D.J. Duke, I. Herman, M.S. Marshall

PREMO: A Framework for Multimedia Middleware
A Java description of the ISO/IEC Standard

Lecture Notes in Computer Science No. 1591
Springer Verlag
1999

E

Copyright Springer Verlag

Preface

Early in 1998, SC24, the subcommittee of ISO/IEC JTC 1 concerned with computer
graphics and image processing, completed work on anew standard for multimedia pres-
entation, called PREM O (PResentation Environment for Multimedia Objects), and pub-
lished under the official reference ISO/IEC 14478. The original proposal for PREMO
was for anew computer graphics standard, to be based explicitly on an object-oriented
approach. Such an approach was seen as timely, given that object-oriented design and
programming had rapidly become established, and work on anumber of object-oriented
APIs for computer graphics had generated interest within the graphics community for
thistechnology (Inventor, the precursor of Openlnventor, is probably the best known ex-
ample). Development of a new standard was al so seen as an opportunity to address fur-
ther technological issues. First, the new standard should encompass other media, such
asvideo, audio (both captured and synthetic), and in principle be extensible to new mo-
dalities such as haptic output and speech or gestural input, which have becomeincreas-
ingly integrated within graphics applications; virtual environments and systems for
visualization being prime examples. The second requirement was that the standard
should allow the construction of distributed systems, where parts of a system involved
in the generation, processing, or the presentation of media data could be distributed
across geographically remote sites, interacting through a network.

Although the original goals for the development of PREMO included the detailed
specification of an API for multimedia programming, including all kinds of rendering
and media-coding facilities, it soon became clear that such goals were unrealistic. The
diversity of requirements for various applications and the wide range of different tech-
nigues made the devel opment of a detailed specification problematic. Instead, interop-
erability becamethe key issue: existing tools, applications, and programming interfaces
should be able to cooperate, even if they come from different implementations and ven-
dors. The term “middleware” came to the fore, denoting a software layer between the
operating system facilities and application programs: in this way PREMO evolved into
a middleware specification for multimedia programming.

Although PREMO defines objects for implementing multimedia middleware, the
emphasis on interoperability means that PREMO also functionsfesence model for
distributed multimedia. Concepts common to a range of approaches in this area have
been described and integrated in the PREMO model, and consequently the standard has
an important role in education, and in promoting cooperation between programmers in-
volved in multimedia development projects across potentially heterogeneous platforms.

The text of an International Standard is usually dry, and notoriously difficult to read.
Although this book does not replace the official text, its goal is to provide a more read-
able version of the concepts, to present some of the more interesting details of the PRE-
MO multimedia objects, to highlight the reasons for specific design decisions, and to
give simple examples which clarify the underlying concepts. If the goal of the reader is
to implement the PREMO standard, this book should aid in understanding the precise
specification of the 1SO text. However, the book should also be useful for students and

professionals whose goal isto gain a better understanding of theissuesinvolved in dis-
tributed multimedia, regardless of the intricate details of the PREMO standard; this
group probably represents the mgjority of our readers.

Obviously, PREMO is the result of team work, which involved experts from four
continents and more than 10 countries. It isimpossible to list all the people who, for a
shorter or alonger period, participated in thework. Nevertheless, wewould like to men-
tion the contributions of three people who played particularly important roles. Horst
Stenzel (FH Kdln, Germany) was the rapporteur of the working group within ISO which
was responsible for the development of PREMO. It was his task to coordinate the de-
velopment of the standard. James Van Loo (Sun Microsystems Inc., USA) was a co—ed-
itor of the document, and was instrumental in integrating the so—called Multimedia
Systems Services definition, which became the core of the final PREMO document. Fi-
nally, David Duce (Rutherford Appleton Laboratory, UK) coordinated the ERCIM
Computer Graphics Network which, between 1993 and 1997, played a seminal role in
the precise specification of large portions of the standard. We express our gratitude to
them, as well as to all experts who participated in the development of PREMO; this
book is the result of their work.

February 1999 David Duke
lvan Herman
Scott Marshall

Contents

PREMO: A Standard for Distributed Multimedia. 1
L1 IntroduCtion 1
111 What PREMOIIS. ..ot 1
112 What PREMOISNT.t 4
1.2 Formal Description Techniquesand PREMO 5
1.3 Structureof theBooK 6
1.4 Typographical Conventions.c.iiiitii i 8
1.5 Graphical ConVentions.ivi i ittt 8
AnOverview of PREMO e 9
2.1 INtrodUCtionot 9
2.2 TheStructureof PREMO. 9
2.3 ThePREMOObjectModel e 10
231 OVEIVIBIW. . ittt e e e 1
2.3.2 From Language Bindings to Environment Bindings 12
233 Object References. 12
234 ActiveObjeCtS.o 13
2.35 OperationDispatchingo 14
236 AHNDULES . ..o 14
2.3.7 Non-object DataTypPeS . . . oo i it 14
2.4 TheFoundation COMPONeNt.ttt 15
2.4.1 Structures, Services, and TYPESo v v i iii it 15
2.4.2 Inter-Object Communicationcoviiieinennennnnn.. 16
2.4.3 Synchronizationc.ccuiiiei i 18
244 TIME Lt 19
245 Property Management.vt i e 20
24.6 Object FaCtOries. . ..ottt e 21
2.5 The Multimedia Systems ServicesComponent 22
25.1 TheParadigm of MediaNetworks 23
252 Virtual RESOUICES . . oottt et e e e 23
253 Stream Controlttt e 25
254 Virtual DeviCESot 25
255 Virtual Connectionst 26
2.5.6 Higher-Levels of Organization: Groups and Logical Devices. 27
257 WorkinginUnisont 28
2.6 The Modelling, Rendering, and Interaction Component 28
2.6.1 Object-Oriented Rendering.t 29
2.6.2 PrimitivVes . ..ot 30
2.6.3 Modelling and Rendering Devices., 31
2.6.4 Coordination.couiii 32
27 ClosingRemMarks oo 33

TheFundamentalsof PREMO e 35

3.1 INtroduCtion.o e 35
3.2 BasiCCONCEPLSttt 36
3.21 PREMO Objectsand Object TYPeS. . ..o oo v 36
322 AttribULES. . .o 37
3.2.3 NON-ObJECE TYPES . . ottt et e et 38
3.24 Object Identity and Object References. 38
3.3 OPEratioNS. . . .o 40
34 SUDLYPING . .ot 40
35 INNeritancet 42
3.6 Protected Operations.ov vt 43
3.7 Operation Selection, and Castingo vt 43
3.8 Operation Request MOdES. oot 45
3.9 EXCEPLIONS. . . .ttt 46
3.10 The Object and Object Reference Lifecycle. oot 47
311 TheEnvironmentBindingt 48
General Implementation ISSUES.o e 49
4.1 Implementation ChoiCES. oo it e e 51
411 ImplementationLanguage.ottt 51
412 Implementation Environment i 53
4.2 PREMO SpecificationsinJavaandJavaRMI, 54
4.2.1 Constraints on the Specification Details. 54
4.2.2 RegisteringServer Objects 56
The Foundation CompoNentttt 59
5.1 INtroduCtion.ot 59
52 PREMO NON—0bjeCt TYPeS oo e e e 59
5.21 BasicData TypesS.ottt 60
5.2.2 Constructed Data TYPeS. vt i it 61
5.2.3 EXCEPLiONS. . .. oo 63
5.3 Top Layer of the PREMO Object Hierarchy 64
5.3.1 The PREMOObjectInterfacecc ... 64
5.3.2 Simple PREMOODbjects i 65
5.3.21 EventStructures 66
5.3.2.2 Constraint Structures 67
5.3.3 Callbacks. 68
5.3.4 Enhanced PREMO Objects. 69
5.3.4.1 Enhanced PREMO Objects as Service Objects 69
5.3.4.2 Property Management.t 69
535 TopLayerof PREMO. i 73
5.4 General Utility Objects. 74
5.4.1 EventManagement e 74
5.4.1.1 The PREMO EventModel........................... 75

5.4.1.2 The EventHandlerObject 76

5.4.1.3 SynchronizationPoints., 78

5.4.2 Finite State Machines: Controller Objects 81
5.4.2.1 Detailed Specification of aController 82
5.4.2.2 Activity of Controllers., 86
543 TimeObJeCtS. . ..ottt 87
5431 General NOLIONS.t 87
5.4.3.2 Specification of the PREMO Time Objects. 88
55 Synchronization Facilities Q0
55.1 Synchronizable Objects 92
55.1.1 Overview: Event-Based Synchronization 92
5.5.1.2 State Transition Monitoring. 99
5.5.1.3 Detailed Specification of the Synchronizable Object 99
5.5.1.4 Synchronizable Objects as Callbacks. 103
5.5.2 Time and Synchronizable Objects 103
5.5.2.1 Stop—Watch and Progression 104
5.5.2.2 Time and Progression Space 105
5.5.2.3 Reference Point Specifications in Time. 105
5.5.3 Combining TimeSynchronizable Oobjects: Time Slaves. 107
554 Time-Lines. 109
5.6 Negotiation and Configuration Management. 110
5.6.1 General NOtioNs 110
5.6.2 Property Inquiry Objects. 113
5.6.3 Constraining Properties. 114
5.6.4 Dynamic Change of Properties., 115
5.6.5 Interaction among Properties i 116
5.6.6 Some Conclusions on the Negotiation Facilities 117
5.7 Creation of Service Objects 118
5.7.1 Generic Factory Objects. 118
5.7.2 Factory Finders. e 120
5.7.3 Use of Factories and Factory Finders. 121
Multimedia Systems ServicesComponent., 125
6.1 INroduCtion 125
6.2 Configuration ObjJectS 128
6.2.1 FormatObjectS i e 131
6.2.2 Transport and Media Stream Protocol Objects. 132
6.2.3 Quality of Service Descriptor Objects 134
6.3 Stream Control. 136
6.3.1 The StreamControl Object 136
6.3.2 SyncStreamControl Objects i 140
6.4 Virtual RESOUICES ot e 140
6.4.1 Property Control of Configurations 141
6.4.2 Resource and Configuration Management 142
6.4.3 Stream Control 144

6.4.4 Monitoring Resource Behaviour and Quality of Service Violations . 145

6.5 Virtual DeVICES. . . .ottt 146

6.5.1 Configuring DeviCeS.o 146
6.5.1.1 Global Configurationccoiiiun... 146

6.5.1.2 Port Configurations.ouuiiiiiineinn... 147

6.5.2 Examplesof Virtual Devices. 151
6.5.21 SimpleMediaDevices.............cciiiiiiiiii... 152

6.5.2.2 Transformer Devicescooiiiiiiinennnn.. 153

6.6 Virtual CONNECLIONSo ot e 155
B.6.1 OVEIVIBW . . .ot e 155
6.6.2 Detailed Specification of Virtual Connections 156
6.6.3 Examplesof Virtual Connections 157
6.6.4 Multicast CONNECLiONS.o vt 160

6.7 GIOUPS. . . o e it ettt e e e e e e 161
6.8 LOQICal DEVICESottt 163
TheModelling, Rendering, and Interaction Component 165
7.1 INtrodUCEION. . oottt 165
T2 PrimitiVES . .. o 167
7.2.1 TheRoleof PrimitivesinPREMO 168
7.22 TheHierarchy inOverview. ... 169
7.2.3 Captured Primitives. 170
724 FOormPrimitives. 171
725 TactilePrimitives. 172
7.2.6 Modifier Primitives. 173
7.2.7 Wrapper Primitives 176
7.2.8 Tracer PrimitiveS. . ..ot 176
7.29 Structured Primitives. 177
7.29.1 Aggregate Primitives 177

