is trivial:

public interface Modeller extends MRI_Device, java.rmi.Remote {};

One property is defined for this object type.

EfficiencyOutK gives, for each primitive that the modeller can produce, an Effi-
ciencyMeasure object that can be used to compare this modeller against another. A
Java class, EffInfo, provides a data type for coupling a primitive type with an Effi-
ciencyMeasure object.

public final class EffInfo implements java.io.Serializable {
public Class primitiveType;
public EffiencyMeasure efficiency;

}

EfficiencyOutK is clearly most useful when the primitives are being generated com-
putationally, rather than interactively with some sort of editor.

7.4.5 Renderer

A Renderer is the dual of a Modeller; it is an MRI device that provides at least one
input port that accepts MRI_Format data.

public interface Renderer extends MRI_Device, java.rmi.Remote {};

The PREMO Renderer object generalises the concept of renderer found in computer
graphics. A PREMO Renderer is a device that takes MRI primitives, and processes
them to produce some output that is beyond the scope of the MRI component. It may,
for example, generate a file containing an image stored in some externally specified for-
mat, or may present the processed media data directly to an end-user.

Key Type Read–only? Description

EfficiencyOutK EffInfo[] yes An EfficiencyMeasure
for each kind of primitive the
device is able to produce.

Key Type Read–only? Description

EfficiencyInK EffInfo[] yes An EfficiencyMeasure
for each kind of primitive the
device is able to consume.

192

idden
7.4.6 MediaEngine

An object that can both accept and produce streams of MRI primitives is called a Me-
diaEngine in PREMO, and is a subtype of both Modeller and Renderer. This is re-
flected in the Java binding by having the MediaEngine interface extend both
Modeller and Renderer.

public interface MediaEngine
extends Modeller, Renderer, java.rmi.Remote {}

MediaEngine thus inherits both the EfficiencyInK and EfficiencyOutK proper-
ties that characterise its ability to produce and consume primitives. However, these ac-
tivities are usually coupled: the primitives produced by a MediaEngine will typically
be derived from those that it accepts. A potentially more useful way of characterising
the processing capabilities of a MediaEngine is in terms of its ability to transform or
transmute one kind of primitive into another. This is specified by the TransmutationK
property.

The property value consists of an array of objects, each consisting of a mapping defined
by the types of the input and output primitives, and a reference to an Efficien-
cyMeasure object. Two Java classes are used to define this data type, since Part 4 of
the PREMO standard defines PrimMap as a non-object data type (it potentially has use
beyond this particular role):

public class PrimMap implements java.io.Serializable {
public Class input;
public Class output;

}

public final class MapEff implements java.io.Serializable {
public PrimMap mapping;
public EfficiencyMeasure efficiency;

}

An instance of MapEff in the TransmutationK property of a MediaEngine thus rep-
resents the efficiency with which that MediaEngine can map primitives that are in-
stances of the input object type into instances of the output object type.

7.5 Input Devices, and Routing

A multimedia application developed using PREMO may require input at a number of
levels. The simplest case is when input is required by a specific device, and when that
input can be taken from an input device (e.g. keyboard, mouse) associated with the end
user’s machine. That is, as far as PREMO is concerned, the existence of input is h

Key Type Read–only? Description

TransmutationK MapEff[] yes A measure of the efficiency
with which one kind of prim-
itive can be mapped into
another.

193

orm

st
driven
h input

, that
to the

on a
n may
ired.
er the
 the

of the
 be
ition

vent,
. The
of the
vices

ation.
d via
ferent
within the definition of the device itself. This however may not always be the case. For
example, a speech recogniser operating a remote device may be best thought of as a de-
vice in its own right that produces a stream of data for another processing device. In this
respect, an input device can be seen as a specialised form of Modeller, taking data
from the “outside” world (in this case from an end user) and transforming it into a f
that can be passed around and processed by arbitrary MRI devices.

7.5.1 InputDevice

InputDevice is a subtype of Modeller that is specialised to reflect three of the mo
widely used methods for processing input, namely request, sampled, and event-
modes [29]. The operation of these modes is best understood by considering eac
device to be capable of providing a measure and a trigger. The measure of a device is
its state at some point in time. The trigger is a transition, initiated by the end user
defines a point in time. The interplay between these two concepts is fundamental
different modes:

• In request mode, a client that requires input invokes a synchronous operation
device, and is thus suspended until the device yields a result. The device in tur
need to prompt the end-user to indicate that a particular type of input is requ
The value returned by the input device is the measure at some point in time aft
user has been prompted for input. This point in time is usually specified by
device trigger.

• Input in sampled mode takes place when the client inspects the “current” state
device’s measure. In a distributed context, the term “current” clearly has to
understood with transmission delays in mind. The sample returned is by defin
the measure of the device; the trigger plays no real role in this mode.

• Event driven input takes place when a device trigger is converted into an e
which is then used to notify interested parties that input has become available
measure of the device at the time the trigger occurred can be carried as part
event data. Event mode has become particularly popular for a range of input de
through the widespread use of callback routines.

PREMO supports all three modes through the interface of InputDevice:

public interface InputDevice
extends Modeller, java.rmi.Remote {
public Primitive request();

}

Input in request mode is achieved by invoking the (synchronous) request oper
Sampling is supported by the primitive stream, while event mode is implemente
the event handler associated with the device. A device might generate several dif
events, which a client can inspect via the following property:

Key Type Read–only? Description

EventNamesK String[] yes Event names that this device
can raise.

194

ally
on, or
ack is
ut by
nnec-

is not
ns to
nnec-

ll de-
nput
 to all
rt are

 serv-
-

ller)
 How-
tion is
e a re-
hed by
 for
ected
an be
ec-
ns if
The measure of an event is returned via eventData using suitable object types from
the MRI component. Geometric information, e.g. a location on the display, might be
represented directly as a Coordinate object. More abstract forms of input, for example
a valuator position, can be encoded using a Wrapper primitive.

7.5.2 Router

Workstations, and increasingly, personal computers, are capable of supporting a rich
collection of input devices, many of which can be interchanged (at least conceptually)
for particular logical tasks. For example, picking an item on a “2D” display is usu
accomplished by mouse, but can also be done using a stylus/tablet combinati
could be done using a more powerful device, e.g. a space-ball, where the feedb
constrained. Switching between multiple streams of input data could be carried o
disconnecting the port of one device from another, and then establishing a new co
tion. However, connection establishment is a relatively high-cost operation, and
intended to support this kind of switching. A better way is to establish connectio
possible input devices when a network of devices is set up, and then “switch” co
tions between particular devices. Such a switch, called a Router for obvious reasons,
is defined in PREMO as a subtype of MRI_Device, but also extends the Controller

object type. Like any VirtualDevice derivative, a Router has a number of input and
output ports. The exact number of such ports is not specified in PREMO and wi
pend on specific implementations. Internally, the device keeps track of which i
ports are connected to which output ports. Data arriving on an input port is copied
associated output ports. Data arriving at an input port with no associated output po
simply discarded. By extending Controller, different combinations of routing be-
tween input and output ports can be assigned to specific Controller states. Changing
a collection of routes can then be done conveniently, by using the state-transition
ices from Controller. The top level of the Router interface appears below. Its meth
ods are described separately:

public interface Router
 extends MRI_Device, Controller, java.rmi.Remote { }

A Router must maintain an internal table mapping between ports and (contro
states. Data arriving at an input port may be routed to more than one output port.
ever, each output port should receive data from at most one input port. No restric
placed on the amount of fanout that is possible. Subtypes may choose to impos
striction and broadcast it as a property of such objects. Connections are establis
addConnection, which defines a connection from an input port to an output port
a given state. It will throw an exception if that output port has already been conn
to some input port in that state. An association between input and output ports c
terminated by dropConnection. This only requires that the state and output are sp
ified, since the input port is then unique. Both operations will also raise exceptio
either the ports or state specified as parameters are undefined or inappropriate.

195

t this
ss.

have

 sec-
public void addConnection(String state, int inputPortId,
int outputPortId)

 throws BadPort, BadState, AlreadyConnected;

public void dropConnection(String state, int outputPortId)
 throws BadPort, BadState, AlreadyConnected;

The connections that are defined in a given state can be queried by passing the name of
the state to inquireConnections. Provided the state is valid, the connections are re-
turned as an array of Links objects, each specifying an input port and the output port
to which it is connected in that state.

public Links[] inquireConnections(String state)
throws BadState;

public class Links {
int portA;
int portB;

};

As expected, the definition of the Links class is nested within Router.

7.6 The Scene Database

There are a number of situations where it makes sense to allow multiple devices access
to one or more primitives: In a CSCW (Computer Supported Cooperative Work) envi-
ronment, a group of engineers may be viewing and modifying a shared geometric model
for an engineering design. As another example, a shared simulation environment may
consist of a relatively static model of some landscape, together with more dynamic de-
scriptions of the avatars for each participant. Furthermore, a single-user application
may also benefit from being able to store and access media data via a single interface,
rather than for example use a Modeller and a Renderer to export and import data
from an external source such as a local file system.

Explicit shared access to media data is supported by the MRI component through the
Scene object type, which can be thought of as a database of primitives. Scene is a gen-
eralisation of the Central Structure Store of PHIGS, or the Scene Database of Open In-
ventor. The header of the Scene interface is as expected (the methods will be introduced
in stages):

public interface Scene
 extends VirtualDevice, java.rmi.Remote { }

Like other MRI devices, a Scene object has a number of ports through which media
streams can be received or sent. In the case of Scene, these streams are used to place
media data into the “database”, or to carry such data to a client. The problem tha
raises is how clients of a Scene object should refer to the data that they wish to acce
Manipulation of objects in PREMO is done via object references. Whilst these
been designed from the outset to be transparent regarding distribution, the use of Scene

as a database conflicts with object persistence. Although the Scene type defined by
MRI does not specify that objects stored in it may be saved to and retrieved from
ondary storage, this is a possibility that subtypes of Scene may wish to address. More

196

orting
apping
cility
h-

t port
ng
g a

 data

to the
e that
 how-
 exist,
immediately however, a Scene could be used as part of a server facility; relying on cli-
ents to “discover” references to stored data seems inappropriate. One way of supp
more transparent access would be to have some sort of index or name table, m
string descriptors to stored primitives. However, rather than construct such a fa
from first principles, the design of the Scene object makes use of a pre-existing mec
anism to name primitives – specifically, the Name object associated with each Struc-

tured primitive.
The MRI Scene object thus defines access to media data using Name objects as

search keys. To retrieve a primitive, a client must request a connection to an outpu
of a Scene object, and also specify a Name object that is used to search for a matchi
Name object within a stored primitive. Similarly, media data is stored by definin
Name object that will be associated with that data through a Structured primitive. It
is useful to step through the protocol that a client should use if it wants to store
within a given scene object (the steps are illustrated in Figure 7-13):

1. The client must connect a media stream to an input port, say P, of the scene. The
mechanisms for doing this are inherited from MRI_Device. This is the situation
shown in Figure 7-13(a).

2. There are two cases to consider. In the first, the client is going to write data in
scene database and associate that data with a named structured primitiv
already exists within the database. At this stage, no further action is needed. If
ever the structured primitive to which the data should be attached does not yet
the client must first create it using the following operation:

public void create(Name structName, Object structureType)
 throws AlreadyExists, InvalidType;

Figure 7-13 — Writing to a Scene object

client

scene

client

scene

structName

client

scene

port to node association

client

media primitives

(a) Initial connection (b) Creation of base node

(c) Associating port to node (d) Transferring media data

197

 the

vent,
ted

ive

nt
c-
d in
rimi-
 time.

 han-
f

iation
The first parameter to create gives the name to be associated with the structured
primitive. The second parameter, structureType, is (the name of) the type of
object that should contain the name. The value referenced by structureType
should be the name of a non-abstract object type that is a subtype of Structured,
for example Aggregate or Sequential. If structureType does not refer to a
valid type name, the InvalidType exception will be thrown. The Name specified
by structName must be unique; if a matching Name object already exists within
the database, the AlreadyExists exception is thrown.

Figure 7-13(b) shows the effect after a new primitive has been created to act as the
base for the stream of data from the client. The other circles within the scene repre-
sent primitives that have been created earlier, or by other clients.

3. At this point, we assume that an object exists in the database with a given name (we
will see later how this can be checked by a client). The next step for the client is to
associate the input port of the Scene, to which it will be sending media data, with
the object in the scene database where that data will be attached, as shown in
Figure 7-13(c). It does this by using the attachWrite operation below, giving the
Name object and the port P as parameters.

public void attachWrite(Name structName, int portId)
 throws NoStructure, MultiplyDefined, BadPort, AccessFailure;

structName must occur exactly once in the database. If it doesn’t occur at all,
NoStructure exception is thrown; if it occurs more than once, MultiplyDe-

fined is thrown. Similarly, the exception BadPort is thrown if portId does not
refer to a valid input port of the device. One further exception can arise. Scene, like
any multi-user database, has to carry out some form of locking on data to pre
for example, two clients writing into the same primitive. This issue will be visi
again later, but for now we note that the attachWrite operation may throw an
AccessFailure exception if it is not possible for the client to access that primit
for writing due to the activities of other entities in the PREMO application.

4. Once attachWrite has completed successfully, any primitive sent by the clie
along the stream attached to the port P will be stored as a component of the stru
tured primitive to which the port is attached. Of course, a primitive transferre
this way may itself be the root of a large collection of media data stored as p
tives, and consequently the transfer of data may take a substantial amount of
The client can discover when all of the data has arrived at the Scene by sending a
Tracer primitive (see Section 7.2.8) after the media data, and asking the event
dler of port P to notify it when a Tracer arrives. Figure 7-13(d) shows this stage o
the process.

5. When the client has finished producing media data, it should remove the assoc
between the port from the structured primitive using the detach operation:

public void detach(int portId) throws BadPort;

198
This will result in a BadPort exception if the port referred to by the parameter does
not exist. Using detach on a port that is not associated with any structured primi-
tive has no effect.

Following detach, the connection between the Scene port and the client can be
removed using the mechanisms provided by the MSS component. If this is done
before detach has been invoked, the Scene object may be left in an undefined
state.

Because the protocol for reading data from a Scene database is sufficiently similar to
that for writing that it should not require illustration, we will just outline the steps in-
volved:

1. A connection is established between the client and an output port of the Scene
object. As usual, this is done through MSS services.

2. The attachRead operation is invoked to associate the output port of the Scene
object with some structured primitive within the database. The primitive is specified
by giving a Name object that must match the Name object associated with that of a
structured primitive. As with attachWrite, exceptions are raised if either no
occurrence of the Name is found, or if more than one occurrence is found.

public void attachRead(Name structName, int portId)
throws NoStructure, MultiplyDefined, BadPort, AccessFailure;

Exceptions are also raised if the port specified does not exist (BadPort), or if
another object is attempting to access the same primitive concurrently (Access-
Failure).

3. Once the association between port and primitives has been made, the client requests
that the primitives attached to the structured node it has referenced be transported
from the scene through the specified port. It does this by invoking the transfer
operation on the Scene object. The portId parameter identifies which port is
being used for the transfer, and thus which primitives are to be transferred.

public void transfer(int portId)
throws BadPort, NotAttached;

Following the pattern of previous operations, the BadPort exception applies if the
designated port is inappropriate. NotAttached is thrown if there is no link between
the port and a primitive in the database. The transfer operation is asynchronous;
to indicate completion, the Scene will send a single Tracer primitive through the
output port once the designated primitive has been sent. Arrival of the Tracer at
the port at the other end of the media stream indicates that the primitive has been
transferred. The effect of invoking transfer or any other operation that refers to a
port in use for reading while the primitive has not been fully read is unspecified.

4. When the reading operation has been completed, the client should invoke detach
before the MSS services are used to terminate the connection (if that is appropriate
at this point).