7.29.2 TiMeCompoSIte.t 179

7.2.10 Reference Primitives.o 185

7.3 CoOrdiNnate SPACES . . oottt et 185
731 Coordinate.t 186
7.32 TIMELOCEIONt 187
7.33 COlOUN ..o 187

7.4 Devicesfor Modelling, Rendering and Interaction 187
741 MRI_FOrMaEL . ..o e e 188
7.4.2 Efficiency M@asUrest 189
743 MRIDEVICE. . .ot e 190
TA4 MoeEller ... e 190
TA5 ReNUErer ... 191
746 MedigENgine.o 192

7.5 Input Devices,and ROUtING oiit i 192
751 INPUIDEVICE. . . .o 193
7.5.2 ROUEr ..t e 194

7.6 TheSceneDatabaset e 195

7.7 Coordination.ovtt ittt e 199

771 Management 201
7.7.2 AlloCation 201
7.7.3 Synchronization ouuiiii i 202
Detailed Java Specifications of the PREMO Objects. 205
8.1 INtroduCtion i 205
8.2 Foundation Objectso 205
8.21 ENUMENELiONSottt et 205
8.2.2 Additional DataTypeso oo 206
8.2.3 TopLevel of PREMOHierarchy 207
8.24 SIUCIUIES . . .ot e e e 208
8.25 Genera Utility Objects. 209
8251 EventManagement............ ..., 209

8252 Controllers. 210

8253 TiMEODECIS ... v it 211

8.2.6 Sychronization Objects. 211
8.2.7 Negotiation and Configuration Management 214
8.2.8 Creationof ServiceObjects 215

8.3 MultimediaSyStemsS Serviceso o 216
8.3.1 EnuMerationsiiiii 216
8.3.2 Structuresand Additional DataTypescovvvievnnn.. 216
8.3.3 Configuration ObjeCtS.o oot e 217
834 Stream Controlt e 218
8.35 Virtual RESOUICE. . ..ottt 218
8.3.6 Virtual DeviCe.t e 219
8.3.7 Virtual CoNNeCLioNnSvuiiii it 219
838 GrOUD ..ottt e 220
839 Logical DEVICE v 220

8.4 The Modelling, Rendering, and Interaction Component 221
8.4.1 Objectsfor Coordinate Spaces.ovviineinenennnnn.. 221
84.1.1 CoordinateObjectcciiiiiiii i 221

84.1.2 ColourObject. e 221

8.4.1.3 TimelLocationObject............. ... 221

84.2 NameObjeCt.ot e e e 221
8.4.3 Objectsfor MediaPrimitives 222
8.4.3.1 PrimitiveObject. 222

8432 CapturedObject........... ... 222

8.4.3.3 Primitives with Spatial and/or Temporal Form 222

8.4.3.4 Form Primitivesfor Audio MediaData. 222

8.4.3.5 Form Primitivesfor Geometric MediaData 223

8.4.3.6 Primitivesfor the Modification of MediaData. 223

8.4.3.7 Modifier Primitivesfor Audio MediaData............. 223

8.4.3.8 Modifier Primitives for Structural Aspects of MediaData . 224
8.4.3.9 Modifier Primitivesfor Visual Aspects of MediaData. ... 224

8.4.3.10 Organising Primitivesinto Structures. 225

8.4.3.11 Organising MediaDatawithinTime 225
8.4.4 Objectsfor Describing Properties of Devices. 227
8.4.41 MRI_Format Objectcvueieeeeaan... 227
8.4.4.2 EfficiencyMeasureObject 227
8.4.5 Processing Devicesfor MediaData 227
8451 MRI_DeviceObject..........ccoiviiiiiiiiin... 227
8452 ModdlerObject 227
8453 RendererObjectt 227
8454 MediaEngineObject. 227
84.6 SCENEODJECt 228
8.4.7 Objectsfor Supporting Interaction 228
84.7.1 InputDeviceObject., 228
8472 RouterObjecto 228
8.4.8 Coordinator Objectovii 229
Selected Implementation ISSUES.t 231
A.1l ThePREMOENvironment ...t 231
A.L1 Activity of ObjeCtSo 231
A.1.2 Top Level of thePREMOHierarchy 232
A.1.3 Operation Request MOdES.o i 232
A.1.4 Distribution and the Creation of PREMO Objects. 235
A.2 SpecificPart 30ObJeCtSot 237
A.2.1 Virtual ConnectionObjects, 237
A.2.1.1 Devicesonthe Same VM: Piped Streams 238
A.2.1.2 Devices on Different JVM’'s: Sockets

A.2.1.3 MulticastConnectionsy
RE O ENCES . . .ot 243

Chapter 1

PREMO: A Standard for Distributed Multimedia

1.1 Introduction

The use of multimedia is now so widespread that the term ‘multimedia computing’ has
become almost redundant. Few people today would conceive of purchasing or using a
computer system that wamt capable of displaying or processing multimedia data.
Standards are now available for the encoding, transport and presentation of a rich vari-
ety of media data. Many of these, such as JPEG, MPEG [55], MIDI and VRML [54] are
well known even among non-professional computer users. New standards, such as PNG
[94] and SMIL [95] are under development in response to the opportunities and needs
created by the World Wide Web. This apparent wealth of media standards makes it all
the more important to situate PREMO and understand its role:

« PREMO is a presentation environment. PREMO, like previous SC24 standards,
aims at providing a standard “programming” environment in a very general sense.
The aim is to offer a standardised, hence conceptually portable, development envi-
ronment that helps to promote portable multimedia applications. PREMO concen-
trates on the application program interface to “presentation techniques”. This is
primarily what differentiates it from other multimedia standardization projects.

¢ PREMO isintended for multimedia presentation. Whereas earlier SC24 standards
concentrated either on synthetic graphics or image processing systems, multimedia
is considered here in a very general sense. High—level virtual reality environments,
which mix real-time 3D rendering techniques with sound, video, or even tactile
feedback, and their effects, are also within the scope of PREMO.

In the remainder of this section, we will explore these two points in more detail and
establish the fundamental rationale for the technical content and approach that is con-
tained in the remainder of this book.

111 What PREMO s

Programming interfaces for graphics (“graphics packages”) are now widely known and
used. These includie jure standards developed within ISO, specifically GKS [48] and
PHIGS [5], and industry-developed platforms such as OpenGL [93] and Inventor [89]
that have now beconte facto standards themselves. The process is ongoing, with a
new generation of graphics applications emerging based on the Java technologies (e.g.
Java3D), and also in response to the needs and opportunities of web-based applications
(e.g. VRML). In contrast, programming interfaces for multimedia are rather less well

known; while toolkits for multimedia applications have been developed, for example
MET++ [1] and MADE [42], standards for multimedia have concentrated largely on
formatsfor the storage and transport of media, declarative models of media content (for
example HyTime [68]). While the interface to presentation engines for such formats
does provide a starting point for the applications programmer, the level of control over
media processing that these affordsis significantly lower than can be achieved in com-
puter graphics. And significantly, none of the existing presentation models or engines
integrates their media content with synthetic graphics.

The distinction between synthetic graphics and other presentation media may reflect
the different communities in which the fundamental developments took place (e.g.
much of the early interest in multimedia was stimulated by applications in publishing
and human-computer interaction, whereas graphics originaly had stronger links with
engineering and scientific applications). |rrespective of these differencesin origin, two
technological trends have meant that there is now agrowing need to integrate these two
threads of activity. At one end of the cost-performance spectrum, the virtual environ-
ments and visualisation are emerging as mature technol ogies with needs that encompass
both synthetic graphics and other media, e.g. 3D audio, acoustic and haptic rendering.
At the other end of the cost spectrum, the availability of powerful, low-cost personal
computing platforms has made it feasible to devel op multimedia applications for mass
markets, and for users of such machines to experiment with multimedia. An issue that
spans this spectrum of applications is how application programs can access, construct,
and control multimediaand graphics presentation. Thisisthe context in which PREMO
has been designed.

PREMO as middleware

The term “middleware” has come to the fore in recent years. It refers to a software layer,
between the fundamental services of an operating system and more specific application
development environments. PREMO provides a level of middleware which supports
the implementation of a range of processing models for multimedia presentation. As a
form of middleware, PREMO does not define stand-alone services in the way, for ex-
ample, that a GKS renderer does. Instead, it provides an environment where various,
vendor—specific components can cooperate. The middleware nature of PREMO has im-
plications for how the software objects defined by the Standard are described. On the
one hand, these must not be too detailed, otherwise it would restrict the range of possi-
ble implementations, but on the other hand these objects must provide a non-trivial set
of services. This strive for balance has fundamentally shaped the Standard.

Why is middleware important? Consider, for example, the task of implementing a
distributed multimedia application such as a multi-platform video—conferencing sys-
tem. Due to the variety of available media formats, resource requirements, means of dis-
tribution control, etc., a significant portion of such an application is dedicated to issues
like configurability, adaptability, access to remote resources, distribution, etc. A similar
level of adaptiveness is also required when using media in combination as with, for ex-
ample synthetic graphics, video, and computer animation. No one applications package
addresses such a variety of needs, and without middleware such as PREMO, much of

this infrastructure has to be devel oped from scratch or adapted from a similar applica-
tion. And the costs involved in modifying software to meet new demands are well
known.

In addition to enabling interoperation, the existence of middleware such as PREMO
can also assist in system evolution. The variety of graphics formats, available primi-
tives, animation agorithms, etc., continues to expand, and portable applications in-
creasingly have to adapt to an evolving environment. PREMO assistsin this process by
factoring out at least some of the technological constraintsinto components that can be
interchanged and replaced, and by providing a flexible and extensible architecture in
which new software components can be defined for use by existing applications.

Multimedia presentation is not the only concern that is open to support by middlie-
ware. Another, well known, example is architectural support for distributed object—ori-
ented applications, as is provided by OMG's CORBA[171C11though PREMO itself is
not related to the OMG specifications, PREMO should be viewed as a multimedia—ori-
ented extension of the basic object services and architecture provided by systems like
OMG or, as another example, Java's RMI services [39]. Seen in this way, PREMO fills
the gap between the application-independent set of facilities offered by OMG, and a dis-
tributed multimedia application. Indeed, the relationship between PREMO and a dis-
tributed object—oriented architecture is so close, it would be ill-advised to attempt an
implementation of PREMO without the use of such services. Exactly how the PREMO
specification builds on the concept of distributed multimedtaout committing to a
particular model will be seen in Chapter 6.

PREMO as areference model

Because PREMO describes an implementation environment (a prototype is currently
under preparation in Java, see Chapter 4), the specification encompasses a range of con-
cepts needed in multimedia systems development. By providing a broad, application in-
dependent model of media processing, the specification itself also serves as a reference
model for distributed multimedia. This is significant, as in practice, “portability of pro-
grammers” is almost as important as the “portability of programs”. Although only the
latter role of information processing standards is usually publicised by organizations
like ISO, the need for “programmer portability” in this area was also considered to be a
major goal for PREMO. Having a common, well understood set of principles and tech-
nigues as a reference point greatly helps in understanding both the specificities and the
commonalities of various multimedia programming environments. To achieve this goal,
the PREMO specification deliberately sets out a number of details which are sometimes
hidden in other systems. As a reference model, PREMO is not only significant in a di-
dactical sense; a unifying set of concepts may play an important role in classifying, re-
lating and organising the growing range of software toolkits that are available to the

Dn fact, a liaison existed between OMG and the relevant ISO group, during the devel-
opment of PREMO, which clearly influenced the design of the Standard.

potential developer of a multimedia system. Without such concepts, this technological
cornucopiaisin danger of becoming an anarchic ensemble of incompatible and incom-
parable artifacts.

112 What PREMO Isn't

The characteristics that define what PREMO is — middleware and reference model —
also reflect what PREMO is not. In particular, PREMO is intended to build on and uti-
lise existing media standards, not to replace them. Given that there are standards in
place for media formats and processing, these are two concerns that PREMO does not
address.

PREMO isnot a Media Format

The PREMO specification does not describe any new format for the representation and
storage of media data. Instead, the Standard makes it quite clear that the data processed
by PREMO-based applications is expected to be stored in existing formats; ALAW,
JPEG, MHEG, MIDI, MPEG [55], SMIL [95], VRML [54], to name a few. What PRE-

MO does provide are mechanisms by which new PREMO objects can be defined for
new formats, and by which existing objects can coordinate the formats that they use to
exchange and process media data.

PREMO isnot a Media Engine

The object types defined in the PREMO standard are not sufficient in themselves to re-
alise a working multimedia application. To do this would have required the Standard to
commit to particular kinds of media processors and renderers, with specific interfaces.
All that this would achieve would be to add yet another type of media engine into the
growing collection of such devices. Instead, PREMO provides a number of object types
that can act as “wrappers” around existing engines, and allow these to be used within a
processing network involving other devices that may be based on quite different media
formats or models. Rather than thinking of PREMO as a media engine, a somewhat bet-
ter analogy is to view PREMO as a software architecture for multimedia applications;
the objects defined by PREMO represent the basic constructs, the building blocks, for
multimedia applications. Even this analogy is not quite the whole story though. Al-
though parts of the PREMO specification provide building blocks that are “shaped” for
supporting a particular architectural model of an application, these in turn rely on a set
of lower-level PREMO objects, and users of PREMO is free to build on these, or modify
the higher-level components, in order to instantiate whatever model of multimedia ar-
chitecture that is most appropriate for their needs.

Just as PREMO is not a media engine, it is not a complete environment, either. It does
not, for example, provide a framework for quality of service management. This may
seem strange, since quality of service is a particularly fundamental problem with mul-
timedia applications. However, quality of service management is currently bound tight-

ly up with network management issues; as of yet, there is no emerging consensus on

what application mechanisms are needed to implement quality of service, and indeed,

it seems probably that, like the concept of a network, ‘quality of service’ actually spans

a whole range of levels of concern, from well known physical properties such as band-
width and latency of raw transmissions, up to questions that impinge on the eventual
presentation of the data, for example synchronization constraints between lip motion in
video frames and the corresponding speech in an audio stream. What PREMO does pro-
vide here is a basic set of hooks and facilities which a quality of service management
protocol is free to utilise for monitoring and realising its requirements.

PREMO isnot a user-oriented Specification

In addition to the technical problems of building a media application, multimedia sys-
tems designers need to address the question of how well a particular media system (both
in terms of technology, and media content) meets the demands of its users. Like the is-
sue of quality of service, usability involves a spectrum of concerns, from low level is-
sues of signal quality, through questions about the cognitive resources and processes
needed to interact with an application, through to questions of how a particular system
is situated in the work context and environment of its users. These human factors must
obviously be addressed by media systems designers by making appropriate use of the
technologies at their disposal. PREMO is one such technology — the specification itself
does not describe how it should be used to realise user requirements.

1.2 Formal Description Techniquesand PREMO

Formal description techniques (FDTs) are mathematically—based notations that can be
used to describe the behaviour of software and hardware systems. They offer a highly
expressive language for characterising what a component of some system should do,
without the need to describe explicitly the algorithm or mechanism needed to bring
about that behaviour. Various formal description techniques are in use — LOTOS [46]
and Z [78] are good examples of the range of possibilities. They differ in the mathemat-
ical structures that underpin the notation, and the different approaches to specification
that emerge from the mathematics offer different trade—offs, for example between ex-
pressiveness and support for automated analysis.

ISO has investigated the use of formal description techniques in the development of
International Standards, and has developed a three—phase model for the adoption of for-
mal methods in the Standardization process (see Section 10.4 of [56]). These encom-
pass the use of a formal description by the committee developing the Standard (phase
one), through to the third phase in which the formal description, accompanied by a nat-
ural language commentary, defines the provisions of the Standard. Experience with and
acceptance of formal methods means that the third phase is simply not practical at
present. However, serveral members of the PREMO rapporteur group had successfully
used formal description methods in the context of other graphics standards, and in July
1993, SC24 appointed a Special Rapporteur for Formal Description Languages

(G.J. Reynolds, then at CWI, Amsterdam), and invited him to provide an initial report

on the applicability of formal description techniquesto SC24 standards[72]. Thisreport
recommended that the formal description technique “Object—Z2" [24,25] be used in the
development of PREMO, as a way of gaining further insight into the design of the ob-
ject types needed in the Standard.

Subsequent work with formal methods and PREMO concentrated on two areas that
were proving a source of difficulties within the committee work, specifically the PRE-
MO object model, and the general facilities for synchronization. Work on the object
model has been published as a paper [19]. The initial work on synchronization has been
published as a technical report [20], while subsequent work exploring behavioural as-
pects of synchronization is described in [26]. We will not make use of the formal de-
scription of PREMO in the book, but the interested reader may consult the references
above, or a recent paper summarising this aspect of the development [23].

1.3 Structure of the Book

The main objective of this book is to present a detailed description of the PREMO
standard. From the background material in section 1.1, it should already be clear that
PREMO encompasses a range of concerns, spanning levels of multimedia presentation
from low level synchronization of media streams through to high level facilities for in-
teroperation and coordination of devices. This complexity presents something of a chal-
lenge when attempting to provide a coherent account of the Standard; by starting with
the low-level facilities, one risks describing a large number of detailed facilities but
with little direction or motivation, while in starting with the higher-level facilities, one

is forced to introduce concepts with the proviso that “these will be explained in detalil
later”. We have sought to avoid both of these pitfalls by giving an initial, comparatively
informal description of the Standard as a self contained chapter, and then entering into
the details, matching our explanation with the actual structure of the Standard.

As PREMO is intended to be independent of any particular system or programming
language, the description of the official standard was deliberately written using a non-
programming notation, based on the Object-Z specification language [24][25]. We have
chosen not to reuse this notation here, for two reasons. It is awkward to typeset, even
within a poerful typesetting language like LaTeX (which has not been used for this
book). More importantly, a second objective of this book is to describe how the PREMO
standard could be implemented. This requires a programming notation (along with a
supporting environment for distributed objects). For this we have chosen the Java tech-
nologies of Sun Microsystems Inc.; specifically the language [36] and the RMI library
[39] for remote access. And rather than use two notations for describing PREMO, we
have decided to use Java throughout, both as a means of documenting what the Standard
provides, and as the vehicle for discussing implementation issues. As we will see, the
match between what the PREMO standard describes and what Java provides is not ex-
act, and consequently we have dedicated an early chapter of the book to describing how
we are using Java to describe PREMO. Thus, following this introduction, we have:

Chapter 2, An overview of PREMO. The high level organisation of PREMO into

four distinct components is explained, and subsequently the role and principle fea-
tures of each component is described. This is an important chapter as it provides the
underlying rationale for some of the design decisions that are described in more
detail in later chapters.

Chapter 3, Fundamentals of PREMO. In order to understand PREMO, it is neces-
sary to understand the object model on which the whole PREMO approach is based.
This chapter describes the first part of the Standard, which sets out PREMO’s view
of object orientation, other kinds of entity in a PREMO system, and assumptions
about the environment of a PREMO application.

Chapter 4, General implementation issues. The description of the PREMO object
model is by necessity independent of any language and implementation environ-
ment. In the remainder of the book, we will be using Java to describe the object
types and services defined in the Standard. The general issues that arise from using
Java as the language to describe the Standard are described in the chapter. It covers
aspects such as naming conventions, and the facilities beyond the core language that
are needed to define PREMO.

The three chapters that follow present the content of the remaining three parts of the

Standard, with each chapter addressing a particular component of PREMO.

Chapter 5, The foundation component. This chapter explores the low level services
and objects that underpin many approaches to multimedia presentation.

Chapter 6, Multimedia systems services component. Higher-level abstractions over
media processing devices and other resources are introduced, and their role in sup-
porting a particular paradigm for multimedia systems is discussed.

Chapter 7, Modelling, Rendering, and interaction component. Specialised devices
for media presentation, in particular support for synthetic graphics, is introduced,
along with a framework for declarative modelling of media presentations.

In conjunction with this book, a number of core object types from the Standard have

been developed and placed in the public domhalinis not a complete implementation

of the Standard, but the most significant object types described in this text have been
realised, in particular those that present interesting challenges to an implementer. This
activity has been carried out, not so much with the intention of using it for subsequent

systems development (though that is certainly possible), but rather to demonstrate how
the requirements defined for PREMO can be met in practice.

Chapter 8, Detailed Java Specifications of the PREMO Objects, gives the complete
specification of the PREMO standard as a set of Java interfaces.

Appendix A, Selected implementation issues. A number of the programming tasks
facing a PREMO implementer are relatively routine; concepts such as state
machines, property lists etc. are well known and should require no design hints.

£y

ftp://ftp.cwi.nl/pub/premo

However, afew requirements defined for PREMO are not trivial, and in the appen-
dix we describe a strategy for dealing with issues such as operation dispatch modes
and the creation of connections.

Anindex is provided at the end of the book.
1.4 Typographical Conventions

We have endeavoured to keep typographical conventionsto aminimum. Thetext of the
book iswritten in times font (thus), with italics & bold for occasional emphasis. When
mentioned within the text, the names of PREMO object types (Java classes and inter-
faces) appear capitalised, and in italics. The same convention is used for the names of
PREMO operations (Java methods) in the running text. Definitions of Java classes,
packages, methods, and related code fragments, are presented as indented blocks, using
couri er font.

1.5 Graphical Conventions

Although UML [30] is approaching the status of de facto standard for the documenta-

tion of object-oriented systems, the notation goes beyond what is needed in most parts

of thisbook, and we have instead opted for asimple way of documenting object-orient-

ed structures based on the conventions used in the book “Java in a Nutshell” [28]. These
are:

» class names are written in normal times font;
* interface names are writtentimes italic;

« if class (or interface) B extends class (or interface) A, B is written below A, and
they are joined by a solid line; and

« if class B implements interface A, B is again drawn below A, and they are joined by
a dashed line.

Shaded ovals have been used to show the grouping of classes and interfaces into pack-
ages.

Chapter 2

An Overview of PREMO

2.1 Introduction

In the introduction we established the need for a standard to address distributed multi-

media and the rationale for designing the standard to be extensible. This chapter isin-

tended to provide an overview of PREMO, and in doing so, one of thefirst conceptsthat

will be addressed isthe PREM O component, which was introduced into the standard to

promote extensibility. Then, the four ‘parts’ that make up the official PREMO standard
are briefly introduced. The design of each part is described in detail later in the book,
together with an outline of how its key provisions can be implemented. The purpose of
this chapter is to summarise the content of the components, and explain how each con-
tributes to the overall aims of the standard.

2.2 The Structure of PREMO

The concepts of modularity, data abstraction and component-based design are now well
established within software engineering, where structures such as classes, modules and
packages are used to manage the complexity of systems development by allowing the
decomposition of a design into a set of parts which can be developed independently or
incrementally, before being composed to form the desired system. The object-oriented
basis of PREMO allows one level of structuring. However, this is relatively fine-
grained, and in practice multimedia applications redfaimélies of objects that can be
assembled to implement particular functionalities. Today, this concept is becoming
widely adopted in the form of design patterns [31]. These were, however, less well
known when development of PREMO began, and consequently a somewhat simpler ap-
proach was adopted to structure the standard.