199

im-
rim-

g

te

:

tion of
well

ing
 be-
lock-
 rows

ent
ill be

urrent
ation

lar-
me-
hat,
e

Two further operations are defined in Scene interface. The delete operation is given
a Name object, and will try to remove that object, the structured primitive that contains
it, and any component of that structured primitive from the database. Furthermore, it
will remove all such occurrences of the name from within the database. Note that the
name need not belong to a “top level” node in the database, it may be a Name object
associated with some structured primitive buried within a hierarchy of primitives. S
ilarly, reading and writing can take place at an arbitrary node within a structured p
itive. If no occurrence of the name could be found, the NoStructure exception will be
thrown. The Locked exception will result if the primitive that contains the matchin
Name object is currently attached to some port, either for reading or writing.

public void delete(Name structName)
throws NoStructure, Locked;

The remaining operation, inquireStatus, can be used by a client to query the sta
of a given name within the database. It returns one of four values: NotPresent,
Locked, Available, and MultiplyDefined, which are defined by an enumeration

public final class SceneObjectState extends PREMOEnumeration {
 public static SceneObjectState NotPresent;
 public static SceneObjectState Locked;
 public static SceneObjectState Available;
 public static SceneObjectState MultiplyDefined;
}

Note that a name that is multiply defined cannot be locked, since the attachRead and
attachWrite operations require that exactly one Name object within the database
match that given by the parameter to the operation.

public SceneObjectState inquireStatus(Name structName);

Any database-like system that offers concurrent access must address the ques
how to prevent multiple readers and writers from interfering with each other. A
known solution to the problem involves systematically locking shared data, allow
only one client to read or write that data at a time. The granularity of locking varies
tween system and application. A relational database, for example, might provide
ing at the level of the database, a relation within the database, or a subset of the
and columns stored in a particular relation. How an implementation of the Scene object
type realises locking will depend on the underlying technology. To allow for differ
strategies, all that the PREMO standard mandates is that a suitable exception w
thrown if an operation cannot complete successfully due to the presence of conc
access to shared data. Particular locking regimes are free to provide further inform
about the cause of the locking problem through the fields of the event structure.

7.7 Coordination

The TimeComposite primitives described in Section 7.2.9.2 provide a simple, dec
ative model of multimedia content. Any model of multimedia presentation must so
how allow for the aggregation of individual media, so it should not be surprising t
for example, the PREMO Parallel primitive plays a similar role to the use of multipl

200

regis-
tracks in HyTime or channels in MPEG. A HyTime or MPEG player must be able to
interpret the particular kind of data carried on each component of the presentation, and
render it in a suitable way. For these formats, the problem is simplified because the
standard defines the specific kinds of data that a player can be expected to handle. A
PREMO system, in contrast, has a more difficult task, since the standard is intended to
be extensible. New kinds of media data, and devices for processing such data, can be
defined by subtyping. This, however, leaves open the question of how to process a com-
posite presentation containing such data. We may have a device that can process the
data in isolation, but not necessarily one that can process this data in combination with
other formats. Figure 7-14 illustrates the general problem.

What is needed is a way for a device that processes TimeComposite primitives to
use devices that are specific to media that might be carried as part of the TimeCompos-
ite. Such a device could then be configured dynamically to accommodate processors
specific to certain media. Upon receiving a TimeComposite primitive, it would need
to find a device appropriate for each component of the TimeComposite, and allocate
the components to specific devices. However, that is not all it must do. Different kinds
of TimeComposite primitive contain implicit and explicit requirements on synchroni-
zation between components. If the components are allocated to separate devices, these
synchronization constraints must somehow be maintained. This therefore becomes an
additional responsibility of the device that manages the distribution of content to proc-
essors. Such a device is defined in the PREMO MRI component, and is called a Coor-
dinator.

public interface Coordinator { }

The Coordinator addresses three sets of concerns:

1. Management. As an MRI device, a Coordinator provides a port through which it
can receive primitives. It also defines an interface that allows devices (which must
be subtypes of Renderer) to be added and removed from the Coordinator. Here,
‘adding’ a device means registering it as a device that the Coordinator can use for
processing components of a presentation that it receives as a TimeComposite

primitive through its input port.

2. Allocation. On receiving a TimeComposite primitive, a Coordinator will assign
the primitive, or its components, to one or more of the devices that have been
tered with the Coordinator.

Figure 7-14 — The problem of new media types

renderer A

renderer B

media type A

media type B

?

Parallel TimeComposite

201

e

 of the
-
sented

 order

n car-
of
f the
he
3. Synchronization. A Coordinator is responsible for ensuring that any implicit or
explicit synchronization constraints present in any received TimeComposite prim-
itive are respected as the components of the TimeComposite are processed by the
devices to which they have been allocated.

Each of these concerns will be examined in more detail in the subsections that follow.

7.7.1 Management

Registration and removal of devices to and from a Coordinator is accomplished
through two operations in the Coordinator interface. To add a device, the addDevice
operation is invoked with a reference to a device, and the identity of the port on that de-
vice to which the Coordinator should send primitives. If the device is already regis-
tered with the Coordinator, the port specified by the inPortId parameter overrides
the port that the Coordinator currently uses. If the port does not correspond to an in-
put port on the device that has an MRI_Format object associated with it, a BadPort
exception is raised.

public void addDevice(Renderer renderer, int inPortId)
throws BadPort;

Removing a device is simple: the client passes a reference to the device that should be
de-registered from a Coordinator as the parameter to dropDevice. There is no effect
if the device has not been registered. It is up to the client to ensure that when a device
is removed from a Coordinator, it is not ‘in use’ i.e. processing media data. Th
standard does not define an outcome in the case that the device is ‘in use’.

public void dropDevice(Renderer renderer);

One further operation is defined in the Coordinator interface: inquireDevice re-
turns information about the devices registered with the Coordinator as a sequence of
pairs, where each pair contains a reference to a registered device and the identity
port of the device that will be used by the Coordinator. In the Java binding, the se
quence is implemented by an array, and the device / port combinations are repre
by DeviceInfo objects.

public class DeviceInfo {
public Renderer renderer;
public int inPortId;

}
public DeviceInfo[] inquireDevice();

7.7.2 Allocation

Once a Coordinator has received a TimeComposite primitive, it must attempt to al-
locate it for processing to one or more of the devices that it has at its disposal. In
to accomplish this, it must examine the components of the TimeComposite to deter-
mine their constituent media, and then attempt to match this against the informatio
ried in the MRI_Format objects of the device ports that specifies which kinds
primitive that device can accept. The task may be impossible. If a component o
TimeComposite uses a primitive for which no suitable device is available, or if t

202

n
e
ives

he

de-

e

he
 des-

edia
. The

 has
appro-
components of a Parallel primitive require more devices of a particular type than are
available, some action must be taken. The Coordinator could abort presentation of
the entire TimeComposite, or it could attempt to present those parts for which it has
resources available. Different strategies will be appropriate in different applications and
circumstances, and for this reason the standard does not mandate what action should be
taken if resources are insufficient.

Assuming that the Coordinator’s resources are sufficient, the task of allocatio
can be viewed as laying out media primitives along tracks, one per device that thCo-

ordinator has available to it. As shown in Figure 7-15, the arrangement of primit
along tracks should reflect the organisation of primitives within the Sequential, Par-
allel and Alternate TimeComposites that describe the presentation. Note that t
choice of component to be processed from an Alternate primitive must be made ef-
fectively at the point that this allocation is carried out. Although not specifically
scribed in the standard, it is in principle possible that a Coordinator could be allowed,
by changing the state of an Alternate primitive, to select a component that will mak
the allocation feasible or particularly efficient.

7.7.3 Synchronization

Once the components of a TimeComposite have been scheduled for processing, t
Coordinator should place the primitives into media streams that are linked to the
ignated input ports of the rendering devices. At this point, the processing of the m
data becomes a concurrent activity, employing a collection of independent devices
Coordinator is effectively acting as the client of its ‘local’ resources, and as such
to take responsibility for ensuring that the processes realised by the devices are
priately synchronized. The synchronization constraints that the Coordinator must
fulfill include (see Section 7.2.9 for details of the primitives mentioned):

1. Respecting the startSync and endSync flags of Parallel TimeComposite
primitives

Figure 7-15 — Laying Primitives along Tracks

seq

par

seq

seq

par

a b

c

d e

f

a

b

d e

c

f

0

time

tracks

devA

devB

devC

203

lete’.
bined
 was
ssoci-

ctice.
2. Taking into account the compStart and compEnd offsets of all TimeComposite
primitives, and the startDelta and endDelta offsets of Sequential TimeCom-
posites

3. Respecting the min / max duration for the overall TimeComposite.

The PREMO standard does not mandate any specific strategy for meeting these require-
ments but it does make three suggestions as to how synchronization might be realised,
which are described here:

1. The input port of each device used by the Coordinator has an associated
StreamControl object. The finite-state-machine (Controller object) embedded
within the StreamControl object can be used by the Coordinator to start, stop,
pause and resume the processing activity of each device. The Coordinator can
acquire a certain level of feedback about progress through the inquiry operations
provided through StreamControl. However, at the level of stopping and starting
processing for entire primitives, a simpler approach for the Coordinator is to
insert a Tracer primitive into each stream immediately following the media primi-
tive, and arrange for it to be notified when the Tracer is processed at the input port
of each device.

2. The StreamControl objects at the device input ports can also be used to give a
finer level of inter-media synchronization, by using SynchronizationElements
along the progression space, coupled with an ANDSynchronizationPoint object,
as described in Section 5.5 on page 90. Suitable points for applying this strategy are
the time points corresponding to the start and end of segments of primitive data.
When used in conjunction with the Tracer primitives as described above, the syn-
chronization elements may be offset to account for the presence of the Tracer,
although as mentioned in Section 7.2.8, the time taken to process a Tracer will
generally be small compared to the time taken to process a media primitive.

3. Fine control over synchronization between multiple media streams can be achieved
by the Coordinator by placing periodic synchronization elements along the pro-
gression space of the StreamControl objects at the device ports.

The options are clearly not mutually exclusive, nor are they in any sense ‘comp
Figure 7-16 illustrates how the first and second of these approaches might be com
although fine-grained synchronization through periodic synchronization elements
omitted for clarity. The “tracks” are intended to represent the progression space a
ated with the input port of each device. Note that the relative size of Tracer primitives
to other media primitives is much larger in the figure than would be expected in pra

204
Figure 7-16 — Synchronization of Coordinated streams

renderer A

renderer B

renderer C

a d e

b f

c T

T

T T T

T

= ANDSynchronizationPoint

T = tracer primitive

205
Chapter 8

Detailed Java Specifications of the PREMO Objects

8.1 Introduction

This chapter collects all PREMO object specifications. No detailed explanation for the
interfaces, classes, or methods are provided here, the reader should refer to the main
text.

In the case of classes, only the public part of the interface is listed. In the case of in-
terfaces, some methods are repeated in interface extensions although, formally, this
would not be necessary; repeated methods refer to the fact that the interface implemen-
tation represents a major change or extension in semantics for that specific method.

The package and import statements are not listed to avoid cluttering the text.

8.2 Foundation Objects

All the classes and interfaces are in the package premo.std.part2. All classes import
the package premo.impl.utils, to refer to, e.g., the PREMOEnumeration class.

8.2.1 Enumerations

Only the relevant constants for enumerations are listed. The special construction mech-
anism, common to all PREMO enumerations, is omitted; see page 62 for further details.

public final class ActionType extends PREMOEnumeration {
public static ActionType Enter;
public static ActionType Leave;

}

public final class AndOr extends PREMOEnumeration {
public static AndOr And;
public static AndOr Or;

}

public final class Direction extends PREMOEnumeration {
public static Direction Forward;
public static Direction Backward;

}

206
public final class TimeUnit extends PREMOEnumeration {
 public static TimeUnit Picoseconds;
 public static TimeUnit Nanoseconds;
 public static TimeUnit Microseconds;
 public static TimeUnit Miliseconds;
 public static TimeUnit Second;
 public static TimeUnit Minute;
 public static TimeUnit Hour;
 public static TimeUnit Day;
 public static TimeUnit Month;
 public static TimeUnit Year;
}

public final class ConstraintOp extends PREMOEnumeration {
public static ConstraintOp Equal;
public static ConstraintOp NotEqual;
public static ConstraintOp GreaterThan;
public static ConstraintOp GreaterThanOrEqual;
public static ConstraintOp LessThan;
public static ConstraintOp LessThanOrEqual;
public static ConstraintOp Prefix;
public static ConstraintOp Suffix;
public static ConstraintOp NotPrefix;
public static ConstraintOp NotSuffix;
public static ConstraintOp Includes;
public static ConstraintOp Excludes;

}

8.2.2 Additional Data Types

// Integer codes for Synchronizable and Timer states
// Usage of integer codes make the merge and extension of
// states easier.
public final class State implements java.io.Serializable
{
 public static final int TSTOPPED = 0;
 public static final int TSTARTED = 1;
 public static final int TPAUSED = 2;
 public static final int STOPPED = 0;
 public static final int STARTED = 1;
 public static final int PAUSED = 2;
 public static final int WAITING = 3;
}

207
8.2.3 Top Level of PREMO Hierarchy

// See section 5.3.1 on page 64
public interface PREMOObject extends java.rmi.Remote {

java.lang.Class inquireType()
throws java.rmi.RemoteException;

java.lang.Class[] inquireTypeGraph()
throws java.rmi.RemoteException;

java.lang.Class[] inquireImmediateSupertypes()
throws java.rmi.RemoteException;

}

// See section 5.3.2 on page 65; also, section A.1.2 on page 232
public abstract class SimplePREMOObject
implements /* PREMOObject, */ java.io.Serializable {

java.lang.Class inquireType()
throws java.rmi.RemoteException;

java.lang.Class[] inquireTypeGraph()
throws java.rmi.RemoteException;

java.lang.Class[] inquireImmediateSupertypes()
throws java.rmi.RemoteException;

}

// See section 5.3.3 on page 68
public interface Callback extends PREMOObject {

void callback(Event callbackValue)
throws java.rmi.RemoteException;

}

// See section 5.3.3 on page 68
public interface CallbackByName extends PREMOObject {

void callback(Event callbackValue)
throws OperationNotDefined, java.rmi.RemoteException;

}

// See section 5.3.4 on page 69
public interface EnhancedPREMOObject
extends PREMOObject, java.rmi.Remote {

void defineProperty(String key, Object[] value)
throws ReadOnlyProperty, java.rmi.RemoteException;

void undefineProperty(String key)
throws ReadOnlyProperty, NoKey, java.rmi.RemoteException;

void addValue(String key, Object value)
throws ReadOnlyProperty, java.rmi.RemoteException;

void removeValue(String key, Object value)
throws ReadOnlyProperty, NoKey, InvalidValue,

java.rmi.RemoteException;

public static class KeyInfo implements java.io.Serializable {
public String key;
public boolean readOnly;

}

208
KeyInfo[] inquireProperties()
throws java.rmi.RemoteException;

Object[] getProperty(String key)
throws NoKey, java.rmi.RemoteException;

PropertyPair[] getPairs()
throws java.rmi.RemoteException;

public static class MatchPropertyResults
implements java.io.Serializable {

public PropertyPair[] satisfied;
public PropertyPair[] unsatisfied;

}
MatchPropertyResults matchProperties(Constraint[] constraintList)

throws java.rmi.RemoteException;

void setPropertyCallback(String key, Callback callback,
String eventName)

throws NoKey, java.rmi.RemoteException;
}

8.2.4 Structures

// This structure does not appear in the PREMO document directly,
// but is used by several objects; it has been abstracted out
// as a separate class
public final class PropertyPair implements java.io.Serializable {

public String key;
public Object[] value;
public PropertyPair(String k, Object[] v);
public PropertyPair();

}

// See page 83
public class ActionElement
extends SimplePREMOObject implements java.io.Serializable {

public Callback eventHandler;
public String eventName;

}

// See section 5.3.2.2 on page 67
public class Constraint
extends SimplePREMOObject implements java.io.Serializable {

public ConstraintOp constraintOp = ConstraintOp.Equal;
public static class KeyValue implements java.io.Serializable {

public String key = ““;
public Object value;