PREMO is defined as a collection admponents, each of which provides one or
moreprofiles. A component defines a collection of entities, such as object and non-ob-
ject types. Object types provide services (in the form of operations that can be invoked
by clients), or can have a more passive role, for example as data encapsulators. Because
not all of the types defined within a component are necessarily needed in a given con-
text, PREMO components define one or manailes which consist of a cluster of en-
tities. A component can build on (extend) the profiles of other components, in the same
way that a class in object-oriented programming can be defined as an extension to ex-
isting classes. The components defined in the PREMO standard are general purpose;
they provide a progressively richer, and more structured model of multimedia process-

10

ing. It was the intention of the designers to realise functionality which would address
specific technologies, such as 3D audio and virtual reality, or specific application do-
mains, such as medical simulation or battlefield models. The devel opment of new com-
ponents that extend some or al of the profiles defined in the standard helps to achieve
thisaim. The four components of the PREMO Standard are :

1. Fundamentals. This specifies the object model used by PREMO and the require-
ments that a PREMO system places on its environment. Although the PREMO
object model is similar to the core model of the OMG (Object Management Group)
[69], it contains features needed to address the requirements of distributed systems.

2. Foundation. Object and data types that are generic to multimedia applications are
defined in this component, including facilities for event management, synchroniza-
tion, and time.

3. Multimedia Systems Services. Multimedia systems typically integrate a variety of
logical and physical devices. Some examples are input and output with devices such
as video editors, cameras, speakers, and processing with devices such as data
encoders/decoders and media synthesizers (e.g. a graphics renderer). This compo-
nent of PREMO defines the infrastructure needed to set up and maintain a network
of heterogeneous processing elements for media data. These facilities include
mechanisms by which media processors can advertise their properties and be con-
figured to match the needs of a network, and can then be interconnected and con-
trolled. MSS was originally defined by the Interactive Multimedia Association[45]
and subsequently adopted by SC24 and refined into a PREM O component.

4. Modelling, Rendering and Interaction. The MSS component defines concepts of
streams and processing resources that are independent of media content. Inthe MR
component, these facilities are used to define generic objects for modelling and ren-
dering data, and basic facilities for supporting interaction. To support interoperabil-
ity, the component defines a hierarchy of abstract primitives for structuring
multimedia presentations. These are not sufficient in themselves to build aworking
presentation, but provide the abstract supertypes from which a set of concrete prim-
itives could be derived.

Each of these components is now described in more detail.
2.3 ThePREMO Object Model

Although with the emergence of UML [30] thereis now some level of consensus on a
set of concepts for object-oriented modelling, at the implementation level there still re-
main a number of different approaches, as represented by the range of programming
languages that are claimed to support object-oriented techniques. These differences
vary from the fundamental, such as whether a system is class-based, or object-based
(using prototypes to define the structure of objects), to finer details, such as the various
levels of visibility or accessibility that can be assigned to the components of an object.

1

Within a development project which uses an object-oriented target language, the
choice of object model is effectively made once the target language is chosen. Indeed,
the precise details of the available object model may be one criteria by which the lan-
guage is chosen. In the case of PREMO, however, the situation is more complicated.

Like the standards that it follows (GKS [48] and PHIGS [49]), PREMO is intended to

be independent of any particular programming language. Thus, just as one can obtain a

C [58] binding or a FORTRAN [16] binding for GKS, it should be possible to obtain a

C++ [79] or Ada’95 [7] binding for PREMO. The need to provide this flexibility raises

a number of difficult technical questions, not the least being whether it should be pos-
sible to bind PREMO to a language with no explicit support for object-oriented pro-
gramming (e.g. FORTRAN'77 [82]). For now, the main point is that if PREMO is to be
language independent and described in an object-oriented framework, it requires the
definition of some object model that defines the concepts from which the remainder of
the standard can be constructed.

One of the fundamental issues that had to be decided at an early stage in the project
was whether to adopt a “classical” object-oriented approach, in which objects are in-
stances of classes that can be arranged in a hierarchy through inheritance, or opt for a
more radical approach based, for example, on the use of prototypes and delegation. The
former is typical of the models that underlie object-oriented design methods, and has
been in widespread use in the form of languages such as Simula [9], Smalltalk [35], and
C++. Prototype-based approaches have, in contrast, been largely the concern of the re-
search community; there has already been discussion on the value of such approaches
in graphics and multimedia [3]. In particular, the use of delegation, and the notion of
“trait” objects used for example in the SELF system [83] are attractive from the view-
point of building highly adaptable and extensible systems. However, technical issues
aside, the fact that prototype models are strongly bound to experimental systems, and
are not in widespread use, represented a serious barrier to their use within PREMO. The
result is that the PREMO object model is based from the outset on a fundamental dis-
tinction between objects and classes, which in PREMO are called “object types”. A de-
tailed account of this model is given in Chapter 3; following an informal overview of
the model, the remainder of this section describes other high-level design decisions that
affected the content of this component.

2.3.1 Overview

A PREMO system consists of a collection of objects, each with a local (internal) state,
and an interface consisting of a set of operations. Each object is an instance of an object
type, which defines the structure of its instances. An object type can be defined as an
extension to one or more other object types through inheritance; note that this allows
for multiple inheritance. An important property of the model is that objects are never
accessed directly. Instead, a PREMO client requests a facility called an “object factory”
to generate an object satisfying specific criteria, and if it is able to comply, the factory
will return a handle to the new object called an object reference. All subsequent activi-
ties involving the object is then done via the reference, for example invoking an opera-
tion on the object, or passing the object as a parameter to another operation. This

12

separation of objects (i.e. physical storage) from their references is needed to support
the aim of distribution, as an object reference can be used to encode both local address
information and the location of a particular object across a network.

2.3.2 From Language Bindingsto Environment Bindings

Although the choice of aclass, rather than object-based model isrelatively straight for-
ward, anumber of further options are rather less apparent. In particular, the aim of mak-
ing the standard language independent introduces a tension in the design, between
introducing features that offer descriptive or computational power but are specificto a
restricted set of languages, or using asimple, less powerful model to describe the stand-
ard inthe expectation that it will be easier to map the model onto the facilities of agiven
implementation language. Features that are problematic range from the mundane, for
example how (or even whether) objects are copied, to complex problems such as the
management of remote or distributed objects.

One approach that PREM O employsto prevent over-commitment to a particular ob-
ject model is to introduce the notion of an environment binding. Previous standardsin
computer graphics have also been devel oped using alanguage independent description,
and have been mapped onto a specific implementation language through a language
binding, that associates the abstract data types and operations defined in the text of the
standard with concrete data types and operation signatures within the target language.
Such abinding is still needed for PREMO. However, while some conceptsin the stand-
ard will be mapped onto language-specific features (for example, object types and op-
erations), other aspects of the model, for example how objects are to be copied, or how
remote objects are accessed, are left asfacilities to be provided by the environment of a
PREMO implementation. These facilities may be realised through language constructs,
but more generally they may be provided by library packages, or even viathe use of oth-
er standards. Thus, access to distributed objects within a C++ implementation of PRE-
MO could be realised through a custom-built mechanism, or through a separate
standard such as CORBA [71]. In the case of a Javaimplementation, these two options
again exist, but in addition it is possible to use the Java RMI package [39]. By viewing
features such as object copy and remote access as requirements on the environment,
rather than requirements on the object model, the object model itself is simplified and
is consequently easier to map against the provisions of a specific implementation mod-
el.

2.3.3 Object References

Itiswidely accepted that afundamental component of object orientation isthat each ob-

ject in a system has an identity that is independent of that object’s state. Therefore, two
objects that have the same state can nether the less be distinguished. At a very practical
level, this corresponds to the use of pointers to reference objects within an implemen-
tation. These pointers, or object references, may be implicit or explicit. In the case of
SmallTalk or Java, for example, it is not possible to access an object other than through
an object reference - this is enforced in the definition of the languages, which provide

13

no constructs for referring to an object other than through pointers. C++ and Ada’95
have a different model. Objects in these languages are defined as generalised records,
and a pointer to an object is a well defined type that is quite distinct from the type of the
object itself.

As PREMO objects can be distributed, various mechanisms for accessing objects
may be used within even a single system. For example, local objects might be refer-
enced via pointers, while remote objects are referenced by some form of extended URL.
To avoid confusion and implementation bias, the standard introduces the concept of an
object reference as an explicit part of the object model, with the intention that this be
bound to whatever means are used within the target language or environment to access
specific objects. The approach taken in PREMO combines elements of the explicit and
implicit approach. In line with the former, the model defines both the concept of an ob-
ject, and an object reference. However, the distinction is there to simplify the use of
multiple implementation strategies — it is not possible to refer to, or use, an object di-
rectly. Instead all access to an object, for example to invoke an operation, must be via
an object reference.

234 Active Objects

Concurrency is by definition an integral aspect of multimedia presentation, and will cer-
tainly be a property of the type of distributed application which PREMO is intended to
support. Fundamental to such a model is the idea that several threads of control, or proc-
esses, can be active within a system at one time, and that such processes interact through
communication events. Here again there is a tension between adopting a simple model
based on a particular set of facilities, or a more general model that is harder to use within
the standard but is hopefully easier to implement.

On the one hand, there is a natural and appealing parallel between the idea of a proc-
ess and that of an object. A process is an entity which encapsulates a thread of control
and that interacts with its environment through events; an object is an entity that encap-
sulates state and interacts with its environment through operations. Languages such as
Eiffel [66] and more recently Java have built on this view by treating processes (or
threads) as particular types of object; in Java for example, an object will be active if it
implements th&unnable interface. In contrast, other languages have maintained a sep-
aration between these concepts. In Ada’95 for example, processes are realised through
a sophisticated task model, quite separate from the notion of task, while in C++ there is
as yet, unfortunately, no standard model for dealing with processes.

The PREMO object model assumes that all objects are conceptually active; as we
will discuss in section 2.4.1, the standard does however, for efficiency reasons, define
certain types of objects to have trivial activity. What the standardrbes is to man-
date any particular mechanism through which object activity should be realised. What
is required is that each object has the capability to have an internal thread of activity. In
parallel with this internal activity, an object may receive requests for an operation to be
invoked; these requests arrive at operation receptors. At any time an object can select

14

which requests it is willing to service. The PREMO object model does not place any
requirements on the execution order for operations, for example pending requests may
be serviced sequentially or concurrently.

235 Operation Dispatching

The delays inherent in remote object access and operation invocation mean that asyn-
chronous operations are a fundamental tool in the development of distributed systems.
Synchronous operation calls, in which the caller is suspended until the called operation
terminates, are also required. To support multimedia applications, the design of PRE-
MO aso alows for athird kind of operation, sampled. A sampled operation is similar
to an asynchronous one, because once the operation has been invoked the caller isable
to continue its processing while the request isheld in aqueue. The differenceisthat the
gueue of requests for a sampled operation is effectively aone-place buffer, with any re-
quest for the operation overwriting any pending request.

Each PREMO operation is defined as using one of these operation request modes.
The existence of these modes is one of the more significant differences between the
PREMO object model, and that found in most programming languages, or indeed the
model defined by the OMG.

2.3.6 Attributes

One of the positive aspects of object orientation is the emphasis on data hiding and en-
capsulation — clients of an object should only use the operations in the interface of an
object, and should not have access to the internal state. Instead, if access to a variable
is required, it should be realised through operations that retrieve or set the value of the
variable. A number of such state variables appear within PREMO object types, and rath-
er than define explicit operations for manipulating these variables, the standard intro-
duces the concept of attribute. The definition of an attribute looks like that of a
variable, however an attribute of an object type is understood as being a shorthand for
a pair of operations in the interface of that object type which set and get the value of an
(internal) state variable. An attribute can be declared as read—only, or write—only, mean-
ing that the corresponding ‘set’ or ‘get’ operation is not available.

2.3.7 Non-object Data Types

SmallTalk was for some time presented as the prototypical object-oriented program-
ming system, and many of the ideas it pioneered were adopted in subsequent languages
and systems. One of its strengths was its simple ontology; everything in the system is
presented as an object, even “atomic” data such as numbers and characters. While this
view produces a remarkably uniform model, it does have a number of consequences.
First, there are a number of general raised by such an approach, including how one in-
terprets the “identity” of numbers, how one relates binary operations on data “objects”
to the conventional mathematical view of numbers. Second, there is the issue of effi-
ciency: treating data values as objects implies that operations such as addition are han-

15

dled by the same run-time dispatch mechanism as other operation calls. Data processing

in computer graphics and multimedia often involves a considerable amount of numeri-

cal processing with large data sets (geometric structures, digital image formats, etc.) and

here the need to use a genera dispatch model is clearly an efficiency concern. Finaly,

while PREMO isintended to be language independent, the most likely targetsfor alan-

guage binding were seen as the family of object-oriented languages, including C++,

Ada’95 and Java, in which object-oriented structures have been added to a language in
which primitive data are treated as values. For these reasons, PREMO has adopted a
model that distinguishes between non-object data types, such as integers and characters,
and object types.

24 TheFoundation Component

The implementation of most multimedia systems involves a number of fundamental
concerns: control and management of progression through media content, synchronisa-
tion between activities, time, and coordination. Existing standards provide specific fa-
cilities for some of these tasks, while for others an implementor may need to utilise a
general library (for example, for synchronisation) or develop ad-hoc solutions. Without
mandating any specific approach to these general concerns, the PREMO Foundation
component provides a set of general-purpose object and data types that can be used by
a developer to implement the functionality mentioned above. A developer can either use
these facilities “raw”, to create a customised architecture, or they can be used via the
higher level object types and services provided by Parts 3 and 4 of PREMO which are
described later in this chapter. Because the Foundation component is essentially a
toolkit, the remainder of this section describes its main provisions in terms of the prin-
ciple media system requirements that are supported.

24.1 Structures, Services, and Types

The requirement that, conceptually, all PREMO objects are active means that in princi-
ple all access to an object must allow for the possibility that the object will have its own
thread of control. Depending on the implementation platform, this assumption may im-
pose a high overhead on the cost of accessing components of objects; such access will
for example have to pass through the operation receptor and request handling infrastruc-
ture. For some aspects of media processing, these overheads are unavoidable; they are
needed to support the provision of distributed services across a media network. How-
ever, in a typical media application, not all objects will necessarily be used as “active”
entities that provide services. One use of objects is as data encapsulators, similar to the
use of records (structures) in languages such as Ada and C. There is clearly a trade-off
here, between the elegance and simplicity of a homogeneous object model on the one
hand, and the practical problems involved in storing and processing large multimedia
datasets on the other. For example, a visualisation application may need to operate on a
volume data set containing in the order of 100° voxels [74]. If each voxel is repre-
sented as an object, the overhead in processing this dataset will become significant.

16

PREMOObject general object system

facilities
EnhancedPREMOObject SimplePREMOObject
objects used as objects used to
passive data stores provide services

Figure 2-1 — Two kinds of object type in the PREMO hierarchy

PREMO has adopted an approach that retains a fundamentally simple object model
while allowing implementorsto avoid the overhead of the full operation request system
whereitisnot required. The approach is based on the top-level organisation of the PRE-
MO object type hierarchy shownin Figure 2-1. All object typesin PREMO are subtypes
of PREMOObj ect , in which fundamental object behaviour, such as the ability of each
object to return information about its type, is defined. Below this the hierarchy bifur-
cates. Si npl ePREMOObj ect serves as a supertype for those object types that represent
data encapsulators. Such object types are referred to as structures. EnhancedPREMOO-
bj ect isthe abstract supertype for those object types that provide services, and which
therefore incur the overhead of the operation dispatch mechanism. This separation is
further formalised through the profiles that are defined in each component to identify
those object and non-object types that should be made available to clients of the com-
ponent. Each profile consists of lists of object types, either under the category “provides
type”, or “provides service”. Only an object type that inherits fEnifmanc e d PREMOO-
bj ect is allowed to appear in the “provides service” clause, and it is only objects of
these types that a client can expect to interact with through operation dispatching.

24.2 Inter-Object Communication

Although ultimately all interaction between objects within a PREMO system takes
place via operation requests, this is not a particularly useful way of representing com-
munication and cooperation within a distributed system. In the case of multimedia, two
models are now well known:

» Stream-based models, in which information related to processing is sent on commu-
nication channels or media streams between objects. These may be the same
streams that are used to carry media data.

» Event-based models, in which there is conceptually a separate mechanism by which
specific operations in the interface of a collection of objects can be invoked in
response to a specific situation in one object.

17

register (ii)
callback * dispatchEvent
. (iv) (iii)
Listener Event Handler Notifier

Figure 2-2 — Overview of Event Management

PREMO does define media streams that in principle can be used to support commu-
nication between aobjects. These are described in section 2.5.3. However, streams are a
comparatively “heavyweight” facility, intended primarily to manage the transport of
media data. Instead, the foundation component defines a collection of object types that
provide an event management facility for inter-object communication.

The event mechanism is based on callbacks and event handlers. Callbacks are now
widely used in the graphics and user interface management communities, having been
popularised through systems such as the X library [77], OpenGL, and more recently the
Java AWT [28]. Essentially, a callback is just an operation in the interface of an object
that will be invoked by some other entity within a system in response to an event. A typ-
ical low level example is an operation in a user interface object that a run time system
will invoke to notify the object of a mouse-button being pressed or released. Callbacks
often take parameters that carry information about the event that has taken place. Since
the event management facilities in PREMO are used to address a range of concerns, it
was sensible to introduce a systematic approach for carrying event information. To this
end, arEvent object types is defined to carry such information, specifically the name
of the event, a reference to the source of the event, and additional data specific to the
event.

Figure 2-2 provides an overview of the approach. Objects that are interested in a par-
ticular event, (object A in the figure) must (i) be of a type that inherits fror@aie-
back object type, which provides a general | back operation, and (ii) must register
their interest with an instance of tBeent Handl er object type. When an object (B in
the figure) wants to notify the system that an event has occurred, it invokes the dispatch-
Event operation on an event handler (iii), and all objects that have registered with that
handler to be notified of the event will have their callback operation invoked (iv).

In fact, chains of event handlers can be set, becaug® ¢heéHandl er object type
itself inherits fromCal | back and defines itsal | back operation to have the same ef-
fect asdi spat chEvent . Thus, object A in the figure could be an event handler that
subsequently distributes the event received by the callback to further objects.

In the case of a basic event handler, objects are only required to register with the han-
dler if they should to be notified of a particular event; any object in the system can signal
to the handler that such an event has occurred. A specialised form of event handler,
called anANDSynchr oni zat i onPoi nt, provides a richer service. Objects not only
register to be notified of an event, they also registengfers for a particular kind of
event. When appropriate, a notifier signals the event handler as usual, however, the

18

event handler postpones the notification of objects interested in the event until all ob-
jectsthat have registered as notifiers have signalled the event to the handler. This object
type hasarolein the general synchronization facilities of PREMO, which are discussed
next.

243 Synchronization

Like event handling, synchronization requirements in PREMO span arange of levels.
At the level of data streams, fine-grained synchronization may be used to implement
quality of service requirements, for example maintaining an adequate alignment be-
tween related audio and visual content. At ahigher level, amultimedia presentation will
typically consist of acollection of components, some of which may be presented in par-
alel. In addition to any fine level of synchronization between such strands, synchroni-
zation between key milestones (such as the start/end of component strands) may be
required. Beyond direct control of media presentation, synchronization may also be
needed within the general control structure that manages the overall media system.

Synchronization in PREMO is supported at two levels - in terms of events, and in
terms of time. Event-based synchronization has obvious application in dealing with the
processing of structured presentations composed of more primitive media streams,
however it also has arolein synchronizing the presentation of the data within a stream,
where significant milestones are defined by the content of the stream, rather than its ab-
solute position. An example of thisisthe synchronization of ultrasound or other medical
scan data, where milestones defined by physiological events need to be aligned. Such
an example is described in more detail in [63]. Time-based synchronization is better
known, and involves ensuring that multiple activities reach particular milestones at
times specified relative to each activity.

The event and time-based approaches are both supported by a common framework,
the Synchronizabl e object type, which PREM O uses as the basis for representing, mon-
itoring and controlling the transmission and processing of media data. Although thein-
terface to this object typeislarge, it is based around three main ideas:

1. Aninternal progression space, which acts as a coordinate system for defining the
concept of location within some media stream or content. Synchronizable objects
do not themselves carry media data, but instead are inherited by object types which
areinvolved in the transport and processing of such data. Conceptually, the progres-
sion space represents the tempora extent of some media representation, and
progress through the progression space is made during processing of that media.

2. Progression is controlled by afinite state machine. Thisis actually achieved by hav-
ing Synchroni zabl e inherit from another object type, called a Control | er,
which is also defined in this component. Controllers are described in Chapter 5 and
their details are not of concern in this overview. It suffices at present to say that a
Synchronizable object can be in one of four states: stopped, playing, paused, and
waiting. Conceptually, when an object isin the playing state, progressis being made
through its progression space. Transitions between the states occur as a result of
operation invocation, and also through interaction with reference points, which are

19

|
Reference
points »ﬂ] ﬂ]
L[]

]

J dispatchEvent

position e

Synchronizable objects resume
playing - ANDSynchronizationPoint
position =
h 4

| L L]

|
>

ﬁ] |

Figure 2-3 — Example of a Synchronization Scheme

discussed below. A number of attributes define the parameters that affect how
progress is made, for example, the direction of progression.

3. Reference points can be placed along the progression space, either individually, or
repeated with a given period. Each reference point consists of an event, areference
to an event handler, and a special boolean ‘wait’ flag. When a reference point is
encountered during progression, the event is sent to event handler specified. The
wait flag indicates whether progression should be suspended at this point, and if has
the valuetrue, the Synchronizable object is placed into the ‘waiting’ state, where it
will remain until theresume operation in its interface is invoked.

Reference points and the ‘wait’ flag are intended to be used in conjunction with other
PREMO facilities to implement synchronization schemes. For example, by combining
reference points with theANDSynchroni zati on object type described in
section 2.4.2, processing of one part of a presentation can be suspended once a particu-
lar milestone has been reached until all ofyerchr oni zabl e objects that involved

in implementing the presentation have reached related milestones. An example of such
a scheme is shown in Figure 2-3.

244 Time

Media such as sound, video and animation is fundamentally grounded in time, and to
describe and control the presentation of such media it is necessary to have some means
of representing and measuring time. The question of how time should be represented
(for example, as a continuum, or discretized) has been the subject of much philosophical
debate, and is a non-trivial concern in areas such as real-time systems modelling and
verification. PREMO adopts a pragmatic approach, in which all representations of time
are based on ‘ticks’ produced by some clock. The granularity of a ‘tick’ is not fixed by
the standard, but rather depends on the particular clock used.

20

PREMO introduces object typesto represent abstract clocks, a subtype of clocksrep-
resenting ‘real time’ system clocks, and a resetable timer. All clocks are derived from
the abstract object typ@ ock, and specify a ‘tick unit’, which is the unit (for example,
seconds) represented by each tick, and a measure of the accuracy of the clock. An actual
measure of time is obtained by invoking thejui r eTi ck operation in the interface -
however, it is up to subtypes Of ock to attach a meaning to the number of ticks that
are returned. Thus an object of typesC ock returns the number of ticks (to its level
of accuracy) since the start of the defined PREMO era. The objeclitype defines
a start/stop timer by extending the interfaceCobck with operations for stopping,
starting, and pausing the progression of time. For objects of this type, the number of
ticks returned by inquireTick are the number of ticks that have elapsed, while the object
has been in its running state, since it was started (i.e. ignoring time spent in the pause
state).