}
public KeyValue keyValue = new KeyValue();

}

209
// See section 5.3.2.1 on page 66
// “equals” overrides the corresponding methods in
// java.lang.Object; “clone” implements the Cloneable interface

public class Event extends SimplePREMOObject
implements java.lang.Cloneable, java.io.Serializable{

public static class EventData implements java.io.Serializable {
public String key = ““;
public java.lang.Object value;
public boolean equals(java.lang.Object otherO);

}

public String eventName = ““;
public EventData[] eventData = new EventData[0];
public EnhancedPREMOObject eventSource;
public boolean equals(java.lang.Object otherE);
public java.lang.Object clone();

}

// See section 5.5.1.3.3 on page 101

public class SyncElement
extends SimplePREMOObject implements java.io.Serializable {

public Callback eventHandler;
public Event syncEvent;
public boolean waitFlag;

}

8.2.5 General Utility Objects

8.2.5.1 Event Management

// See section 5.4.1.2 on page 76

public interface EventHandler
extends Callback, EnhancedPREMOObject, java.rmi.Remote {

public long register(String eventType, Constraint[] constrains,
AndOr matchMode, Callback theCallback)

throws java.rmi.RemoteException;
public void unregister(long id)

throws InvalidEventId, java.rmi.RemoteException;
public void dispatchEvent(Event e)

throws java.rmi.RemoteException;
}

210
// See section 5.4.1.3 on page 78
public interface SynchronizationPoint
extends EventHandler, java.rmi.Remote {

public void addSyncEvent(Event e)
throws RepeatedEvent, java.rmi.RemoteException;

public void deleteSyncEvent(Event e)
throws UnknownEvent, java.rmi.RemoteException;

public long register(String eventType, Constraint[] constrains,
AndOr matchMode, Callback theCallback)

throws InvalidEventId, java.rmi.RemoteException;
public void dispatchEvent(Event e)

throws UnknownEvent, java.rmi.RemoteException;
}

// See section 5.4.1.3 on page 78
public interface ANDSynchronizationPoint
extends SynchronizationPoint, java.rmi.Remote {

public void addSyncEvent(Event e)
throws RepeatedEvent, java.rmi.RemoteException;

public void deleteSyncEvent(Event e)
throws UnknownEvent, java.rmi.RemoteException;

public void dispatchEvent(Event e)
throws UnknownEvent, java.rmi.RemoteException;

}

8.2.5.2 Controllers

// See section 5.4.2 on page 81
public interface Controller
extends Callback, EnhancedPREMOObject, java.rmi.Remote {

public String getCurrentState()
throws java.rmi.RemoteException;

public String[] getPossibleStates()
throws java.rmi.RemoteException;

public void handleEvent(Event e)
throws java.rmi.RemoteException;

public void setAction(String state, ActionElement action,
ActionType aType)

throws WrongState, java.rmi.RemoteException;
public void removeAction(String state, ActionType aType)

throws WrongState, java.rmi.RemoteException;

public void setActionOnPair(String stateOld, String stateNew,
ActionElement action)

 throws WrongState, java.rmi.RemoteException;
public void removeActionOnPair(String stateOld, String stateNew)

 throws WrongState, java.rmi.RemoteException;
}

211
8.2.5.3 Time Objects

// See section 5.4.3.2 on page 88
public interface Clock
extends EnhancedPREMOObject, java.rmi.Remote {

TimeUnit getTickUnit() throws java.rmi.RemoteException;
void setTickUnit(TimeUnit unit) throws java.rmi.RemoteException;
TimeUnit getAccuracyUnit() throws java.rmi.RemoteException;
void setAccuracyUnit(TimeUnit unit)

throws java.rmi.RemoteException;

long getAccuracy() throws java.rmi.RemoteException;
long inquireTick() throws java.rmi.RemoteException;

}

public interface SysClock extends Clock, java.rmi.Remote {
long inquireTick() throws java.rmi.RemoteException;

}

public interface Timer extends Clock, java.rmi.Remote {
int getTimerCurrentState() throws java.rmi.RemoteException;

void start() throws java.rmi.RemoteException;
void stop() throws java.rmi.RemoteException;
void pause() throws java.rmi.RemoteException;
void resume() throws java.rmi.RemoteException;
void reset(); throws java.rmi.RemoteException;

long inquireTick() throws java.rmi.RemoteException;
}

8.2.6 Sychronization Objects

// See section 5.5.1.3 on page 99
public interface Synchronizable
extends CallbackByName, EnhancedPREMOObject, java.rmi.Remote {

int getCurrentState() throws java.rmi.RemoteException;
Number getCurrentPosition() throws java.rmi.RemoteException;
Number getMinimumPosition() throws java.rmi.RemoteException;
Number getMaximumPosition() throws java.rmi.RemoteException;
int getLoopCounter() throws java.rmi.RemoteException;

void setDirection(Direction where)
throws WrongState, java.rmi.RemoteException;

Direction getDirection()
throws java.rmi.RemoteException;

void setStartPosition(Number position)
throws WrongValue, WrongState, IllegalArgumentException,

java.rmi.RemoteException;
Number getStartPosition()

throws java.rmi.RemoteException;

212
void setEndPosition(Number position)
throws WrongValue, WrongState, IllegalArgumentException,

java.rmi.RemoteException;
Number getEndPosition() throws java.rmi.RemoteException;

void setRepeatFlag(boolean flag)
throws WrongState, java.rmi.RemoteException;

boolean getRepeatFlag() throws java.rmi.RemoteException;

void setNLoop(int value)
throws WrongState, IllegalArgumentException,

java.rmi.RemoteException;
int getNLoop() throws java.rmi.RemoteException;

void resetLoopCounter()
throws WrongState, java.rmi.RemoteException;

void jump(Number position)
throws WrongState, WrongValue, IllegalArgumentException,

java.rmi.RemoteException;

void start() throws WrongState, java.rmi.RemoteException;
void stop() throws java.rmi.RemoteException;
void pause() throws WrongState, java.rmi.RemoteException;
void resume() throws WrongState, java.rmi.RemoteException;

void setSyncElement(Number position, SyncElement syncElement)
throws WrongState, WrongValue, IllegalArgumentException,

java.rmi.RemoteException;
void deleteSyncElement(Number position)

throws WrongState, WrongValue, IllegalArgumentException,
java.rmi.RemoteException;

public class SyncInfo {

public SyncElement syncElement;
public Number position;

}
SyncInfo[] getSyncElements(Number posMin, Number posMax)

throws WrongValue, IllegalArgumentException,
java.rmi.RemoteException;

void setPeriodicSyncElement(Number startRefPoint,
Number endRefPoint,
Number periodicity,
SyncElement syncData)

throws WrongState, WrongValue, IllegalArgumentException,
java.rmi.RemoteException;

void deletePeriodicSyncElement(Number startRefPoint,
Number endRefPoint,
Number periodicity)

throws WrongState, WrongValue, IllegalArgumentException,
java.rmi.RemoteException;

213

void setActionOnPair(int stateOld, int stateNew,

ActionElement action)
throws WrongState, java.rmi.RemoteException;

void removeActionOnPair(int stateOld, int stateNew)
throws WrongState, java.rmi.RemoteException;

void clearSyncElements()

throws WrongState, java.rmi.RemoteException;
}

// See section 5.5.2 on page 103
public interface TimeSynchronizable
extends Synchronizable, Timer, java.rmi.Remote {

void setSpeed(double speed)
throws WrongState, java.rmi.RemoteException;

double getSpeed()
throws java.rmi.RemoteException;

long getTimeCurrentPosition() throws java.rmi.RemoteException;
long getTimeMinimumPosition() throws java.rmi.RemoteException;
long getTimeMaximumPosition() throws java.rmi.RemoteException;
void setTimeStartPosition(long position)

throws WrongValue, WrongState, IllegalArgumentException,
java.rmi.RemoteException;

long getTimeStartPosition()
throws java.rmi.RemoteException;

void setTimeEndPosition(long position)
throws WrongValue, WrongState, IllegalArgumentException,

java.rmi.RemoteException;
long getTimeEndPosition() throws java.rmi.RemoteException;
void jump(long position)

throws WrongState, WrongValue, java.rmi.RemoteException;
void setSyncElement(long position, SyncElement syncElement)

throws WrongState, WrongValue, java.rmi.RemoteException;
void deleteSyncElement(long position)

throws WrongState, WrongValue, java.rmi.RemoteException;
public class TimeSyncInfo {

public SyncElement syncElement;
public long position;

}
TimeSyncInfo[] getSyncElements(long posMin, long posMax)

throws WrongValue, java.rmi.RemoteException;
void setPeriodicSyncElement(long startRefPoint, long endRefPoint,

long periodicity,
SyncElement syncData)

throws WrongState, WrongValue, java.rmi.RemoteException;
void deletePeriodicSyncElement(long startRefPoint,

long endRefPoint,
long periodicity)

throws WrongState, WrongValue, java.rmi.RemoteException;

214
void play() throws WrongState, java.rmi.RemoteException;
void run() throws WrongState, java.rmi.RemoteException;
void stop() throws java.rmi.RemoteException;
void pause() throws WrongState, java.rmi.RemoteException;
void resume() throws WrongState, java.rmi.RemoteException;

Number timeToSpace(long time)
throws java.rmi.RemoteException;

long spaceToTime(Number position)
throws IllegalArgumentException, java.rmi.RemoteException;

}

// See section 5.5.3 on page 107
public interface TimeSlave
extends TimeSynchronizable, java.rmi.Remote {

void setMaster(TimeSynchronizable master)
throws WrongState, java.rmi.RemoteException;

TimeSynchronizable getMaster()
throws java.rmi.RemoteException;

long inquireAlignment() throws java.rmi.RemoteException;

public class syncHandler {
Callback handler;
long threshold;

}
void setSyncEventHandlers(syncHandler[] syncEventHandlers)

throws java.rmi.RemoteException;
}

// See section 5.5.4 on page 109
public interface TimeLine
extends TimeSynchronizable, java.rmi.Remote {

void setSpeed(double speed)
throws WrongState, java.rmi.RemoteException;

}

8.2.7 Negotiation and Configuration Management

// See section 5.6.2 on page 113
public interface PropertyInquiry
extends EnhancedPREMOObject, java.rmi.Remote {

java.lang.Object[] inquireNativePropertyValue(String key)
throws java.rmi.RemoteException, InvalidKey;

}

215
// See section 5.6.3 on page 114
public interface PropertyConstraint
extends PropertyInquiry, java.rmi.Remote {

void defineProperty(String key, Object[] value)
throws ReadOnlyProperty, InvalidValue,

java.rmi.RemoteException;
public void addValue(String key, Object value)

throws ReadOnlyProperty, InvalidValue,
java.rmi.RemoteException;

public void bind()
throws InvalidValue, java.rmi.RemoteException;

public void unbind()
throws java.rmi.RemoteException;

public PropertyPair[] constrain(PropertyPair[] constraints)
throws InvalidKey, InvalidValue, java.rmi.RemoteException;

public PropertyPair[] select(PropertyPair[] constraints)
throws InvalidKey, InvalidValue, java.rmi.RemoteException;

}

8.2.8 Creation of Service Objects

// See section 5.7.1 on page 118
public interface GenericFactory
extends PropertyInquiry, java.rmi.Remote
{

PropertyInquiry createObject(String objectType,
PropertyPair[] constraints,
Object initValue)

throws InvalidCapabilities, CannotMeetCapabilities,
InvalidType, IncorrectInit, java.rmi.RemoteException;

PropertyInquiry createObject(java.lang.Class objectType,
PropertyPair[] constraints,
Object initValue)

throws InvalidCapabilities, CannotMeetCapabilities,
InvalidType, IncorrectInit, java.rmi.RemoteException;

}

// See section 5.7.2 on page 120
public interface FactoryFinder
extends EnhancedPREMOObject, java.rmi.Remote {

GenericFactory[]
findFactories(String objectType,

PropertyPair[] objectConstrains,
PropertyPair[] factoryConstrains)

throws InvalidCapabilities, CannotMeetCapabilities,
InvalidType, java.rmi.RemoteException;

GenericFactory[]
findFactories(java.lang.Class objectType,

PropertyPair[] objectConstrains,
PropertyPair[] factoryConstrains)

throws InvalidCapabilities, CannotMeetCapabilities,
InvalidType, java.rmi.RemoteException;

}

216
8.3 Multimedia Systems Services

All the classes and interfaces are in the package premo.std.part3. All classes import
the packages premo.impl.utils (to refer to, e.g., the PREMOEnumeration class),
and premo.std.part2.

8.3.1 Enumerations

Only the relevant constants for enumerations are listed. The special construction mech-
anism, common to all PREMO enumerations, is omitted; see page 62 for further details.

// See section 6.5.1.2 on page 147

public final class PortType
extends PREMOEnumeration implements java.io.Serializable
{
 public static PortType INPUT;
 public static PortType OUTPUT;
}

8.3.2 Structures and Additional Data Types

// Integer codes for Synchronizable and Timer states
// Usage of integer codes make the merge and extension of
// states easier.

public final class MSS_State implements java.io.Serializable
{

public static final int MUTED = 4;
public static final int PRIMING = 5;
public static final int DRAINING = 6;

}

// See section 6.4.1 on page 141

public final class ConfInfo implements java.io.Serializable
{

public String semName;
public Class objectType;
public ConfInfo(String name, Class type);
public ConfInfo();

}

217
// See section 6.5.1.2 on page 147

public class PortConfig
extends SimplePREMOObject implements java.io.Serializable
{

public ConfInfo qos;
public Callback eventHandler;
public StreamControl streamControl;
public ConfInfo protocol;
public static class formatData implements java.io.Serializable {

public long time;
public ConfInfo name;

}
public formatData[] formats;

}

8.3.3 Configuration Objects

// See section 6.2.1 on page 131
public interface Format
extends PropertyConstraint, java.rmi.Remote {}

// See section 6.2.2 on page 132
public interface MultimediaStreamProtocol
extends PropertyConstraint, java.rmi.Remote {}

// See section 6.2.2 on page 132
public interface InterNodeTransport
extends MultimediaStreamProtocol, java.rmi.Remote {}

// See section 6.2.2 on page 132
public interface InterNodeTransport
extends MultimediaStreamProtocol, java.rmi.Remote {}

// See section 6.2.2 on page 132
public interface IntraNodeTransport
extends MultimediaStreamProtocol, java.rmi.Remote {}

// section 6.2.3 on page 134
public interface QoSDescriptor
extends PropertyConstraint, java.rmi.Remote {}

218
8.3.4 Stream Control

// See section 6.3.1 on page 136
public interface StreamControl
extends TimeSynchronizable, java.rmi.Remote
{

int getCurrentState() throws java.rmi.RemoteException;
void mute() throws WrongState, java.rmi.RemoteException;
void prime() throws WrongState, java.rmi.RemoteException;
void drain() throws WrongState, java.rmi.RemoteException;

}

// See section 6.3.2 on page 140
public interface SyncStreamControl
extends TimeSlave, SyncControl java.rmi.Remote {}

8.3.5 Virtual Resource

// See section 6.4 on page 140
public interface VirtualResource
extends PropertyInquiry, java.rmi.Remote {

void setResourceEventHandler(Callback e)
throws java.rmi.RemoteException;

Callback getResourceEventHandler()
throws java.rmi.RemoteException;

StreamControl getStreamControl() throws java.rmi.RemoteException;

PropertyConstraint resolve(String semName)
throws InvalidName, java.rmi.RemoteException;

void acquireResource()
throws ResourceNotAvailable, java.rmi.RemoteException;

void releaseResource() throws java.rmi.RemoteException;

public class ProposedValues implements java.io.Serializable {
public String semanticName;
public PropertyPair[] replacement;

}
public class ValidationResult implements java.io.Serializable {

public boolean result;
public ProposedValues proposedValues;