The link between time, and the event-based synchronization model described in
section 2.4.3, is defined by the object tyjp@eSynchr oni zabl e, which couples the
behaviour of e&ynchr oni zabl e object with that of &i ner object, thus making it
possible to measure and control #peed of progression through the internal span of
a synchronizable object. The interface TofreSynchr oni zabl e allows reference
points to be placed against positions on the progression space specified in terms of time,
for example, placing a reference point 30 seconds from the start of a video sequence.
Obviously, the actual point in the video content at which this reference point will be
reached will depend on the speed at which progression is being made through the video.
Two subtypes ofi meSynchr oni zabl e are identified in the standard. TAneS| ave
object is one for which the rate of progression can be ‘slaved’ to the rate of progression
of some other time-synchronizable objectliAeLi ne object can be used to set refer-
ence points against milestones in real time.

245 Property Management

In the PREMO object model described in section 2.3, the attributes and operations of a
type are defined statically, when the object type itself is defined. Once an instance of a
type is created, the interface of the object is fixed. This “static” approach to object struc-
ture has clear benefits, not the least being support for compile-time checking that can
reduce the likelihood of programmer error. However, as we mentioned in the introduc-
tion to section 2.3, more dynamic object models are also available, and their potential
use in graphics and multimedia has been noted [3,33]. Features such as delegation, or
on a more modest level, the ability to alter the interface of an object at run time (as
adopted in Python[87] for example) would play a useful role in the implementation of
constraint management for example. However, the experience of the MADE project
[42] was that implementing such features within a class-based, ‘static’ object models
was a significant problem.

PREMO introduces the concept of objgcbperties as a compromise between a
purely static model and the facilities offered by dynamic models. A property is a pair,
consisting of a key (i.e. a string) and a sequence of values. Each value in the sequence
can come from any PREMO non-object data type, and as these include object referenc-

21

es, an object property is essentially adynamically typed variable. The EnhancedPRE-
MOOhj ect type introduces operations to define, delete, and inquire values associated
with a given property key. Later in the book we will see how properties can be used to
implement various naming mechanisms, store information on the location of the object
in a network, create annotations on object instances, and underpin a framework for in-
ter-object negotiation. In support of this, the standard stipulates that objects of certain
types will have a property with a given key, and possibly particular values. However
clients of any object whose type inherits from EnhancedPREMOOhj ect can attach new
properties at any time. Properties may also be declared as ‘retrieve only’.

The basic facilities provided lsnhancedPREMOObj ect are developed by two fur-
ther object typesr oper t yl nqui ry andpPr oper t yConst r ai nt . In the first of these
types, each property key can be associated with a corresponding ‘native property value’,
which describes the range of values (capabilities) that the corresponding property can
take on. This can be viewed as a form of dynamic typingPrbper t yConst r ai nt
type extends this model by ensuring that a value added to a property lies in the corre-
sponding native property value, if this exists. This object type also introduces a number
of ‘meta’ properties, for example, the kedyhami cPropert yLi st K' is associated
with a list of values representing the keys of certain properties. The operations bind and
unbind allow keys to be added to and removed from the valudsafri cPr oper -
tyLi st K. Only while a property’s key appears under this property can the correspond-
ing value be changed.

24.6 Object Factories

One specific use of properties is in the creation of objects. In section 2.3.2 we noted that
PREMO relies on its environment to provide certain fundamental services, and the cre-
ation of objects is one such service. In most object-oriented programming languages,
creation is a comparatively simple mechanism, handled either by a language construct
(e.g. the hew operator of Java) or through some meta-object system, in which classes
are themselves objects and can respond to message requesting object creation, as in
SmallTalk. This situation is complicated in PREMO by the use of properties to describe
features of objects. For example, a PREMO system may define a JPEG decoder as an
object type that has a property, s&/FVer si onK” which can be set to either the value
‘87a’ or ‘'v89a’ (CHECK) representing the two standard specifications. Alternatively a
system may offer two types of GIF decoder object, one for each version of the format,
in which the property@ FVer si onK” is fixed. There is thus interaction between the
structure of the type hierarchy, and the use of property keys.

In fact, from the viewpoint of a PREMO client, the specific type of an object will of-
ten be uninteresting. What is important is (i) that the object is a member of a subtype of
a given type, and (i), that the properties of an object satisfy a given constraint. In the
example above, what the client may really want is a device that can decode JPEG v87,
and the client is not concerned whether this device is an instance of an object type spe-
cifically for this version, or is an instance of a more general object type that can be con-
figured to the given requirement.

22

In order to hide these issues, and provide a uniform interface for object creation, the
foundation component of PREM O introduces the concept of an object factory. A factory
isitself an instance of the Gener i cFact ory object type that provides a single opera-
tion, cr eat ebj ect . This operation accepts an object type, and a set of constraintsin
the form of a sequence of key / permitted value pairs, and (if possible) returns a refer-
encetp an object that is an instance of the given type or a subtype, and whose properties
satisfy the constraint.

Factories are themselves objects, and a PREM O system provides afactory finder ob-
ject that is able to locate a factory capable of producing an object that will meet given
constraints.

25 TheMultimedia Systems Services Component

Multimediasystemstypically integrate avariety of logical and physical devices. For ex-
ampleinput and output might involve devices such as video cameras, microphones, and
a sophisticated speaker system. Processing in turn may involve logical devices such as
data encoders/decoders, media synthesizers (e.g. agraphics renderer), and avideo mix-
er. The data produced an consumed by these devices takes avariety of forms, for exam-
ple adiscretised audio signal, a sequence of video frames, or a discrete graphics model.
In turn, these forms can be encoded in avariety of formats (ALAW and ULAW for au-
dio, for example). Finally, different protocols may be available to communicate such
data, depending on the source and destination hardware, and on the available network
infrastructure.

Asexplained in the introductory chapter, PREM O does not aim to define new stand-
ards for the encoding or transport of media data. Rather, it seeks to provide a set of fa
cilities that abstract away from the details of low level system services, instead
providing an application devel oper with auniform high level view of media processing.
To thisend, the multimedia systems services (MSS) component of PREMO defines the
infrastructure for creating and maintaining a network of heterogeneous processing ele-
ments for media data. This includes object types for describing generic resources, de-
vices, and facilities for organising a collection of such components into higher level
units with a single interface. MSS encompasses mechanisms by which media proces-
sors can advertise their properties for network construction, can be interconnected and
controlled, and can be configured dynamically to match the needs of a network while
in operation.

MSS was originally defined by the Interactive Multimedia Association [45], alarge
consortium of industrial vendors and developers. IMA were aware of the work within
SC24 on the devel opment of PREM O, and donated the M SS framework to the Commit-
tee. It was subsequently adopted by SC24 asthe basis of adistinct PREMO component.
During the development of the standard, severa of the main provisions of MSS were
refined and integrated with facilities from the Foundation component.

23

audio
modeller

audio
modeller

video file ™

handler

Figure 2-4 — Simple Multimedia Network

251 TheParadigm of Media Networks

In order to abstract away from the details of specific mediatypes, media processing el-

ements are viewed as “black boxes” that can be interconnected through a high-level in-
terface to construct a network of such elements appropriate for a given application. At
this level, a PREMO application using MSS resembles a dataflow network, where the
nodes correspond to media processors, and the data streams carry media content. The
adoption of a dataflow-oriented view of media system architecture is not peculiar to
PREMO. It has appeared in published approaches to multimedia systems (for example,
[34]), and is also increasingly used in “plug and play” applications environments, for
example the visualization tool AVS [84] uses such a model for interactive construction

of applications from a toolkit of basic modules.

Figure 2-4 contains an example of a small network. It represents a video engine
combining input from a local file (for example, in MPEG) with audio clips stored as me-
dia primitives within a remote database (scene). The audio primitives in the scene are
constructed by a number of audio modellers (MIDI devices, or waveform editors, for
example). The combined audio/video output is presented on a TV device.

The devices in the figure are all instances or subtypes of specialised object types de-
fined in the fourth component of PREMO, and which is discussed in section 2.6. What
makes the construction and operation of such a network possible are that all of the ob-
ject types involved extend the virtual device and resource concepts defined in Part 3 of
PREMO. This allows the devices to be connected together, and subsequently to ex-
change media data along the streams shown. In the remainder of this section we de-
scribe the principle concepts and types that the MSS component provides for the
creation of such networks.

2.5.2 Virtual Resources

A high level view of a media network is of a collection of resources that cooperate in
the task of creating or processing media. These resources encompass physical devices
(such as cameras or mixing suites), software processes such as graphics renderers and
audio filters, as well as supporting infrastructure such as connections and software for

24

managing collections of lower-level resources. What is fundamental to this view is,
first, that a resource is something that has to be acquired for a task, and second, that
many of what we consider to be resources are inherently configurable. For example, an
audio mixer may involve both hardware and software elements, access to which must
be acquired before the mixer can beinstalled in a processing network. In fact, anumber
of mixers might potentially be available, differing in characteristics such asthe number
of channels that they can accept, the kind of audio formats that can be processed, and
the type of filters that can be applied.

The property description and management facilities described in section 2.4.5 form
the basis for realising this model. The characteristics of a particular resource are de-
scribed by properties; some of these can be set by aclient of the resource, often to one
of aset of possible values defined as the native property values for the given key. Other
properties, representing immutable aspects of a particular resource (for example the
number of input channels to the audio mixer) are read only, but still play an important
role in establishing a media network.

The fundamental operation of a PREMO resource is defined by the Vi rt ual Re-
sour ce object type. Each resource (or more generally, each subtype of Vi rt ual Re-
sour ce) defines a set of property keys and values that are relevant to the description
and control of the resource. In addition, each resource encapsul ates a number of config-
uration objects. These objects store data about the resource to which they are associat-
ed, and this information is used by other objects, for example in providing
communication services or quality of service management. The MSS component de-
fines three types of configuration object explicitly; each inherits from Pr oper t yCon-
straint:

* Format objects represent the details of a media format, for example the organisa-
tion of a bitstream;

* Ml timedi aSt reanPr ot ocol objects provides information about how media
data is conveyed between processing nodes; and

* QoSDescri pt or objects capture quality of service characteristics, such as the level
of guaranteed service, and bounds on delay and jitter.

It must be emphasised that the PREMO standard does not describe all details of these
object types; for example the specifics of particular media stream formats. The purpose
of these object types is to provide placeholders and hooks that can be specialised or used
as required within a particular implementation environment. Whavitheual Re-

sour ce object type does provide are operations for accessing particular configuration
objects using semantic hames (strings), acquiring the physical and software resources
managed by the object, and validating whether the configuration requirements ex-
pressed by the combination of properties and configuration objects can be satisfied.
Each resource is also associated with a stream control object, the purpose of which is
described next.

25

253 Stream Control

Virtua resources are involved in the production and transport of media data. Control
and monitoring of mediastreamsisprovidedin PREMO by the St r eantCont r ol object
type. Different kinds of resource will have different views on media streams, ranging
from alow-level signal oriented view, through levels that abstract signalsinto packets,
and packets into media samples or chunks. This range of views is accommodated by
basing stream control on the Ti neSynchroni zabl e object type discussed in
section 2.4.3; by inheriting from thistype, stream control can be defined with respect to
the coordinate system of the progression space, or (relative) time. To facilitate fine con-
trol over progress, the St r eanCont r ol object type refines the state machine inherited
from Synchronizable by introducing states that allow media content to be drained (dis-
carded) or buffered and subsequently released. Thesefacilities, along with the ability to
place reference points along the progression space connected to the event handling sys-
tem, areintended, for example, for use as part of an overall quality of service manage-
ment strategy. A further object type, SyncStreanControl, alows progression
through its stream to be synchronized (slaved) explicitly with the progression of some
other object that is derived from the Synchr oni zabl e type.

Virtual resource objects have an associated StreanCont rol object that alows,
where applicable, monitoring and control of the end-to-end processing carried out by
that resource. Stream control objects are also afeature of an important kind of resource,
the virtual device.