}
ValidationResult validate() throws java.rmi.RemoteException;

}

219
8.3.6 Virtual Device

// See section 6.5 on page 146
public interface VirtualDevice
extends VirtualResource, java.rmi.Remote {

void acquireResource()
throws ResourceNotAvailable, java.rmi.RemoteException;

void releaseResource() throws java.rmi.RemoteException;

int[] getPorts() throws java.rmi.RemoteException;

public static class PortDescr implements java.io.Serializable {
public PortConfig config;
public PortType type;

}
PortDescr getPortConfig(int portId)

throws InvalidPort, java.rmi.RemoteException;
void setPortConfig(int portId, PortConfig portConfig)

throws InvalidPort, java.rmi.RemoteException;

ValidationResult portValidate(PortType port, String formatName)
throws InvalidName, InvalidPort;

VirtualConnection getConnection(int PortId)
throws InvalidPort, java.rmi.RemoveException;

}

8.3.7 Virtual Connections

// See section 6.6 on page 155
public interface VirtualConnection
extends VirtualResource, java.rmi.Remote {

void connect(VirtualDevice master, int portMaster,
VirtualDevice slave, int portSlave)

throws ConfigurationMismatch, PortMismatch,
ResourceNotAvailable, InvalidPort,
java.rmi.RemoteException;

void disconnect() throws java.rmi.RemoteException;

public class EndpointInfo {

public VirtualDevice device;
public int port;
public boolean isMaster;

}
EndpointInfo[] getEndpointInfoList()

throws java.rmi.RemoteException;
}

220
// See section 6.6.4 on page 160
public interface VirtualConnectionMulticast
extends VirtualConnection, java.rmi.Remote {

void attach(VirtualDevice device, int portID)
throws ConfigurationMismatch, PortMismatch,

ResourceNotAvailable, InvalidPort,
java.rmi.RemoteException;

void detach(VirtualDevice device, int portID)
throws PortMismatch, java.rmi.RemoteException;

}

8.3.8 Group

// See section 6.7 on page 161
public interface Group
extends VirtualResource, java.rmi.Remote {

void acquireResource()
throws ResourceNotAvailable, java.rmi.RemoteException;

void releaseResource() throws java.rmi.RemoteException;

void addResource(VirtualResource resource)
throws java.rmi.RemoteException;

void removeResource(VirtualResource resource)
throws ResourceNotAvailable, java.rmi.RemoteException;

void addResourceGraph(VirtualResource resource)
throws java.rmi.RemoteException;

void removeResourceGraph(VirtualResource resource)
throws ResourceNotAvailable, java.rmi.RemoteException;

VirtualResource[] getResourceList()
throws java.rmi.RemoteException;

}

8.3.9 Logical Device

// See section 6.8 on page 163
public interface LogicalDevice
extends VirtualDevice, Group, java.rmi.Remote {

int definePort(VirtualDevice refVirtualDevice, int portId)
throws InvalidPort, InvalidDevice, java.rmi.RemoteException;

}

221
8.4 The Modelling, Rendering, and Interaction Component

All the classes and interfaces are in the package premo.std.part4.

8.4.1 Objects for Coordinate Spaces

8.4.1.1 Coordinate Object

// See section 7.3.1 on page 186
public abstract class Coordinate extends SimplePREMOObject
{

static int dimensionality;
abstract public int[] getRange(int dimension);
abstract public void setComponent(int dimension, int value);
abstract public int getComponent(int dimension);

}

8.4.1.2 Colour Object

// See section 7.3.3 on page 187
abstract public class Colour extends Coordinate
{

String colourModel;
}

8.4.1.3 TimeLocation Object

// See section 7.3.2 on page 187
abstract public class TimeLocation extends Coordinate{

 static {
 dimensionality = 1;
 }
}

8.4.2 Name Object

// See section 7.2.10 on page 185
public abstract class Name extends SimplePREMOObject
{
 String[] tag;
 public boolean equal(Name otherName);
}

222
8.4.3 Objects for Media Primitives

8.4.3.1 Primitive Object

// See section 7.2 on page 167
public class Primitive extends SimplePREMOObject{}

8.4.3.2 Captured Object

// See section 7.2.3 on page 170
public class Captured extends Primitive
{
 protected VirtualDevice srcDevice;
 protected int srcPort;
}

8.4.3.3 Primitives with Spatial and/or Temporal Form

8.4.3.3.1 Form object

// See section 7.2.4 on page 171
public class Form extends Primitive{}

8.4.3.4 Form Primitives for Audio Media Data

8.4.3.4.1 Audio Object

// See page 171
public class Audio extends Form
{
 int instrument;
 int[] score;
}

8.4.3.4.2 Music Object

// See page 171
public class Music extends Audio
{
 public int instrument;
 public int score;
}

223
8.4.3.4.3 Speech Object

// See page 171
public class Speech extends Audio
{
 public VocalCharacteristics voice;
 public char[] text;
}

8.4.3.5 Form Primitives for Geometric Media Data

8.4.3.5.1 Geometric Object

// See section 7.2.4 on page 171
public class Form extends Primitive{}

8.4.3.5.2 Tactile Object

// See section 7.2.5 on page 172
abstract public class Tactile extends Form{}

8.4.3.5.3 Text Object

// See page 173
public class Text extends Form{}

8.4.3.6 Primitives for the Modification of Media Data

8.4.3.6.1 Modifier

// See section 7.2.6 on page 173
abstract public class Modifier extends Primitive{}

8.4.3.7 Modifier Primitives for Audio Media Data

8.4.3.7.1 Acoustic Object

// See page 171
abstract public class Acoustic extends Modifier{}

8.4.3.7.2 SoundCharacteristic Object

// See page 171
abstract public class SoundCharacteristic
 extends Acoustic{};

224
8.4.3.7.3 VocalCharacteristic Object

// See page 171
abstract public class VocalCharacteristic
 extends Acoustic{};

8.4.3.8 Modifier Primitives for Structural Aspects of Media Data

8.4.3.8.1 Structural Object

// See page 174
abstract public class Structural
 extends Modifier{};

8.4.3.8.2 Transformation Object

// See page 174
abstract public class Transformation extends Structural{}

8.4.3.8.3 Constraint Object

// See page 174
abstract public class Constraint extends Structural{}

8.4.3.8.4 TimeFrame Object

// See page 175
public class TimeFrame extends Modifier{}

8.4.3.9 Modifier Primitives for Visual Aspects of Media Data

8.4.3.9.1 Visual Object

// See page 175
abstract public class Visual extends Modifier{}

8.4.3.9.2 Light Object

// See page 175
abstract public class Light extends Visual{}

8.4.3.9.3 Material Object

// See page 175
abstract public class Material extends Visual{}

225
8.4.3.9.4 Shading Object

// See page 175
abstract public class Shading extends Visual{}

8.4.3.9.5 Texture Object

// See page 175
abstract public class Texture extends Visual{}

8.4.3.9.6 Reference Object

// See section 7.2.10 on page 185
public class Reference extends Primitive{}

8.4.3.10 Organising Primitives into Structures

8.4.3.10.1 Structured Object

// See section 7.2.9 on page 177
public abstract class Structured extends Primitive
{
 Primitive[] components;

 Name label;
}

8.4.3.10.2 Aggregate Object

// See section 7.2.9.1 on page 177
public abstract class Aggregate extends Structured{}

8.4.3.11 Organising Media Data within Time

8.4.3.11.1 TimeComposite Object

// See section 7.2.9.2 on page 179
abstract public class TimeComposite extends Structured
{

long min, max;
long startTime, endTime;
Callback monitor;

}

226
8.4.3.11.2 Sequential Object

// See section 7.2.9.2.1 on page 181
public class Sequential extends TimeComposite
{

long startDelta, endDelta;
OverlapType overlap;

}

8.4.3.11.3 Parallel Object

// See section 7.2.9.2.2 on page 182
public class Parallel extends TimeComposite
{

boolean startSync, endSync;
}

8.4.3.11.4 Alternate Object

// See section 7.2.9.2.3 on page 184
public class Alternate extends TimeComposite
{

Controller selector;
AlternateSequence[] options;

}

8.4.3.11.5 Tracer Object

// See section 7.2.8 on page 176
public class Tracer extends Primitive
{

public Event trace;
public Tracer(Event trace)

 {
 this.trace = trace;

trace.eventSource = (premo.std.part2.EnhancedPREMOObject)this;
}

}

8.4.3.11.6 Wrapper Object

// See section 7.2.7 on page 176
public class Wrapper extends Primitive
{

Object content;
}

227
8.4.4 Objects for Describing Properties of Devices

8.4.4.1 MRI_Format Object

// See section 7.4.1 on page 188
public class MRI_Format extends Format_Impl
{

 static {
declareRWKey("DimensionsK");
declareROKey("PrimitivesK");

 }
}

8.4.4.2 EfficiencyMeasure Object

// See section 7.4.2 on page 189
abstract public class EfficiencyMeasure extends SimplePREMOObject
{

abstract public ComparisonRes compare(MRI_Device alternative);
}

8.4.5 Processing Devices for Media Data

8.4.5.1 MRI_Device Object

// See section 7.4.3 on page 190
public interface MRI_Device
 extends VirtualDevice, java.rmi.Remote{}

8.4.5.2 Modeller Object

// See section 7.4.4 on page 190
public interface Modeller
 extends MRI_Device, java.rmi.Remote{}

8.4.5.3 Renderer Object

// See section 7.4.5 on page 191
public interface Renderer
 extends MRI_Device, java.rmi.Remote{}

8.4.5.4 MediaEngine Object

// See section 7.4.6 on page 192
public interface MediaEngine
 extends Renderer, Modeller, java.rmi.Remote{}

228
8.4.6 Scene Object

// See section 7.6 on page 195
public interface Scene
 extends VirtualDevice, java.rmi.Remote
{

public void create(Name structName, Object structureType)
throws AlreadyExists, InvalidType;

public void attachRead(Name structName, int portId)
throws NoStructure, MultiplyDefined, BadPort, AccessFailure;

public void attachWrite(Name structName, int portId)
throws NoStructure, MultiplyDefined, BadPort, AccessFailure;

public SceneObjectState inquireStatus(Name structName);
public void transfer(int portId)

throws BadPort, NotAttached;
public void detach(int portId)

throws BadPort;
public void delete(Name structName)

throws NoStructure, Locked;
}

8.4.7 Objects for Supporting Interaction

8.4.7.1 InputDevice Object

// See section 7.5.1 on page 193
public interface InputDevice
 extends Modeller, java.rmi.Remote
{

public Primitive request();
}

8.4.7.2 Router Object

// See section 7.5.2 on page 194
public interface Router
 extends MRI_Device, Controller, java.rmi.Remote
{

public void addConnection(String state, int inputPortId, int
outputPortId)

throws BadPort, BadState, AlreadyConnected;
public void dropConnection(String state, int outputPortId)

throws BadPort, BadState;
public Links[] inquireConnections(String state)

throws BadState;

public class Links {
int portA;
int portB;

};
}

229
8.4.8 Coordinator Object

// See section 7.7 on page 199
public interface Coordinator
{

public interface DeviceInfo{
public Renderer renderer;
public int inPortId;

}
public void addDevice(Renderer_Impl renderer, int inPortId)

 throws BadPort;
public void dropDevice(Renderer_Impl renderer);
public DeviceInfo[] inquireDevice();

}

230

le-
nding
better
ime-
been
r own
ht be-

ture of
rm be-
ever,

mp-
rity
one
re ad-
to
, the

re of
e of
S8
ptive

 ex-
alled

oes no
ut giv-
Appendix A

Selected Implementation Issues

This appendix provides additional insight into aspects of the prototype implementation
of PREMO which has served us throughout this book. It is not our intention to give a
fully detailed overview of the implementation; instead, a few of the non–trivial imp
mentation issues will be highlighted. Our purpose is to help the reader in understa
what goes on “behind the scenes” in a PREMO implementation, thereby gaining a
understanding of the general problems involved in implementing a distributed mult
dia environment. The problems we will describe, and the solutions that have
adopted, reflect the chosen environment (i.e., Java and Java RMI) as well as ou
software engineering abilities. Consequently, some of the issues listed here mig
come non–issues if other programming environments are used.

A.1 The PREMO Environment

A.1.1 Activity of Objects

Java provides threads as a means to create active objects within a JVM. This fea
Java was one of the decisive factors in choosing Java as an implementation platfo
cause the PREMO model requires the availability of active objects. There is, how
a subtle issue concerning Java threads which is worth mentioning here.

The Java specification does not define whether the Java threads scheduler is pree
tive or not.1) Thread scheduling is done by the platform. Furthermore, thread prio
schemes vary from platform to platform and it can be quite difficult to map from
priority scheme to the other. The result of these platform dependencies (which a
mittedly difficult to avoid) is a set of threading environments in which it is difficult
ensure equivalent thread behavior. Although not explicitly stated in the Standard
synchronization model in PREMO only works when active objects get a fair sha
the processor which results in an effective emulation of concurrency. At the tim
writing, the standard JDK environment running on Windows–NT or W’95, on MacO
or higher, as well as on Sun workstations running SunOS 5.6 or higher, use preem
threads (“native” threads, in the terminology of JDK). However, on SunOS 5.5 for
ample, the only thread environment available for JDK applications is the so–c

1) There is confusion in the literature about Java in this respect: what we mean by preemptive scheduling is
that each thread gets a time slice for execution in some fair manner, regardless of what other threads are
doing. In contrast, in a non–preemptive thread environment, a compute intensive thread which d
explicit actions which might lead to the suspension of the thread can monopolise the processor, witho
ing other threads a chance to run.

232

on
ptive

t most

hould

ds to

nt
ialized
e se-
t
with
rface
jects

ted in
rob-

ndard.
e ac-
 inte-
which
s into

uest
sent a
es of
ary to
esign
 are:
“green” threads, which is not preemptive. In other words, the PREMO implementati
is not guaranteed to run properly on SunOS 5.5 or other systems without a preem
scheduler although judicious application of the yield() statement seems to preven
problems.

A.1.2 Top Level of the PREMO Hierarchy

As was formally described in section 5.3 on page 64, a simple PREMO object, s
also be a subtype of PREMOObject. This is shown in the specification of SimplePRE-

MOObject below (see also page 65):

package premo.std.part2;
public abstract class SimplePREMOObject

implements PREMOObject, java.io.Serializable {
}

Strict adherence to the PREMO object hierarchy in the Java implementation lea
conflicts with RMI. The problem is that subtypes of SimplePREMOObject appear in
the argument lists and/or the return values of object services, and the idea is thatcopies
of such objects are used (i.e., these objects are not used for remote services). The curre
Java RMI implementation uses object serialization to create the copies. These ser
versions are sent through the communication network. However, if the object to b
rialized also implements the java.rmi.Remote interface, this constitutes a conflic
for the current RMI runtime (“Should the object be serialized, or is this an object
a remote stub?”) which leads to a runtime exception. On the other hand, if the inte
definition above was used to define simple PREMO objects, all simple PREMO ob
would also implement PREMOObject and, by virtue of inheritance, java.rmi.Re-
mote. As a consequence, the reference to PREMOObject has to be commented-out in
the real implementation (of course, SimplePREMOObject still implements, through its
own methods, all methods defined in PREMOObject).

A.1.3 Operation Request Modes

Most of the object model, described in Part 1 (see Chapter 3), can be implemen
Java (or indeed in any decent object–oriented environment) without significant p
lems. The concepts of objects, non–object data, inheritance, etc., are fairly sta
The only problem an implementor might encounter is that PREMO objects might b
tive, i.e., they may have their own thread of control. Fortunately, threads form an
gral part of Java (which is one of the reasons for choosing Java in the first place!),
made our task much easier. If this weren’t the case, a smooth integration of thread
the environment might represent a significant amount of work.

Operations in active PREMO objects may also have different operation req
modes (see Section 3.8 on page 45). The facilities described in PREMO repre
more “method-oriented” approach to thread synchronization than the basic faciliti
Java, which relies on critical sections and object blocking. It is therefore necess
provide tools to implement these various request modes. There are two main d
goals for the PREMO operation request modes which have been provided. These

233

t be
n the
f the

eration
aw in
., no
loop,

y area
ries”.

on the

ible
ple-

s the

 class
uires
ueue,
pera-
1. Calls to active object operations, i.e., invocation of the object’s methods, migh
synchronous, asynchronous, or sampled. This should be implemented withi
“callee” and there should be no syntactic difference for the caller regardless o
mode being used.

2. The active object should have the means to decide at which stage a certain op
is really performed, and which operation is to be delayed. As an example, we s
Part 2 that the main processing loop of a synchronization object is “atomic”, i.e
external operation request should be accepted while the object is within this
and all callers should be suspended.

Both aspects suggest an implementation scheme depicted on Figure 1-1. The gra
on the figure represents an active object; the dotted curve show thread “bounda
The thread on the left belongs to the caller of an operation, whereas the thread
right side represents the “real” working thread of the object.

The “interface method” depicted on the left side of the object is the method vis
to the caller via the official PREMO interface. What the method does, instead of im
menting the real operation, is as follows:

1. An instance of a special class, a “call structure”, is created; this class contain
arguments to the call and a reference to the operation to be invoked.

2. If the call is defined to be synchronous or asynchronous, the reference to the
instance is put into a queue, the “command queue”. A sampled method req
more care: instead of putting the reference to the call structure instance in the q
the latter should be inspected first to see if an element referring to the same o

…

command queue

interface method dispatcher

Figure 1-1 — Operation request implementation

peer method

234

ecial
mand
to the
 is in-

some

e
er
 Java,
ome

the
 the
l in

ns,
ll pre-

l
end it

lement
mine
. The
to the
tion is already present in the queue or not. If so, the argument values in the call
structure should be replaced, instead of putting the new instance into the queue; if
not, the reference to the new call structure is put into the queue, just like the asyn-
chronous or synchronous cases.

3. Depending on the specification of the interface method, the caller is either sus-
pended until the call is performed (synchronous case), or the interface method sim-
ply returns directly after placing a request for the call on a queue for dispatch (no
wait), thereby implementing an asynchronous or a sampled call.

The “callee” side, the real working thread of the object, runs in a loop within a sp
dispatcher routine, regularly consulting the command queue to see if a new com
is available. If yes, the reference to the call structure is retrieved, the reference
operation is accessed, and the operation doing the real work (the “peer” method)
voked using the arguments in the call structure.

Although the scheme is simple, some details in the description above merit
more explanation:

• What is a “reference to an operation”? Java introduces a class called Method, as
part of its java.lang.reflect package. This object does exactly what we need:
one can retrieve it based on the method’s signature and the Class instance of the
containing object, and one can call the invoke method on it which invokes the
operation corresponding to the Method in the containing object. This means that th
call structure contains simply a Method object, which can be used by the dispatch
to access the peer method. Note that if this class type were not present in
implementation of a general dispatch mechanism would be very troubles
indeed!

• How does synchronization and suspension work in the synchronous case? This is
done by issuing a Java Object’s wait call on the call structure instance which is
being transmitted in the queue. When the peer method has completed its work,
dispatcher issues a notify on the same object, which releases the caller. Using
wait – notify pair (which is standard in Java) also allows the dispatcher to fil
return data into the call structure before issuing notify; this return value can be
retrieved and, ultimately, returned to the caller.

• What happens to exceptions? Synchronous operations might also throw exceptio
which should be returned to the caller. Fortunately, the Java mechanism is we
pared for this. Indeed, if an operation is invoked through Method.invoke, and the
operation throws an exception, Method.invoke itself throws a special exception
called InvocationTargetException whose attribute refers to the origina
exception. This means that the dispatcher can retrieve this information and s
back via the call structure, instead of providing return values.

• What is the command queue? This is a simple wrapper around a Vector object
which provides synchronized access to its operations, such as putting a new e
into the queue, retrieving the head of the queue, and allowing the caller to exa
the contents of the queue (for example, to implement the sampled operation)
only reason a wrapper is necessary is to ensure mutually exclusive access

235

ing
nt, the

meth-
ple;

ply
contents of the queue. This can be achieved with standard Java synchronized
statements.

All these facilities are embodied in a separate object called OperationRequest,
which is part of the premo.impl.part1 package. This class offers the following op-
erations for the “caller” side:

protected Object callSync(String methodName, Object[] args)
protected void callAsync(String methodName, Object[] args)
protected void callSampled(String methodName, Object[] args)

and for the “callee” side:

protected Call nextCall()
protected Call nextCall(final Method[] methods)
protected Call nextCallNoWait()
protected Call nextCallNoWait(final Method[] methods)

The inner class, Call, is the call structure referred to in the description. The nextCall

and nextCallNoWait methods without arguments result in an unconditional call us
the head of the command queue. If a list of methods is also given as an argume
first queue element referring to one of those methods is used.

The implementation of EnhancedPREMOObject, or
EnhancedPREMOObject_Impl is a subtype of OperationRequest; this means that
all PREMO objects have access to these operations to implement their interface
ods or their own dispatcher1). In a specific case, the interface methods are very sim
for example, the jump operation of the synchronizable object (see page 101) can sim
be:

public void jump(Number position)
{

callSync(“jumpPeer”, new Object[] { position });
}

Of course, the real work must be done in the jumpPeer operation, which is invoked by
the internal dispatcher.

Depending on the semantics of the object, the dispatcher may be very simple, too:

while(true) {
nextCall();

But, most of the time, the dispatcher is more complex because it has to take into account
the internal state of the object. Finally, some PREMO objects may not use these facili-
ties at all because a simpler implementation scheme is possible.

A.1.4 Distribution and the Creation of PREMO Objects

Each PREMO application is supposed to start by calling

PREMORuntime.init()

1) Note that this inheritance relationship was omitted on page 69 to avoid unnecessary confusion at that
point.

236

d by
ess of

MI
r for
neric
port”
imply

.
 of a
.6.3).
ard
h
g an
n, are

ces

with
 rea-
r im-
sary.
This static method will initialize a number of system–wide variables which are use
various PREMO implementation objects such as, for example, the internet addr
the local host and the name of the machine. More importantly, it will initialize the R
environment for the local JVM (for example, by setting the correct security manage
RMI). Furthermore, a single local instance of both a generic factory and of a ge
factory finder object are created; the naming services of Java RMI are used to “ex
the name of the local factory instance (using an agreed upon name, which is s
“GenericFactory”) . The PREMOUtil object also has static variables which refer to
these local factory finder and factory instances.

This setting enables the implementation structure shown on Figure 1-2, (see also
section 5.7.3). A client can retrieve the reference for the local factory finder (using the
static variable defined for PREMOUtil); this factory finder can be used to locate a ref-
erence (an RMI stub) to the remote factory object. Finally, the client can instruct the re-
mote factory object to create a new PREMO object instance and return its stub. The
internal implementation of a factory object is a standard sequence of Java RMI calls.

Our current implementation has two restrictions, however:

• The whole structure relies on the fact that only one JVM is running on one machine
The reason is that the implementation needs an unequivocal identification
JVM, for example to set up connections among virtual devices (see section 6
However, whereas identification of a machine (through the stand
java.net.InetAddress class) is relatively straightforward in Java, it is muc
less simple to identify two JVM’s running on the same machine, hence sharin
IP address. Furthermore, Java sockets, which are used in our implementatio
bound to IP addresses, too.

• The current factory implementation is limited to creating PREMO object instan
on its own JVM, although this restriction does not appear in PREMO.

Although a more professional implementation of PREMO would have to deal
these restrictions, too, neither of them is a terrible setback. Although, for efficiency
sons, one might think of starting up several JVM’s on the same machine, a prope
plementation of Java with native threads should make such optimization unneces

GenericFactory

Client

GenericFactory

GenericFactory

GenericFactory

Client

A B

C D

Network

Figure 1-2 — Factories and factory finders

237

e for
f-
 access
son is
r ex-

t.
n the
e from

way in
he ap-

ds for
 static

ed to
tual
jects.

name
 have
 a vir-
he IP
cessary

om-
here-
veral
An unexpected problem did occur, however, when using RMI: If an object instance
is “exported” through RMI, which means, to be very precise, that the

UnicastRemoteObject.exportObject(newObj);

is used to turn the object into a remote service object, it is difficult to get a handl
the “real” object reference of the object and not a reference to its stub. Whereas this re
erence is useless if the object is indeed remote, it is sometimes necessary to have
to the real object if both the caller and the callee are on the same JVM. The rea
that the implementation might need some “hidden” methods which aren’t meant fo
port as remote methods.

The following example illustrates the problem. The VirtualDevice_Impl object
needs a method of the form:

setOutputStream(int portId, OutputStream stream);

to record, within its data structures, stream as the output channel for the specific por
Obviously, there is no reason why this method would be defined as an RMI call. O
other hand, the objects which set up connections receive references to the devic
the PREMO application. What the objects receive is therefore a stub for the real imple-
mentation object. This stub cannot be used to access setOutputStream; consequent-
ly, the “real” object reference should be accessed. However, there is no standard
the current Java RMI mechanism to access to the real object reference, even if t
plication is sure that both the callee and the caller are on the same JVM!

Because this problem occurs for a number of implementation dependent metho
the various virtual resource objects of Part 3, each JVM maintains (through some
methods and variables of the VirtualResource_Impl object) a hashtable containing
the references of virtual resource objects. A simple naming mechanism is us
uniquely identify a virtual resource. This is currently done with integers. Each vir
resource carries its own name with it, and this name can be inquired by other ob
Finally, this name can be used to get the object reference from the hashtable.

Of course, there is a bootstrap effect: the caller should be able to retrieve the
and the IP location of the object in order to retrieve the real object reference. We
chosen therefore to add a very small set of remote methods to the specification of
tual resource, which return the data used for a unique identification (essentially, t
address and the unique name of the resource). No other remote methods are ne
for the implementation.1)

A.2 Specific Part 3 Objects

A.2.1 Virtual Connection Objects

The difficulties of implementing virtual connection objects are due to the several c
munication paradigms which have to be combined within the same application. T
fore, the first question to answer is obviously: is it really necessary to combine se

1) Note that the standard PREMO property mechanism might have been used to solve the problem. The use
of a restricted set of remote methods is only a matter of convenience.

238

-
ts and
ch ob-
tions,

lls is
nce is
ypical
more

 same

e ad-
e con-
c code

 the
gh
nvoked

wo
 tech-
 only

. How-
 extra

n the

sides,
 two

xcel-
 What
ly pur-
paradigms? It is indeed possible to exclusively use RMI calls to transfer data from
among JVM’s. Some sort of PREMOMediaStream service object which actively trans
fers data from one port to another could conceivably be used. Because RMI objec
stubs are smoothly integrated with the rest of the Java environment, the use of su
jects could make all communication details transparent to the device implementa
too.

This approach was rejected in favor of speed: transferring data through RMI ca
much slower than transferring the same data through sockets. While the differe
not noticeable for the transfer of one or two average sized objects (used in a t
method invocation), it is prohibitive where media data is concerned. Hence, the
complex approach, described in section 6.6.3, was required.

This scheme differentiates between two cases: when both devices are on the
JVM, and when they run on different JVM’s. The VirtualConnection_Impl class
has the task of differentiating between the two cases and, possibly, performing som
ditional checks such as checking the media formats on the ports which are to b
nected. To ensure a better modularization of the code, the communication–specifi
has been placed in a separate implementation class called Connector_Impl. There is
a single instance of this class running per JVM, which is also “exported” through
RMI. It is the task of the PREMOUtil class to start up this one instance. It is throu
methods of this class that the connections are actually made. These methods are i
by the VirtualConnection_Impl class.

A.2.1.1 Devices on the Same JVM: Piped Streams

The “easy” half of the Connector_Impl object is to set up piped streams between t
virtual devices sharing the same JVM. The definition of these pipes is a standard
nique in Java for setting up a communication channel between two threads. The
difficulty is the problem already mentioned in section A.1.4: the Connector_Impl ob-
ject needs to have direct access to the virtual device instance, and not just its stub
ever, the general naming mechanism of virtual resources and the corresponding
remote methods solve this problem as well.

A.2.1.2 Devices on Different JVM’s: Sockets

If the devices are on different JVM’s, the task of setting up communication betwee
two ports involves two steps:

1. Set up a dedicated socket pair for this communication channel.

2. Connect the ports to the Java streams associated with the socket.

Obviously, the second step can only be done on the JVM where the target port re
which suggests that setting up the connection is done “in cooperation” by the
Connector_Impl object instances residing on their respective JVM’s.

We will not dive into the details of the Java socket mechanism here. There are e
lent overviews of this subject and we expect the reader to be familiar with sockets.
is important to emphasize is that each JVM has to run a separate thread whose on

239

eated.
the

 the
ro-

ocket,
s
e be-

 output

ld not
 same
cre-
ven if

ocket

n the
g the
ests.

s, be-
shta-

nput
f both
pose is to “accept” socket creation requests. This is how new socket pairs are cr
Each Connector_Impl instance spawns such a thread which we will refer to as
Watcher.

Setting up a new connection involves a little communication protocol between
two Connector_Impl instances residing on the two JVM’s. As an agreement, the p
tocol is always initiated by the Connector_Impl object residing at the “source” of the
stream. When initiating a connection, the object on the source side tries to get a s
by attempting to create a java.net.Socket object, using the sink’s internet addres
and a fixed socket port number. If this succeeds, a kind of “handshake” takes plac
tween the Connector_Impl of the source and the Watcher on the sink side. The
source can then take the output part of the socket and use this stream to set the
port of the relevant device port.

The problem is identifying the corresponding socket on the sink side. One shou
forget that, theoretically, two connection requests can simultaneously arrive at the
sink JVM, so there is a potential race condition in uniquely identifying the newly
ated socket. It is necessary to uniquely identify the socket pair on the sink side e
several socket creation requests interfere with one another.

The way of uniquely identifying the socket is based on the IP number and the s
port (not the virtual device port!) number. If the sink side Watcher defines a server
socket through:

ServerSocket master;
master = new ServerSocket(AgreedPortNumber, SinkInetAddress);

and contains a routine including:

Socket s = master.accept();
// got a request from a source
String IP1 = (s.getInetAddress()).getHostAddress();
int ID1 = s.getPort();

while, at the same time, the source side Connector_Impl does:

Socket s = new Socket(AgreedPortNumber,SinkInetAddress);
// accepted request
String IP2 = (s.getLocalAddress()).getHostAddress();
int ID2 = s.getLocalPort();

then the values of the tuples <IP1,ID1> and <IP2,ID2> will be identical.
Based on this observation, the following happens (see also Figure 1-3): Whe

Watcher gets a request, it stores the socket reference in a hashtable, usin
<IP1,ID1> tuple as a key. It then continues processing, possibly getting new requ
The source side Connector_Impl retrieves its own <IP2,ID2> tuple; this will be sent
through a remote method call, to the Connector_Impl on the sink side.The latter can
retrieve the socket reference from the hashtable (it may have to try several time
cause the Watcher might not have been scheduled to put the reference into the ha
ble yet). Once the socket reference is found, the corresponding InputStream is
retrieved and attached to the virtual device, thus establishing a connection.

The choice of “source” and “sink” is dependent on the choice of the output and i
ports connected to the media stream. Obviously, each Java VM can play the role o
a “source” side and a “sink” side, depending on the PREMO application.

240

e
at-
ndard

e
ion to
am (of
 as for

ce in
oid
 if two
A.2.1.3 Multicast Connections

Using Java streams for connection makes it relatively straightforward to implement a
“fan–out” type multicast connection. FanOutStream is defined in Part3 as a subtyp
of the standard OutputStream of Java. This fan–out stream offers the capability of
taching to and detaching from other output streams. The class overrides the sta
write operations to copy each byte to all attached streams.