2.5.4 Virtual Devices

The “nodes” in the dataflow network shown in Figure 2-4 are defined to be so called
Virtual Device objects that form the basic building block for interaction and processing
capabilities within PREMO. The anatomy of a virtual device is shown in Figure 2-5.
The principle features that the VirtualDevice object type adds to a resource is the
presence of “openings”, called ports, which act as input or output gateways for the vir-
tual device, and the concept of a “processing element”. Ports are the means by which
data can be passed from one device to another. A port is not itself an object, rather, it an
identifier or handle that is used to reference a particular opening, and through the inter-
face of a virtual device, access and control information about that opening. Like a re-
source (and hence a device itself), each port is associated with a collection of
configuration objects that characterise the flow of data through the port. More specifi-
cally, each port has associat@BDescr i pt or, For mat , andMul ti nedi aSt r eam
Pr ot ocol objects. The client can set the properties of these objects, and can refer to
them when configuring a network. These configuration objects are combined into a port
configuration object, which also contains a reference to an event handler dedicated to
that port, and 8yncSt r eanCont r ol object that controls and monitors the transfer of
media data via the port. Just as with t ual Resour ce, an operation is provided by
Vi rt ual Devi ce to validate the requirements captured by the configuration of each
port.

26

4 Port—

Callback
Il StreamControl | m == -:l—»
IProtocoI IQoSDescriptor‘

Port————— Pprocessing Element

Callback
)‘ = | Format II StreamControl| mm Callback

| Protocol LmQOSDescriptor‘ ConfigurationD StreamControl ‘j
Port

_I Callback
‘Protocol |QoSDescriptor‘ j

I

-

Figure 2-5 — The Structure ofMrtual Device Object

The “processing element”, shown in Figure 2-5, is a conceptual, rather than concrete,
component of a virtual device. That is, there is no object type for a processing element,
nor does the&vi rt ual Devi ce introduce variables or operations to implement it. The
only part of a virtual device that directly relates to processing is the end-to-end stream
control and configuration objects inherited frafr t ual Resour ce. One of the tasks
to be addressed in implementing the t ual Devi ce type is to decide how the transfer
of media data within the device is to be effectednBybeing prescriptive about this
aspect, the PREMO designers have sought to better accommodate the wide range of ex-
isting media processing software that might be “wrapped” within a subtype ofi-
al Devi ce for use in a PREMO-based network. Chapter 6 demonstrates one approach
through which this interaction can be realised.

2.5,5 Virtual Connections

The lines in Figure 2-5 entering and leaving device ports represent the flow of media
along streams. PREMO itself does not define a “Stream” object type, since much of the
detail here depends both on the underlying network technology, and the context of the
connection (i.e. whether two devices are on the same host, local network, etc.). Streams
however are established and maintained by objects derived from another subtype of
Vi rt ual Resour ce, theVi rt ual Connecti on type. As a resource, a virtual connec-

tion object contains a stream control object that represents the end-to-end flow of media
data along the stream controlled by the connection. A subtype of VirtualConnection
supports multicasting, with operations to attach and detach a device/port combination
to and from the connection. All connections are unidirectional.

27

If the underlying devices are located on the same hardware, a connection may be re-
alised by directly linking theinput and output ports of the associated devices. More gen-
erally, the devices will be on distinct, possibly remote, machines and using different
local facilities for inter—object communication. In such cases a virtual connection may
need to createdrtual connection adapter, that provides appropriate interfaces to the
end-parties while managing any recoding or translation of raw data required. Connec-
tion adapters exist only as concepts within the PREMO standard. They do not corre-
spond to any particular object type, and in fact their implementation will in general
require a collection of objects to manage the transfer between the different protocols.

256 Higher-Levelsof Organization: Groupsand L ogical Devices

Even the simplest non—trivial media network, involving two devices with a single con-
nection between them, involves a significant number of objects: the devices themselves,
the connection, the connection adapter (if needed), event handlers for the ports and de-
vices, and possibly supporting objects to, for example, monitor quality of service. For
a realistic application, the number of objects is significantly greater, and the problem of
tracking which particular groups of objects are relevant to any given part of the network
becomes significant.

To prevent organizational anarchy, it is often convenient for clients to interact with a
single object that represents each “significant component” of a network. PREMO pro-
vides aG oup object type to support management of a collection of devices and con-
nectionsGroups are resource objects which control a number of other virtual resources
(in particular devices and connections), and their respective network. By default, the
constituent devices remain hidden to the external client; instead, groups provide a single
entry point for stream control, as well as other services. By using the basic group inter-
face, the client does not have to know about the interfaces of these constituent devices.
Because Group inherits frowi rt ual Resour ce, each group is itself a resource, and
consequently, the configuration of group components can be validated, and the compo-
nents themselves acquired, via the one group interface, rather than individually. Be-
cause a group is itself a resource, a group can itself be a member of a further group.

Although groups can be organized into hierarchies, it is important to remember that
a group is not a device; it has no ports of its own. Instead, a client using a number of
groups is responsible for ensuring that, where necessary, components of distinct groups
are connected. A specialised form of group, callembical device, combines the cen-
tral resource management capabilities of a group with the processing model of a virtual
device. Resources are added to and managed by a logical device in the same was as a
group, but the client of a logical device can also dynamically define ports on the inter-
face of the device. When defined, each port on the logical device is associated explicitly
with a port on a device that it manages. A logical device thus acquires input and output
ports, and can be built into a network in the same way as other devices.

28

257 Workingin Unison

At this point we have described the main features of the multimedia systems services
component. Given the importance of this component to the aim underlying PREMO, of
supporting the development of distributed multimediasystems, it isuseful to summarise
the roles played by the various object types described here. We do so by outlining the
stepsinvolved in setting up anetwork using MSS.

1. Assuming that the client has a suitable factory, it first uses the factory to create the
various objects (devices, connections, and other resources) that make up the net-
work. Part of the specification for the objects given to the factory may involve con-
straints on properties of the objects, for example a device is able to receive data
using a particular format.

2. The connections are defined by sending each connection object a Connect request,
specifying the source and destination device/port combinations.

3. The client may create a group object, and then add all of the resources to the group
by sending the request addResour ceG aph to the group. At this point the structure
of the network has been fixed, but no actual resources (e.g. bandwidth) have been
allocated to it.

4. Using the acquireResource request of the group object, the client attempts to allo-
cate the resources needed for each of the objects in the network. Inability of the
underlying system to meet this request will result in an exception which the client
can detect. In this situation it may modify its requirements by changing properties
of any of the objects within the group, for example by settling for a less reliable
connection.

5. Once the resources have been allocated, the client can start the transport of media
data through the network by accessing the St r eanCont r ol object of the group.

2.6 TheModdling, Rendering, and I nteraction Component

A feature of the MSS component is that its provisions are independent of the data proc-
essed by the devices and resources within a network. Thus the same approach can be
used for setting up a video editing system as for setting up a virtua reality modelling
and rendering environment. The fourth component of PREMO describes general facil-
ities for the modelling and presentation of, and interaction with, multidimensional data
that utilises multiple mediain an integrated way. That is, the data may be composed of
entities that can be rendered using graphics, sound, video or other media, and which
may be interrelated through both spatial coordinates and time.
The MRI component isinteresting for two reasons. It isthe point within the PREMO
standard where the actual structure and content of media data becomes significant. It is
also the point at which ‘traditional’ computer graphics, i.e. modelling and rendering of
synthetic scenes, is integrated into the broader concerns of multimedia. This integration

29

within an object-oriented framework highlights a significant design issue regarding the
implementation of graphics (and for that matter, other media) processing, which wedis-
cussin the first of four sub-sections.

The actual description of the MRI component ranges over three concerns, which are
each covered by a separate heading thereafter. Section 2.6.2 concernsisthe design of a
hierarchy of modelling primitives for characterising multimedia presentation.
Section 2.6.3 dealswith the collection of devicesthat extendthe Vi r t ual Devi ce type
of the M SS component to allow modelling, rendering and interaction to take place with-
in a media network of the kind described in section 2.5.1. Section 2.6.4 focuses on a
particular device, the Coor di nat or, that plays a key role in mapping presentation re-
quirements of mediastreams against the devicesthat are available for processing media.

26.1 Object-Oriented Rendering

A fundamental question that must be addressed within any object-oriented graphics or
multimedia system concerns the allocation of fundamental behaviour, such as transfor-

mations and rendering, to object types defining media content within an API. Two quite

distinct approaches emerge. Thefirst isto attach behaviour to the object types that are

affected by that behaviour. For example, geometric objects and other kinds of present-

able media data can be defined with a ‘render’ method, with the interpretation that such
an object can be requested to produce a rendering of itself. Such an approach can be ex-
tended to collections of presentable objects, and fits well with the concept of an object
as a container for data along with the operations that manipulate that data. The second
approach is to define objects whose principle purpose is to act as information proces-
sors, and which receive the data that they operate on as parameters to operation requests
or through some other communication mechanism. In this case, a ‘renderer’ object
would receive presentable objects as input through some interface, and produce a ren-
dering of those objects via some output mechanism. From the discussion in
section 2.5.4 it may already be clear that PREMO has adopted for the second option.
Separating operations (in the form of devices) from the data that they manipulate may
appear to violate a central tenant of object—oriented design. However, it has two impor-
tant benefits for PREMO.

1. First, a direct and desired consequence of a distributed model is that one model or
data set may be rendered by several processes working in parallel at various loca-
tions. It is difficult to see how this can be realised efficiently in an architecture in
which each media object renders or processes itself. Either such objects must be
able to support multiple concurrent threads internally, or any object that is to be ren-
dered must first be copied. In contrast, treating renderers as a form of processing
device means that multiple renderers can be created (relatively) easily to operate on
a given database of objects representing media data (see for example Figure 2-4).
Such a database can either be shared by several renderers, or there may be several
copies of the data. Strategies for managing the distribution, update, and access con-
trol of data within such a system are well known, and thus this approach is rather
more practical and flexible than the alternative.

30

2. It supports an approach to application development based on interconnecting a
number of processing devices — irrespective of whether those devices are operat-
ing on continuous media such as video, or a series of discrete data sets within a ren-
dering pipeline. Once such a network has been defined, it can be used for a variety
of data sets or models, and can be readily modified. In contrast, in an architecture
where (for example) graphics objects render themselves, the control of processing
and flow of data is encoded within specific operations, making it difficult to
develop an application that can be modified or extended without wholesale repro-
gramming of those operations.

By opting for a model in which media data is essentially passive, while media proces-
sors are active objects that provide services, PREMO aims to provide a uniform, inte-
grated treatment of both digital media and synthetic graphics.

2.6.2 Primitives

The potential domains of application for a system such as PREMO are diverse. When
considering the design of a component for modelling and rendering, this raises the dif-
ficult problem of identifying an appropriate set of ‘media primitives’ — or indeed,
whether to include any model of primitives at all. Two directions initially appear feasi-
ble when considering how primitives for modelling and rendering could be supported
in a system like PREMO. First, it would be possible to take an existing set of primitives
from an established system, for example the node set provided by Open Inventor [89],
and adopt these to the needs of PREMO, possibly through some further extensions. The
problem here is in finding a set of primitives suitable for the range of applications ad-
dressed by PREMO, and then deciding on what, if any, extensions to include. The sec-
ond approach is to derive some minimal framework of elementary primitives from
which those used in practice can be derived by composition.

Although an interesting research problem, both this and the first approach are biased
towards a model in which PREMO devices for modelling and rendering would effec-
tively be implementing a new standard for graphics primitives. It is simply unrealistic
today, given the investment in graphics and media technologies, to expect industries to
adopt a new standard for media data. Instead, the philosophy underlying PREMO s to
view the standard as a framework for supporting the integration of different modelling
and rendering technologies, with their own models of media data, within a heterogene-
ous distributed system. This has already been reflected in the discussion on virtual de-
vices, where we noted that the virtual device specification does not mandate any
specific strategy for implementing the processing element, thus allowing existing media
processors to be accommodated.