In the simplest case, such a FanOutStream object instance can be plugged into th
output port of the master device and, from that point on, attaching a new connect
the device means, eventually, to attach one more output stream to the fan out stre
course, the “real” output stream has to be created following the same procedures
a single connection). A more optimal use of a FanOutStream is conceivable: by ana-
lysing the network requirements (through the internet number of each virtual devi
a network), FanOutStream instances could be put “closer” to the consumer, to av
transferring multiple copies of the same data on the same route. An easy case is

Device 1 Device 2

VM 1 VM 2

Watcher

Connector_Impl
(sink)

Connector_Impl
(source)

1. Source creates a Socket instance
connecting to a server socket.

2. <IP2,ID2> is extracted.
3. <IP2,ID2> is transferred to sink.
4. Socket and port is connected with

a Java stream.

a. Watcher accepts a socket request.
b. Watcher extracts <IP1,ID1>.
c. Watcher stores the socket refer-

ence in a hashtable.

A. Sink receives <IP2,ID2>.
B. Sink retrieves socket reference

from the hashtable.
C. Socket and port is connected with a

Java stream.

4

3

2
1

a

b

c

A

BC

Figure 1-3 — Setting up a socket pair for media streams

241

ly,
tand-
of
ata
nnec-

 con-
i.e., the
imple-
slave devices share the same JVM; a FanOutStream could be put onto this target JVM
instead of the one running the master. We have not implemented such optimizations in
our prototype, but it could be added without too much work.

The difficulty lies in implementing a “fan–in” multicast connection. Unfortunate
all standard Java IO operations boil down to reading one single byte through the s
ard read operation of InputStream so it seems impossible to provide some sort
FanInStream in full generality which would also ensure the consistency of larger d
packets. Consequently, our prototype implementation does not provide a fan–in co
tion.1)

1) Note that if the RMI mechanism was used for the virtual connection, implementation of a fan–in type
nection would not represent a real problem. Data would be transferred through method arguments,
consistency of data would be automatically preserved. Unfortunately, the speed of the current RMI
mentation makes this approach impractical.

242

ro-

r-
uter

y in

nce

.A.

age

di-

 Us-

r

References

[1] P. Ackermann. Developing Object-Oriented Multimedia Software - Based on the
MET++ Application Framework, dpunkt Verlag, Heidelberg, 1996.

[2] W. Appelt and A. Scheller. HyperODA: Going Beyond Traditional Document
Structures. Computer Standards & Interfaces, 17(1):13–21, 1995.

[3] F. Arbab, I. Herman, and G.J. Reynolds. An Object Model for Multimedia P
gramming. Computer Graphics Forum, 12(3):C101–C113, 1993.

[4] F. Arbab: "The IWIM model for coordination of concurrent activities". In: Coo
dination Languages and Models, Springer Verlag, Lecture Notes in Comp
Science, vol. 1061 series, Berlin - Heidelberg - New York, pp. 34-56, 1996.

[5] D.B. Arnold and D.A. Duce. ISO Standards for Computer Graphics: The First
Generation. Butterworth, 1990.

[6] M. Awad and J. Ziegler. A Practical Approach to the Design of Concurrenc
Object–Oriented Systems. Software — Practice and Experience, 27(9):1013–
1034, 1997.

[7] J. Barnes. Programming in Ada’95. Addison–Wesley, 1996.

[8] D.R. Begault. 3D Sound for Virtual Reality and Multimedia. Academic Press,
1994.

[9] G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug, K. Nygaard. Simula Begin. AUER-
BACH Publishers Inc., 1973

[10] G. Blakowski and R. Steinmetz. A Media Synchronization Survey: Refere
Model, Specification, and Case Studies. IEEE Journal on Selected Areas in Com-
munications, 14(1):5–35, 1996.

[11] D.G. Bobrow, L.G. Demichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, D
Moon. Common Lisp Object System Specification. Lisp and Symbolic Computa-
tion, 1(3/4), 1989.

[12] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Langu
LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1986.

[13] G. Booch. Object–Oriented Analysis and Design with Applications (Second e
tion). Prentice–Hall, 1997.

[14] D. Brookshire Conner and A. van Dam. Sharing Between Graphical Objects
ing Delegation. In C. Laffra, E.H. Blake, V. de Mey, and X. Pintado, editors, Ob-
ject–Oriented Programming for Graphics, Springer–Verlag, Focus on Compute
Graphics Series, 1995.

244

f Ap-

rson.

rmal

ium

f

ulti-

 of
edia

and-

age,
.

ated

iza-

ect–
[15] N. Carriero and D. Gelernter: "Linda in Context". In: Communication of the
ACM, 32, pp. 444-458, 1989.

[16] L. Chamberland. FORTRAN 90: A Reference Guide. Prentice Hall, 1996.

[17] F. Colaïtis and F. Bertrand. The MHEG Standard: Principles and Examples o
plications. In W. Herzner and F. Kappe, editors, Multimedia/Hypermedia in Open
Distributed Environments, Springer–Verlag, 1994.

[18] R.B. Dannenberg, T. Neuendorffer, J. Newcomer, D. Rubine, and D. Ande
Tactus: Toolkit-level Support for Synchronized Interactive Multimedia. Multime-
dia Systems Journal, 1(2):77–86, 1993.

[19] D.A. Duce, D.J. Duke, P.J.W. ten Hagen, I. Herman, and G.J. Reynolds. Fo
Methods in the Development of PREMO. Computer Standards & Interfaces,
17:491–509, 1995.

[20] D.J. Duke, D.A. Duce, I. Herman and G. Faconti. Specifying the PREMO synchro-
nization objects. Technical report 02/97-R048, European Research Consort
for Informatics and Mathematics (ERCIM), 1997.
URL ftp://ftp.inria.fr/associations/ERCIM/research_reports/pdf/0297R048.pd

[21] D.J. Duke and I. Herman. Programming Paradigms in an Object-Oriented M
media Standard. In P. Slusallek and F. Arbab, editors, Proc. of the Eurographics
Workshop on Programming Paradigms in Computer Graphics, Eurographics
Publications Series, 1997.

[22] D.J. Duke, I. Herman, T. Rist, and M. Wilson. Relating the primitive hierarchy
the PREMO standard to the Standard Reference Model for Intelligent Multim
Presentation Systems. Computer Standards & Interfaces, 20, 1998.

[23] D.A. Duce, D.J. Duke, I. Herman and G. Faconti. The Changing Face of St
ardization: A Place for Formal Methods? Formal Aspects of Computing, 11, 1999,
in press.

[24] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification langu
Version 1. Technical Report, The University of Queensland, No. 91-1, 1991

[25] R. Duke, G. Rose, and G. Smith. Object–Z: A Specification Language Advoc
for the Description of Standards. Computer Standards & Interfaces, 17(5-6):511–
534, 1995.

[26] G. Faconti and M. Massink. Investigating the Behaviour of PREMO Sychron
tion Objects. In Proceedings of the 4th Eurographics Workshop on Design, Spec-
ification and Verification of Interactive Systems, Springer–Verlag, 1997.

[27] B.N. Freeman–Benson and A. Borning. Integrating constraints with an obj
oriented language. In I. Lehrmann Madsen, editor, Proceedings of the ECOOP’92
European Conference on Object–Oriented Programming, Springer Verlag, Lec-
ture Notes in Computer Science 615, 1992.

[28] D. Flanagan. Java in a Nutshell (Second edition). O’Reilly, 1997.

245

g

o. A
b-

el-

-

[29] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Prin-
ciples and Practice. Addison–Wesley, 1990

[30] M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modelin
Language. Addison Wesley, 1997.

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns: elements of reus-
able object-oriented software, Addison Wesley, 1995.

[32] A. Goldberg and D. Robson. Smalltalk–80: The Language. Addison–Wesley,
1989.

[33] S.J. Gibbs, L. Dami, and D.C. Tsichritzis. An Object Oriented Framework for
Multimedia Composition and Synchronisation. In L. Kjelldahl, editor, Multime-
dia (Systems, Interaction and Applications), Springer–Verlag, 1992.

[34] S.J. Gibbs and D.C. Tsichritzis. Multimedia Programming. Addison–Wesley,
1995.

[35] A. Goldberg, D. Robson. Smalltalk-80: The Language. Addison Wesley, 1989.

[36] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison–
Wesley, 1996.

[37] S. Green. Parallel Processing for Computer Graphics. Pitman, 1991.

[38] J. Hartman and J. Wernecke. The VRML 2.0 Handbook. Addison–Wesley, 1996.

[39] P. Heller, S. Roberts, P. Seymour and T. McGinn. Java 1.1 Developer’s Hand-
book. Sybex, 1997.

[40] I. Herman, G.J. Reynolds, and J. Van Loo. PREMO: An emerging standard for
multimedia. Part I: Overview and Framework. In: IEEE MultiMedia, 3(3):83–89,
1996.

[41] I. Herman, N. Correia, D.A. Duce, D.J. Duke, G.J. Reynolds, and J. Van Lo
Standard Model for Multimedia Synchronization: PREMO Synchronization O
jects. Multimedia Systems, 6, 1997.

[42] I. Herman, G.J. Reynolds, and J. Davy. MADE: A Multimedia Application dev
opment environment. In L.A. Belady, editor, Proc. of the IEEE International
Conference on Multimedia Computing and Systems, Boston, IEEE CS Press,
1994.

[43] C.A.R. Hoare. Communicating Sequential Processes. Addison–Wesley, 1985.

[44] T.L.J. Howard, W.T. Hewitt, R.J. Hubbold, and K.M. Wyrwas. A Practical Intro-
duction to PHIGS and PHIGS PLUS. Addison Wesley, 1991.

[45] IMA, Multimedia System Services, Interactive Multimedia Association, Septem
ber 1994, ftp://ima.org/pub/mss/.

246

TOS
ional

hics
SO/

phi-
iza-

ical
ardi-

sen-
s of
–1,

sen-
m-

998.

sen-
ys-
8–3,

sen-
n-
for

The
nd
EC

 for
 for

 In-
[46] Information Processing Systems — Open Systems Interconnections — LO
(Formal Description Technique based on the temporal ordering of observat
behaviour). International Standardization Organization, ISO/IS 8807, 1989.

[47] Information Processing Systems — Computer Graphics — Computer Grap
Reference Model (CGRM), International Organisation for Standardization, I
IEC IS 11072, 1992.

[48] Information technology — Computer graphics and image processing — Gra
cal Kernel System (GKS), Part 1: Functional description. International Organ
tion for Standardization, ISO/IEC 7942–1, 1994

[49] Information Technology — Computer Graphics — Programmer’s Hierarch
Interactive Graphics System (PHIGS). International Organisation for Stand
zation, ISO/IEC IS 9592 1997.

[50] Information Technology — Computer Graphics and Image Processing — Pre
tation Environments for Multimedia Objects (PREMO), Part 1: Fundamental
PREMO. International Organization for Standardization, ISO/IEC 14478
1998.

[51] Information Technology — Computer Graphics and Image Processing — Pre
tation Environments for Multimedia Objects (PREMO), Part 2: Foundation Co
ponent. International Organization for Standardization, ISO/IEC 14478–2, 1

[52] Information Technology— Computer Graphics and Image Processing — Pre
tation Environments for Multimedia Objects (PREMO), Part 3: Multimedia S
tems Services. International Organization for Standardization, ISO/IEC 1447
1998.

[53] Information Technology — Computer Graphics and Image Processing — Pre
tation Environments for Multimedia Objects (PREMO), Part 4:Modelling, Re
dering, and Interaction Component. International Organization
Standardization, ISO/IEC 14478–4, 1998.

[54] Information Technology — Computer Graphics and Image Processing —
Virtual Reality Modeling Language (VRML), Part 1: Functional specification a
UTF-8 encoding. International Organization for Standardization, ISO/I
14772–1, 1998.

[55] Information Technology — Coding of Moving Pictures and Associated Audio
Digital Storage up to about 1.5 Mbit/s (MPEG). International Organisation
Standardization, ISO/IEC 10744, 1992.

[56] ISO/IEC directives: Procedures for the technical work of ISO/IEC JTC 1 on
formation Technology, 1995. See http://www.iso.ch/dire/jtc1/directives.htm

[57] R.S. Kalawsky. The Science of Virtual Reality and Virtual Environments. Addi-
son–Wesley, 1994.

247

ms.

es,

Ob-

e on

tor,

a/

C24
/IEC
[58] B. Kernighan and D. Ritchie. The C Programming Language, second edition.
Prentice Hall, 1989.

[59] J. F. Koegel Buford, editor. Multimedia Systems. Addison–Wesley, 1994.

[60] J. F. Koegel Buford. Architecture and Issues for Distributed Multimedia Syste
In J. F. Koegel Buford, editor. Multimedia Systems. Addison–Wesley, 1994.

[61] C. Laffra, E.H. Blake, V. de Mey, and X. Pintado, editors. Object–Oriented Pro-
gramming for Graphics. Springer–Verlag, Focus on Computer Graphics Seri
1995.

[62] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in
ject Oriented Systems. In Proc. OOPSLA’86, ACM Press,1986.

[63] A. Lie and N. Correia. Cineloop Synchronization in the MADE Environment., in:
Proceedings of the IS&T/SPIE Symposium on Electronic Imaging, Conferenc
Multimedia Computing and Networking, San Jose, 1995.

[64] B. MacIntyre and S. Feiner. Future Multimedia User Interfaces. Multimedia Sys-
tems, 4(5):250–268, 1996.

[65] V. de Mey and S. Gibbs. A Multimedia Component Kit. In P.V.Rangan, edi
Proceedings of the First ACM International Conference on Multimedia (MM93),
ACM Press, 1993.

[66] B. Meyer. Eiffel: The Language. Prentice–Hall, 1990.

[67] B. Meyer. Reusable Software: The Base Object-Oriented Component Libraries.
Prentice Hall, 1994.

[68] R. Newcomb, N.A. Kipp, and V.T. Newcomb. The “HyTime” — Hypermedi
Time–based Document Structuring Language. Communication of the ACM,
34(11):67–83, 1991.

[69] Object Management Group. See http://www.omg.org/

[70] R. Orfali and D. Harkey. Client/Server Programming with JAVA and CORBA.
Wiley Computer Publishing, 1997.

[71] R. Otte, P. Patrick, and M. Roy. Understanding CORBA, The Common Object Re-
quest Broker Architecture. Prentice–Hall, 1996.

[72] G.J. Reynolds, D.A. Duce, and D.J. Duke. Report of the ISO/IEC JTC1/S
Special Rapporteur Group on Formal Description Techniques. Doc. No. ISO
JTC1/SC24 N1152, 1994.

[73] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object–Ori-
ented Modeling and Design. Prentice–Hall, 1991.

[74] W. Schroeder, K. Martin, B. Lorensen. The Visualization Toolkit, second edition.
Prentice Hall, 1998.

248

on

, re-

. In

di-

ism
rs,

nted
[75] P. Slusallek and H.–P. Seidel. Vision: An Architecture for Global Illuminati
Calculations. IEEE Transactions on Visualization and Computer Graphics,
1(1):77–96, 1995.

[76] M.A. Srinivasan and C. Basdogan, Hapics in virtual environments: taxonomy
search status, and challenges, Computers & Graphics, 21(4), Pergamon, 1997.

[77] J. Smith. X: A Guide for Users. Prentice Hall, 1994.

[78] J.M. Spivey. The Z Notation: A Reference Manual. Prentice–Hall, 1992.

[79] B. Stroustrup. The C++ Programming Language. Addison–Wesley, 1990.

[80] A.S. Tanenbaum. Modern Operating Systems. Prentice–Hall, 1992.

[81] H. Tokuda. Operating System Support for Continuous Media Applications
J.F. Koegel Buford, editor. Multimedia Systems. Addison–Wesley, 1994.

[82] B.J. Torby. FORTRAN’77 for Engineers. Prentice Hall, 1990.

[83] D. Ungar, R.B. Smith. SELF: The Power of Simplicity. LISP and Symbolic Com-
putation, 4(3), Kluwer, 1991.

[84] C. Upson, T. Faulhaber Jr., D. Kamins, et al. The Application Visualization Sys-
tem: A Computational Environment for Scientific Visualization. IEEE Computer
Graphics and Applications, 9(4), 1989.

[85] M. Vazirgiannis and T. Sellis. Event and Action Representation and Composition
for Multimedia Application Scenario Modelling. In E.Möller, and H. Pusch, e
tors, Interactive Distributed Multimedia Systems and Services, Proceedings of the
European Workshop IDMS’96, Springer–Verlag, 1996.

[86] A. Vogel and K. Duddy. Java Programming with CORBA. IEEE Press, 1997.

[87] A. Watters, G. van Rossum, J.C. Ahlstrom. Internet Programming with Python.
M&T Books, 1996.

[88] P. Wegner, S.B. Zdonik. Inheritance as an Incremental Modification Mechan
or What Like Is and Isn’t Like. In S. Gjessing and K. Nygaard, edito
ECOOP’88: European Conference on Object-Oriented Programming. Volume
322 of Lecture Notes in Computer Science, Springer, 1988.

[89] J. Wernecke, The Inventor Mentor, Addison Wesley, 1994.

[90] R. Wirfs–Brock and R. Johnson. Surveying Current Research in Object–Orie
Design. Communications of the ACM, 33(9):104–123, 1990.

[91] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Computing. IEEE
Micro, 17(3):44–53.

[92] P. Wißkirchen. Object–Oriented Graphics. Springer–Verlag, 1990.

[93] M. Woo, J. Neider, T. Davis. OpenGL Programming Guide, second edition. Ad-
dison Wesley, 1997.

249
[94] W3C PNG (Portable Network Graphics) Specification. Public document, availa-
ble at http://www.w3.org/TR/REC-png

[95] W3C SMIL Draft Specification. Public document, available at http://
www.w3.org/TR/WD-smil, 1998.

250

251
Index

Java Definitions
Acoustic structure 223
ActionElement object 208
ActionType structure 205
Aggregate structure 225
Alternate structure 226
AndOr structure 205
ANDSynchronizationPoint

object 210
Audio structure 222
Callback object 207
CallbackByName object 207
Captured structure 222
Clock object 211
Colour structure 221
ConfInfo structure 216
Constraint object 208
Constraint structure 224
ConstraintOp structure 206
Controller object 210
Coordinate structure 221
Coordinator object 229
Direction structure 205
EfficiencyMeasure structure 227
EnhancedPREMOObject object 207
Event object 209
EventHandler object 209
FactoryFinder object 215
Form structure 222
Format object 217
GenericFactory object 215
Geometric structure 223
Group object 220
InputDevice object 228
InterNodeTransport object 217
IntraNodeTransport object 217
Light structure 224
LogicalDevice object 220
Material structure 224
MediaEngine object 227
Modeller object 227
Modifier structure 223
MRI_Device object 227
MRI_Format structure 227
MSS_State structure 216
MultimediaStreamProtocol

object 217

Music structure 222
Name structure 221
Parallel structure 226
PortConfig structure 217
PortType structure 216
PREMOObject object 207
Primitive structure 222
PropertyConstraint object 215
PropertyInquiry object 214
PropertyPair structure 208
QoSDescriptor object 217
Reference structure 225
Renderer object 227
Router object 228
Scene object 228
Sequential structure 226
Shading structure 225
SimplePREMOObject object 207
SoundCharacteristic structure 223
Speech structure 223
State structure 206
StreamControl object 218
Structural structure 224
Structured structure 225
SyncElement object 209
Synchronizable object 211
SynchronizationPoint object 210
SyncStreamControl object 218
SysClock object 211
Tactile structure 223
Text structure 223
Texture structure 225
TimeComposite structure 225
TimeFrame structure 224
TimeLine object 214
TimeLocation structure 221
Timer object 211
TimeSlave object 214
TimeSynchronizable object 213
TimeUnit structure structure 206
Tracer structure 226
Transformation structure 224
VirtualConnection object 219
VirtualConnectionMulticast

object 220
VirtualDevice object 219
VirtualResource object 218
Visual structure 224
VocalCharacteristic structure 224
Wrapper structure 226

A
Acquiring a resource 143
ActionElement structure 83, 102
ActionType 83

252
Aggregate structure 178
Alternate structure 184
AndOr 76
ANDSynchronizationPoint

object 80, 203
Audio structure 172

C
Callback by name 68
Callback object 68
CallbackByName object 68
Callbacks 68, 76, 96, 179
Capability 111, 113
Captured structure 170
Casting 43
Clock object 89, 175, 187
Colour 187
Colour structure 187
Components 9
Configurability 127, 128, 129, 146
Configuration objects 128

Semantic names 130
ConfInfo object 141
Constraint structure 67, 77
Constraint structure 174
ConstraintOp 77
ConstraintOp structure 67
Controller object 82, 184, 203
Coordinate spaces 185
Coordinate structure 186
Coordinator 199
Coordinator object 200
CORBA 53, 54

D
Dataflow network 125
Delay bounds 135
Direct instance 41

E
EfficiencyMeasure object 190, 191,

192
Enhanced PREMO Object 69
EnhancedPREMOObject object 69
Enumeration 62
Event

Event data 75
Event name 176
Event registration 76
Event source 66, 75, 176
Synchronization points 78

Event
Event data 66, 75
Event name 66, 75

Event management 74

Event object 66
Event structure 75
Event-based synchronization 92, 97
EventHandler object 76
Exceptions 46, 63

F
Factory finder objects 120
Factory objects 118, 144
FactoryFinder object 121
Form structure 171
Format object 131, 188

G
GenericFactor object 119
Geometric structure 172
Group 161
Group object 161

I
Immediate subtype 41
Inheritance 42, 51

Multiple 42
Input devices 193
InputDevice object 193
InterNodeTransport object 133
IntraNodeTransport object 133

J
Jitter 135

L
Light structure 175
Logical device 163
LogicalDevice object 163

M
Master 107, 154
Material structure 175
Media streams 125
MediaEngine 192
MediaEngine object 192
Middleware 128
Modeller 190
Modeller object 191, 193
Modifier structure 173
MRI 165
MRI_Format object 188
MSS 125, 165
Multicast 160
Multimedia Systems Services 125
MultimediaStreamProtocol

object 132
Music structure 172

253
N
Name structure 185, 196
Native property values 111, 113
Negotiations 110, 117, 127, 144
Non–object types 38, 59, 176

Basic data types 60
Constructed types 38, 61
Enumerations 62
Exceptions 63
Extended integers 93
Nested top–level classes 61

O
Object 36

Activity 36, 86, 91
Attributes 37
Creation 118, 144
Factory 118
Identity 38
Implementation 37
Instance 37
Reference 39
Specification 37
State 36
Types 36

Object creation 118
Object lifecycle 47
Object model 36, 51
Operation 37

Asynchronous 45, 68
Input parameter 40, 43
Invocation 37
Output parameter 40, 44
Protected 43
Request 40
Request modes 45
Sampled 45
Selection 43
Signature 40
Synchronous 45

P
Parallel structure 182, 202
PortConfig structure 147
Ports 125, 147, 157
PortType 149
PREMOException 63
PREMOObject

Initialization 64, 119, 122
PREMOObject object 64
Primitive 167, 222

Acoustic modifier 174
Aggregate 177
Alternate time composite 184
Audio 171

Captured 170
Form 171
Geometric 172
Modifier 173
Music 172
Parallel time composite 182
Reference 185
Sequential time composite 181
Speech 172
Structural modifier 174
Structured 177
Tactile 172
Text 173
Time composite 179
Time frame modifier 175
TimeComposite 200
Tracer 176, 190, 197, 203
Visual modifier 175
Wrapper 176

Primitive structure 169
Private properties 111
Processing element 151
Profiles 9
Progress position 96
Progression space 92, 94, 105, 154
Property management 69

Capability 111
Constraining properties 110
Native property values 111, 119
Property definition 70, 114
Property inquiry 71
Property matching 72
Property removal 71
Property selection 115

PropertyConstraint object 114
Bound state 115

PropertyInquiry object 113
PropertyPair structure 72

Q
QoSDescriptor object 134
Quality of service 134, 145, 157

Bandwidth 135
Delay 135
Guaranteed level 134
Jitter 135

R
Reference point 93, 101, 106
Reference structure 185
Renderer 191
Renderer object 191, 201
ResourceState 143
RMI 53, 122

Remote interface 54

254
Remote server class 54, 69, 122
Server object registration 56, 118, 119,

122
Router 194
Router object 194

S
Scene 195
Scene object 195
Semantic name 141
Semantic names 130
Sequential structure 181, 203
Shading structure 175
Simple PREMO Objects 65
SimplePREMOObject object 65
Slave 107, 140, 154
SoundCharacteristic structure 174
Speech structure 172
Stream control 136, 144, 157

Drain 138
Mute 137, 155
Prime 137, 139

StreamControl object 139, 203
Structural structure 174
Structure 61, 65, 66
Structured structure 177
Subtype 40
Synchronizable object 94
Synchronization 90
Synchronization event 79
Synchronization point 78
SynchronizationPoint object 79
SyncStreamControl object 140
SysClock object 89

T
Tactile structure 172
Text structure 173
Texture structure 175
Time 87

Accuracy 87
Location 187
Time units 87

Time-based synchronization 103
TimeComposite structure 179, 200
TimeFrame structure 175
Timeline 109
TimeLine object 109
TimeLocation structure 187
Timer object 89, 104
TimeSlave object 108, 140
TimeSynchronizable object 104, 139
TimeUnit 89
Tracer structure 176, 197, 203
Transformation structure 174

Transformer object 153

U
Unicast 160

V
ValidationResult object 143, 151
Virtual connection 155
Virtual device 126, 146, 166, 170

Hierarchy 163
Virtual resource 140
VirtualConnection object 156
VirtualConnectionMulticast

object 161
VirtualDevice object 146
VirtualResource object 140
VocalCharacteristic structure 174

W
Wait flag 93, 95
Wrapper structure 176

	PREMO: A Standard for Distributed Multimedia
	1.1 Introduction
	1.1.1 What PREMO Is
	PREMO as middleware
	PREMO as a reference model

	1.1.2 What PREMO Isn’t
	PREMO is not a Media Format
	PREMO is not a Media Engine
	PREMO is not a user-oriented Specification

	1.2 Formal Description Techniques and PREMO
	1.3 Structure of the Book
	1.4 Typographical Conventions
	1.5 Graphical Conventions

	An Overview of PREMO
	2.1 Introduction
	2.2 The Structure of PREMO
	2.3 The PREMO Object Model
	2.3.1 Overview
	2.3.2 From Language Bindings to Environment Bindings
	2.3.3 Object References
	2.3.4 Active Objects
	2.3.5 Operation Dispatching
	2.3.6 Attributes
	2.3.7 Non-object Data Types

	2.4 The Foundation Component
	2.4.1 Structures, Services, and Types
	2.4.2 Inter-Object Communication
	2.4.3 Synchronization
	2.4.4 Time
	2.4.5 Property Management
	2.4.6 Object Factories

	2.5 The Multimedia Systems Services Component
	2.5.1 The Paradigm of Media Networks
	2.5.2 Virtual Resources
	2.5.3 Stream Control
	2.5.4 Virtual Devices
	2.5.5 Virtual Connections
	2.5.6 Higher-Levels of Organization: Groups and Logical Devices
	2.5.7 Working in Unison

	2.6 The Modelling, Rendering, and Interaction Component
	2.6.1 Object-Oriented Rendering
	2.6.2 Primitives
	2.6.3 Modelling and Rendering Devices
	2.6.4 Coordination

	2.7 Closing Remarks

	The Fundamentals of PREMO
	3.1 Introduction
	3.2 Basic Concepts
	3.2.1 PREMO Objects and Object Types
	3.2.2 Attributes
	3.2.3 Non-object Types
	3.2.4 Object Identity and Object References

	3.3 Operations
	3.4 Subtyping
	3.5 Inheritance
	3.6 Protected Operations
	3.7 Operation Selection, and Casting
	3.8 Operation Request Modes
	3.9 Exceptions
	3.10 The Object and Object Reference Lifecycle
	3.11 The Environment Binding

	General Implementation Issues
	4.1 Implementation Choices
	4.1.1 Implementation Language
	4.1.2 Implementation Environment

	4.2 PREMO Specifications in Java and Java RMI
	4.2.1 Constraints on the Specification Details
	4.2.2 Registering Server Objects

	The Foundation Component
	5.1 Introduction
	5.2 PREMO Non–object Types
	5.2.1 Basic Data Types
	5.2.2 Constructed Data Types
	5.2.3 Exceptions

	5.3 Top Layer of the PREMO Object Hierarchy
	5.3.1 The PREMOObject Interface
	5.3.2 Simple PREMO Objects
	5.3.2.1 Event Structures
	5.3.2.2 Constraint Structures
	5.3.3 Callbacks
	5.3.4 Enhanced PREMO Objects
	5.3.4.1 Enhanced PREMO Objects as Service Objects
	5.3.4.2 Property Management
	5.3.4.2.1 Property Definition
	5.3.4.2.2 Removal of Properties
	5.3.4.2.3 Property Inquiry Operations
	5.3.4.2.4 Property Matching
	5.3.5 Top Layer of PREMO

	5.4 General Utility Objects
	5.4.1 Event Management
	5.4.1.1 The PREMO Event Model
	5.4.1.2 The Event Handler Object
	5.4.1.3 Synchronization Points
	5.4.2 Finite State Machines: Controller Objects
	5.4.2.1 Detailed Specification of a Controller
	5.4.2.2 Activity of Controllers
	5.4.3 Time Objects
	5.4.3.1 General Notions
	5.4.3.2 Specification of the PREMO Time Objects

	5.5 Synchronization Facilities
	5.5.1 Synchronizable Objects
	5.5.1.1 Overview: Event–Based Synchronization
	5.5.1.2 State Transition Monitoring
	5.5.1.3 Detailed Specification of the Synchronizable Object
	5.5.1.3.1 Retrieve Only Attributes
	5.5.1.3.2 Settable Attributes
	5.5.1.3.3 Management of Reference Points
	5.5.1.3.4 Management of Action Elements
	5.5.1.3.5 General Reset
	5.5.1.4 Synchronizable Objects as Callbacks
	5.5.2 Time and Synchronizable Objects
	5.5.2.1 Stop–Watch and Progression
	5.5.2.2 Time and Progression Space
	5.5.2.3 Reference Point Specifications in Time
	5.5.3 Combining TimeSynchronizable Oobjects: Time Slaves
	5.5.4 Time–Lines

	5.6 Negotiation and Configuration Management
	5.6.1 General Notions
	5.6.2 Property Inquiry Objects
	5.6.3 Constraining Properties
	5.6.4 Dynamic Change of Properties
	5.6.5 Interaction among Properties
	5.6.6 Some Conclusions on the Negotiation Facilities

	5.7 Creation of Service Objects
	5.7.1 Generic Factory Objects
	5.7.2 Factory Finders
	5.7.3 Use of Factories and Factory Finders

	Multimedia Systems Services Component
	6.1 Introduction
	6.2 Configuration Objects
	6.2.1 Format Objects
	6.2.2 Transport and Media Stream Protocol Objects
	6.2.3 Quality of Service Descriptor Objects

	6.3 Stream Control
	6.3.1 The StreamControl Object
	6.3.2 SyncStreamControl Objects

	6.4 Virtual Resources
	6.4.1 Property Control of Configurations
	6.4.2 Resource and Configuration Management
	6.4.3 Stream Control
	6.4.4 Monitoring Resource Behaviour and Quality of Service Violations

	6.5 Virtual Devices
	6.5.1 Configuring Devices
	6.5.1.1 Global Configuration
	6.5.1.2 Port Configurations
	6.5.1.2.1 Port Configuration Structures
	6.5.1.2.2 Configuring Ports
	6.5.2 Examples of Virtual Devices
	6.5.2.1 Simple Media Devices
	6.5.2.2 Transformer Devices

	6.6 Virtual Connections
	6.6.1 Overview
	6.6.2 Detailed Specification of Virtual Connections
	6.6.3 Examples of Virtual Connections
	6.6.4 Multicast Connections

	6.7 Groups
	6.8 Logical Devices

	The Modelling, Rendering, and Interaction Component
	7.1 Introduction
	7.2 Primitives
	7.2.1 The Role of Primitives in PREMO
	7.2.2 The Hierarchy in Overview
	7.2.3 Captured Primitives
	7.2.4 Form Primitives
	Audio Primitives
	Geometric Primitives

	7.2.5 Tactile Primitives
	Text Primitives

	7.2.6 Modifier Primitives
	Acoustic Modifiers
	Structural Modifiers
	TimeFrame Modifiers
	Visual Modifiers

	7.2.7 Wrapper Primitives
	7.2.8 Tracer Primitives
	7.2.9 Structured Primitives
	7.2.9.1 Aggregate Primitives
	7.2.9.2 TimeComposite
	7.2.9.2.1 Sequential
	7.2.9.2.2 Parallel
	7.2.9.2.3 Alternate
	7.2.10 Reference Primitives

	7.3 Coordinate Spaces
	7.3.1 Coordinate
	7.3.2 TimeLocation
	7.3.3 Colour

	7.4 Devices for Modelling, Rendering and Interaction
	7.4.1 MRI_Format
	7.4.2 Efficiency Measures
	7.4.3 MRI Device
	7.4.4 Modeller
	7.4.5 Renderer
	7.4.6 MediaEngine

	7.5 Input Devices, and Routing
	7.5.1 InputDevice
	7.5.2 Router

	7.6 The Scene Database
	7.7 Coordination
	7.7.1 Management
	7.7.2 Allocation
	7.7.3 Synchronization

	Detailed Java Specifications of the PREMO Objects
	8.1 Introduction
	8.2 Foundation Objects
	8.2.1 Enumerations
	8.2.2 Additional Data Types
	8.2.3 Top Level of PREMO Hierarchy
	8.2.4 Structures
	8.2.5 General Utility Objects
	8.2.5.1 Event Management
	8.2.5.2 Controllers
	8.2.5.3 Time Objects
	8.2.6 Sychronization Objects
	8.2.7 Negotiation and Configuration Management
	8.2.8 Creation of Service Objects

	8.3 Multimedia Systems Services
	8.3.1 Enumerations
	8.3.2 Structures and Additional Data Types
	8.3.3 Configuration Objects
	8.3.4 Stream Control
	8.3.5 Virtual Resource
	8.3.6 Virtual Device
	8.3.7 Virtual Connections
	8.3.8 Group
	8.3.9 Logical Device

	8.4 The Modelling, Rendering, and Interaction Component
	8.4.1 Objects for Coordinate Spaces
	8.4.1.1 Coordinate Object
	8.4.1.2 Colour Object
	8.4.1.3 TimeLocation Object
	8.4.2 Name Object
	8.4.3 Objects for Media Primitives
	8.4.3.1 Primitive Object
	8.4.3.2 Captured Object
	8.4.3.3 Primitives with Spatial and/or Temporal Form
	8.4.3.3.1 Form object
	8.4.3.4 Form Primitives for Audio Media Data
	8.4.3.4.1 Audio Object
	8.4.3.4.2 Music Object
	8.4.3.4.3 Speech Object
	8.4.3.5 Form Primitives for Geometric Media Data
	8.4.3.5.1 Geometric Object
	8.4.3.5.2 Tactile Object
	8.4.3.5.3 Text Object
	8.4.3.6 Primitives for the Modification of Media Data
	8.4.3.6.1 Modifier
	8.4.3.7 Modifier Primitives for Audio Media Data
	8.4.3.7.1 Acoustic Object
	8.4.3.7.2 SoundCharacteristic Object
	8.4.3.7.3 VocalCharacteristic Object
	8.4.3.8 Modifier Primitives for Structural Aspects of Media Data
	8.4.3.8.1 Structural Object
	8.4.3.8.2 Transformation Object
	8.4.3.8.3 Constraint Object
	8.4.3.8.4 TimeFrame Object
	8.4.3.9 Modifier Primitives for Visual Aspects of Media Data
	8.4.3.9.1 Visual Object
	8.4.3.9.2 Light Object
	8.4.3.9.3 Material Object
	8.4.3.9.4 Shading Object
	8.4.3.9.5 Texture Object
	8.4.3.9.6 Reference Object
	8.4.3.10 Organising Primitives into Structures
	8.4.3.10.1 Structured Object
	8.4.3.10.2 Aggregate Object
	8.4.3.11 Organising Media Data within Time
	8.4.3.11.1 TimeComposite Object
	8.4.3.11.2 Sequential Object
	8.4.3.11.3 Parallel Object
	8.4.3.11.4 Alternate Object
	8.4.3.11.5 Tracer Object
	8.4.3.11.6 Wrapper Object
	8.4.4 Objects for Describing Properties of Devices
	8.4.4.1 MRI_Format Object
	8.4.4.2 EfficiencyMeasure Object
	8.4.5 Processing Devices for Media Data
	8.4.5.1 MRI_Device Object
	8.4.5.2 Modeller Object
	8.4.5.3 Renderer Object
	8.4.5.4 MediaEngine Object
	8.4.6 Scene Object
	8.4.7 Objects for Supporting Interaction
	8.4.7.1 InputDevice Object
	8.4.7.2 Router Object
	8.4.8 Coordinator Object

	Selected Implementation Issues
	A.1 The PREMO Environment
	A.1.1 Activity of Objects
	A.1.2 Top Level of the PREMO Hierarchy
	A.1.3 Operation Request Modes
	A.1.4 Distribution and the Creation of PREMO Objects
	A.2 Specific Part 3 Objects

	A.2.1 Virtual Connection Objects
	A.2.1.1 Devices on the Same JVM: Piped Streams
	A.2.1.2 Devices on Different JVM’s: Sockets
	A.2.1.3 Multicast Connections

	References
	[1] P. Ackermann. Developing Object-Oriented Multimedia Software - Based on the MET++ Application...
	[2] W. Appelt and A. Scheller. HyperODA: Going Beyond Traditional Document Structures. Computer S...
	[3] F. Arbab, I. Herman, and G.J. Reynolds. An Object Model for Multimedia Programming. Computer ...
	[4] F. Arbab: "The IWIM model for coordination of concurrent activities". In: Coordination Langua...
	[5] D.B. Arnold and D.A. Duce. ISO Standards for Computer Graphics: The First Generation. Butterw...
	[6] M. Awad and J. Ziegler. A Practical Approach to the Design of Concurrency in Object–Oriented ...
	[7] J. Barnes. Programming in Ada’95. Addison–Wesley, 1996.
	[8] D.R. Begault. 3D Sound for Virtual Reality and Multimedia. Academic Press, 1994.
	[9] G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug, K. Nygaard. Simula Begin. AUERBACH Publishers Inc.,...
	[10] G. Blakowski and R. Steinmetz. A Media Synchronization Survey: Reference Model, Specificatio...
	[11] D.G. Bobrow, L.G. Demichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, D.A. Moon. Common Lisp O...
	[12] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Computer...
	[13] G. Booch. Object–Oriented Analysis and Design with Applications (Second edition). Prentice–H...
	[14] D. Brookshire Conner and A. van Dam. Sharing Between Graphical Objects Using Delegation. In ...
	[15] N. Carriero and D. Gelernter: "Linda in Context". In: Communication of the ACM, 32, pp. 444-...
	[16] L. Chamberland. FORTRAN 90: A Reference Guide. Prentice Hall, 1996.
	[17] F. Colaïtis and F. Bertrand. The MHEG Standard: Principles and Examples of Applications. In ...
	[18] R.B. Dannenberg, T. Neuendorffer, J. Newcomer, D. Rubine, and D. Anderson. Tactus: Toolkit-l...
	[19] D.A. Duce, D.J. Duke, P.J.W. ten Hagen, I. Herman, and G.J. Reynolds. Formal Methods in the ...
	[20] D.J. Duke, D.A. Duce, I. Herman and G. Faconti. Specifying the PREMO synchronization objects...
	[21] D.J. Duke and I. Herman. Programming Paradigms in an Object-Oriented Multimedia Standard. In...
	[22] D.J. Duke, I. Herman, T. Rist, and M. Wilson. Relating the primitive hierarchy of the PREMO ...
	[23] D.A. Duce, D.J. Duke, I. Herman and G. Faconti. The Changing Face of Standardization: A Plac...
	[24] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language, Version 1. Tec...
	[25] R. Duke, G. Rose, and G. Smith. Object–Z: A Specification Language Advocated for the Descrip...
	[26] G. Faconti and M. Massink. Investigating the Behaviour of PREMO Sychronization Objects. In P...
	[27] B.N. Freeman–Benson and A. Borning. Integrating constraints with an object– oriented languag...
	[28] D. Flanagan. Java in a Nutshell (Second edition). O’Reilly, 1997.
	[29] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and Prac...
	[30] M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modeling Language. Addison ...
	[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns: elements of reusable object-or...
	[32] A. Goldberg and D. Robson. Smalltalk–80: The Language. Addison–Wesley, 1989.
	[33] S.J. Gibbs, L. Dami, and D.C. Tsichritzis. An Object Oriented Framework for Multimedia Compo...
	[34] S.J. Gibbs and D.C. Tsichritzis. Multimedia Programming. Addison–Wesley, 1995.
	[35] A. Goldberg, D. Robson. Smalltalk-80: The Language. Addison Wesley, 1989.
	[36] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison– Wesley, 1996.
	[37] S. Green. Parallel Processing for Computer Graphics. Pitman, 1991.
	[38] J. Hartman and J. Wernecke. The VRML 2.0 Handbook. Addison–Wesley, 1996.
	[39] P. Heller, S. Roberts, P. Seymour and T. McGinn. Java 1.1 Developer’s Handbook. Sybex, 1997.
	[40] I. Herman, G.J. Reynolds, and J. Van Loo. PREMO: An emerging standard for multimedia. Part�I...
	[41] I. Herman, N. Correia, D.A. Duce, D.J. Duke, G.J. Reynolds, and J. Van Loo. A Standard Model...
	[42] I. Herman, G.J. Reynolds, and J. Davy. MADE: A Multimedia Application development environmen...
	[43] C.A.R. Hoare. Communicating Sequential Processes. Addison–Wesley, 1985.
	[44] T.L.J. Howard, W.T. Hewitt, R.J. Hubbold, and K.M. Wyrwas. A Practical Introduction to PHIGS...
	[45] IMA, Multimedia System Services, Interactive Multimedia Association, September 1994, ftp://i...
	[46] Information Processing Systems — Open Systems Interconnections — LOTOS (Formal Description T...
	[47] Information Processing Systems — Computer Graphics — Computer Graphics Reference Model (CGRM...
	[48] Information technology — Computer graphics and image processing — Graphical Kernel System (G...
	[49] Information Technology — Computer Graphics — Programmer’s Hierarchical Interactive Graphics ...
	[50] Information Technology — Computer Graphics and Image Processing — Presentation Environments ...
	[51] Information Technology — Computer Graphics and Image Processing — Presentation Environments ...
	[52] Information Technology— Computer Graphics and Image Processing — Presentation Environments f...
	[53] Information Technology — Computer Graphics and Image Processing — Presentation Environments ...
	[54] Information Technology — Computer Graphics and Image Processing — The Virtual Reality Modeli...
	[55] Information Technology — Coding of Moving Pictures and Associated Audio for Digital Storage ...
	[56] ISO/IEC directives: Procedures for the technical work of ISO/IEC JTC�1 on Information Techno...
	[57] R.S. Kalawsky. The Science of Virtual Reality and Virtual Environments. Addison–Wesley, 1994.
	[58] B. Kernighan and D. Ritchie. The C Programming Language, second edition. Prentice Hall, 1989.
	[59] J. F. Koegel Buford, editor. Multimedia Systems. Addison–Wesley, 1994.
	[60] J. F. Koegel Buford. Architecture and Issues for Distributed Multimedia Systems. In J. F. Ko...
	[61] C. Laffra, E.H. Blake, V. de Mey, and X. Pintado, editors. Object–Oriented Programming for G...
	[62] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented Sys...
	[63] A. Lie and N. Correia. Cineloop Synchronization in the MADE Environment., in: Proceedings of...
	[64] B. MacIntyre and S. Feiner. Future Multimedia User Interfaces. Multimedia Systems, 4(5):250–...
	[65] V. de Mey and S. Gibbs. A Multimedia Component Kit. In P.V.Rangan, editor, Proceedings of th...
	[66] B. Meyer. Eiffel: The Language. Prentice–Hall, 1990.
	[67] B. Meyer. Reusable Software: The Base Object-Oriented Component Libraries. Prentice Hall, 1994.
	[68] R. Newcomb, N.A. Kipp, and V.T. Newcomb. The “HyTime” — Hypermedia/ Time–based Document Stru...
	[69] Object Management Group. See http://www.omg.org/
	[70] R. Orfali and D. Harkey. Client/Server Programming with JAVA and CORBA. Wiley Computer Publi...
	[71] R. Otte, P. Patrick, and M. Roy. Understanding CORBA, The Common Object Request Broker Archi...
	[72] G.J. Reynolds, D.A. Duce, and D.J. Duke. Report of the ISO/IEC JTC1/SC24 Special Rapporteur ...
	[73] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object–Oriented Modeling and...
	[74] W. Schroeder, K. Martin, B. Lorensen. The Visualization Toolkit, second edition. Prentice Ha...
	[75] P. Slusallek and H.–P. Seidel. Vision: An Architecture for Global Illumination Calculations....
	[76] M.A. Srinivasan and C. Basdogan, Hapics in virtual environments: taxonomy, research status, ...
	[77] J. Smith. X: A Guide for Users. Prentice Hall, 1994.
	[78] J.M. Spivey. The Z Notation: A Reference Manual. Prentice–Hall, 1992.
	[79] B. Stroustrup. The C++ Programming Language. Addison–Wesley, 1990.
	[80] A.S. Tanenbaum. Modern Operating Systems. Prentice–Hall, 1992.
	[81] H. Tokuda. Operating System Support for Continuous Media Applications. In J.F.�Koegel Buford...
	[82] B.J. Torby. FORTRAN’77 for Engineers. Prentice Hall, 1990.
	[83] D. Ungar, R.B. Smith. SELF: The Power of Simplicity. LISP and Symbolic Computation, 4(3), Kl...
	[84] C. Upson, T. Faulhaber Jr., D. Kamins, et al. The Application Visualization System: A Comput...
	[85] M. Vazirgiannis and T. Sellis. Event and Action Representation and Composition for Multimedi...
	[86] A. Vogel and K. Duddy. Java Programming with CORBA. IEEE Press, 1997.
	[87] A. Watters, G. van Rossum, J.C. Ahlstrom. Internet Programming with Python. M&T Books, 1996.
	[88] P. Wegner, S.B. Zdonik. Inheritance as an Incremental Modification Mechanism or What Like Is...
	[89] J. Wernecke, The Inventor Mentor, Addison Wesley, 1994.
	[90] R. Wirfs–Brock and R. Johnson. Surveying Current Research in Object–Oriented Design. Communi...
	[91] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Computing. IEEE Micro, 17(3):4...
	[92] P. Wißkirchen. Object–Oriented Graphics. Springer–Verlag, 1990.
	[93] M. Woo, J. Neider, T. Davis. OpenGL Programming Guide, second edition. Addison Wesley, 1997.
	[94] W3C PNG (Portable Network Graphics) Specification. Public document, available at http://www....
	[95] W3C SMIL Draft Specification. Public document, available at http:// www.w3.org/TR/WD-smil, 1...

	Index