In this context, the role of primitives is rather different from their role in a detailed
standard such as PHIGS [44]. PREMO clearly cannot attempt to describe a closed set
of primitives for modelling and rendering. Instead, it defines a general, extensible
framework that provides a common basis for deriving primitive sets appropriate to spe-
cific applications or renderer technologies. Graphics modellers, for example, may use
specific representations such as constructive solid geometry, NURBS surfaces, particle
systems etc. Audio modellers may use primitives that represented captured waveforms,

31

or raw MIDI datafor synthesis. The aim of the primitive hierarchy defined in this part
isto provide aminimal common vocabulary of structures that can be extended as need-
ed, and which can be used within the property and negotiation mechanisms of PREMO
asabasisfor devicesinvolved in modelling and rendering to identify their capabilities
for use in anetwork. The seven categories of primitive defined in PREMO are:

1. Captured primitives. These allow the import and export of data encoded in some
format defined externally to PREMO, for example MPEG [55].

2. Form primitives. Here the appearance of the primitive is constructed by some ren-
derer or more general media engine. These include geometric primitives (polylines,
curves etc.), aswell as audio primitives for speech and music, etc.

3. Wrapper primitives alow an arbitrary PREMO value to be carried as a primitive,
for example for use in returning the measure of an input device.

4. Modi fi er primitives alter the presentation of forms, for example visua primitives
encompass shading, colour, texture and material properties that affect (for example)
the appearance of geometric primitives.

5. Ref er ence primitives enable the sharing and reuse of clusters of primitives via
names that can be defined within structures.

6. Forms and modifiers are combined within St r uct ur ed primitives. An Aggr egat e
isasubtype of Struct ur ed which contains a set of primitives, where some mem-
bers of the set may be interpreted in application dependent ways; it is thus up to an
application subtyping from Aggr egat e to impose a specific interpretation on such
combinations. Of particular importance, given that PREMO is concerned with mul-
timedia presentation, is the Ti meConposite primitive and its subtypes which
allow a time-based presentation to be defined by composing simpler fragments.
Subtypes of Ti meConposi t e provide for sequential and parallel composition, as
well as choice between alternative presentations as determined by the behaviour of
a state machine. Additional control over timing is achieved via temporal modifiers,
and subtypes of Ti neConposi t e define eventsthat can be used within the PREMO
event handling system to monitor the progress of presentation.

7. Tracer primitives carry an event. This event can be detected at the port of a device
configured to use MRI _For nat , and will be dispatched to the event handler associ-
ated with the port. This facility is used for coarse-level synchronization.

2.6.3 Modedling and Rendering Devices

The MRI component derives a number of object typesfrom the Vi r t ual Devi ce type
of the M'SS component, as described in section 2.5.4. Asin M SS, these do not represent
concrete devices. They instead define the interface that a device must offer in able to
provide certain kinds of service within aPREMO system, and in the case of Part 4, with
primitives derived from the hierarchy described above. The device network shown in
Figure 2-4 on page 23 incorporates a number of devices, the types of which would in-
herit from MRI object types. The MRI component defines a subtype of Vi rt ual De-

32

vi ce for use as the base type for deriving devices for modelling, rendering and
interaction. The so-called MRl _Devi ce object typeisrequired to support aformat at its
input and/or output ports that allows MRI primitives to be transmitted and received.
Such a device is aso required to define properties setting out which primitives it can
accept, and some measure of the efficiency with which it can process primitives. In the
standard, the following specialisations of MRl _Devi ce are defined:

1. Modellers and Renderers guarantee to provide an output or (respectively) input port
that accepts MRl _For mat streams for carrying primitives. The devices also contain
properties that characterise their ability to process primitives.

2. A Medi aEngi ne isadevice that can act both asaModel | er and aRenderer, i.e.
adevice that can transform one or more streams of primitives into new streams.

3. The Scene object type defines a database that can be used to store primitives pro-
duced and/or accessed by other devices within a network. It is assumed, for exam-
ple, that multiple devices may have concurrent read access to specific primitives,
but the exact form of concurrency control is not specified. The interface of the
device allows requests for access to be granted or denied depending on the policies
adopted.

4. Two devices are introduced to support interaction. The | nput Devi ce object type
(a mouse would be a concrete example) supports interaction in either sampled,
request or event mode through the stream and event handling facilities defined in
other parts of PREMO, while the Rout er object type allows streams of data to be
directed based on the state of an underlying state machine.

When accessing primitives stored in ascene, or coordinating the processing of multiple
media streams, it is necessary to be able to determine when a particular stream has been
fully processed (or received, in the case of database access). This task is supported by
the Tr acer primitive, which carries areference to an Event . Whenever such a primi-
tive is encountered at the port of a device that is a subtype of MRI _Devi ce, the event
carried by the tracer will be dispatched to an event handler associated with the port. In
this way, other objects that need to be aware of the progress of media processing can
register interest in such events and be updated of processing activity.

2.6.4 Coordination

By using the primitives derived from the hierarchy described in section 2.6.2, an essen-
tially declarative description of a multimedia presentation can be defined. Typically
however, at some point this presentation will need to be processed or presented, and
during this activity the internal structure of the presentation, for example asacollection
of media data to be presented in parallel, becomes important. If a media network con-
tains adevicethat can process such structures directly, the problem is solved. However,
it is aso possible that the presentation of a structured media primitive will require the
services of multiple devices, whose activities must then be coordinated to reflect both
coarse synchronization constraints, as well as quality of service requirements, inherent
in the declarative model.

33

The MRI component defines a subtype of MRl _Devi ce called a Coor di nat or.
Such a device encapsulates a number of other media devices (derived from Vi r t ual -
Devi ce), each of which provides the coordinator with one input port. The coordinator
itself has one input port, and as it receives primitivesin MRl _For mat , the coordinator
isresponsible for decomposing any structured presentation into components that can be
processed by the devices that it encapsulates. In the example, the coordinator may re-
ceive presentations that involve synthetic graphics, video, and audio components. The
audio component of the presentation is delegated to the logical device responsible for
audio rendering, while the graphics and video are managed by the second logical de-
vice. The coordinator is also responsible for ensuring that its components maintain any
synchronization constraints captured by the overall presentation. It may achievethisby
monitoring the overall end-to-end progression of its encapsulated devices, and placing
synchronization constraints on those progression spaces, or by using more specific
mechanisms available within PREMO or a given implementation.

2.7 Closing Remarks

This chapter has presented an overview of the PREMO standard. In the process, we

have set out some of the design constraints that have determined the shape of the stand-

ard, and have discussed some of the aternatives that were considered. The description

of PREMO object types and their behaviour has been, by necessity, incomplete and in-

formal. In the chapters that follow, each of the four componentswill be presented in de-

tail, including the specific interfaces defined for the object types mentioned here. By

giving an up—front view of the overall provisions of the standard, it is hoped that the
reader will be better able to relate the detailed account of the object types, as they are
given, back to the overall picture of what PREMO is intended to achieve.

35

Chapter 3

The Fundamentals of PREM O

3.1 Introduction

To date, standards for computer graphics APIs have inevitably implemented in alow-
level procedural language such as FORTRAN [82] or C [58]. The principle abstractions
that these languages support are function and procedure headers, and type or constant
definitions. An API standard could be described as a collection of data types and ab-
stract procedures, which would then be mapped through a language binding into func-
tion or procedure definitions in a specific host language. Criticaly, there were few, if
any, assumptionsin the standard itself about how functions or procedures behaved. The
main difficulty, at least in the early language bindings, was deciding how to cope with
differencesin the expressive power of the programming languages, e.g. FORTRAN did
not allow enumerated type definitions, so any use of ‘conceptual’ enumeration types in
the standard needed to map onto a set of constants within a FORTRAN binding.

At one level, PREMO represents a straightforward evolutionary step; rather than
binding the standard to the facilities opracedural language, the standard is intended
to utilise the facilities provided bgbject oriented programming systems. A language
binding for PREMO is able to map entities in the standard onto mechanisms such as
classes, methods, and inheritance provided by an object-oriented language. However,
this view misses a significant difference between PREMO and previous graphics stand-
ards. In the case of PREMO, the implementation technology, i.e. objects, and the mech-
anisms for their definition and interaction, are an intrinsic part of the standard. Before
we can give a precise definition of the types and services of PREMO, it is first necessary
to set out what we mean by terms such as ‘object’, ‘object type’, and ‘inheritance’. Not
only will these affect how we go about binding PREMO to a programming language, it
will also affect how we construct complex entities in the PREMO specification from
simpler ones.

The collection of definitions that set out the concepts with which PREMO is de-
scribed form the first component of the standard, referred to as the Fundamentals of
PREMO. This chapter describes the fundamental component, following closely the
structure of the Part 1 document, but also explaining the rationale behind decisions, in
particular those that have consequences on subsequent components and the reference
implementation described in this book. Readers with a background in object oriented
systems or modelling may find that they are familiar with some of the material and can
skip sections. However, for at least issues (object references, and operation request
modes) the approach taken in PREMO may be unfamiliar to larger sections of the audi-
ence.

36

For readers who have learned object-oriented programming or design from a partic-
ular language or notation, the definition of some of the concepts in this chapter may
seem convoluted. It must be remembered that the PREMO object model is attempting
to define a set of concepts that can be mapped onto a number of different programming
models. Achieving this level of generality does unfortunately lead to some awkward-
ness.

3.2 Basic Concepts

All high-level programming involves the use of some paradigm or metaphor through

which the behaviour of a program can be understood and related to the problem domain.

Pascal and Ada are based on a procedural paradigm, where a program is organised asa
hierarchy of procedures whose activation reflects a stepwise decomposition of the tasks

needed to achieve a particular goal. Object-oriented programming originated in work

aimed at simulating real systems; the first object-oriented language, Simula[9], intro-

duced features that allowed the program to be organised in terms of the ‘classes’ of ob-
ject that were being simulated. The development of Smalltalk [35] took this idea and
turned it into a more general view of ‘programming as simulation’, that applied to all
kinds of programming tasks, not necessarily those with system simulation as the explic-
it aim. In this model, a program is described in terms of how abstractionsaztets$

interact. An object consists of a set of variables that represent its state, and a set of op-
erations that define the services, or interface, that each object offers to the other objects
within the system. Starting from its initial state, an object evolves as it responds to re-
guests ihessages) from other objects. To respond to a message, an object may in turn
send messages to objects that it has access to.

321 PREMO Objectsand Object Types

A PREMO object consists of a local (internal) state, and an interface consisting of a set
of operations that can be invoked on the object. The state consists of a collection of var-
iables, while the interface is a collection of operations (sometimes oaleodsin the

wider literature). Conceptually, the state of an object cannot be accessed directly (read
or modified) by other entities within the system. Instead, all access is mediated by the
interface — a client can only access or modify an object’s state by invoking one of the

operations available in that object’s interface.

Any object in a PREMO system may conceptually be active, that is, have its own
thread of control. In practice of course, it is useful to only implement an object as a self-
contained thread when this is needed; for many objects, for example those representing
static data, there is no thread of activity, and therefore the implementation overhead can
and should be avoided. This requirement does make it more complex to provide an im-
plementation of PREMO in languages such as C++ [79] for which there is no standard-
ised thread model. However, the notion of active objects is widespread in multimedia
(see for example [65]. Adopting it as a design principle for PREMO has brought re-
wards, for example PREMO Part 3 defines virtual ‘devices’ which are both objects and
processes.

37

Each object in a PREMO application is created as an instance of an object type. Ob-
ject types correspond to the concept of a class in many object-oriented programming
languages. The term ‘object type’ is used in the standard to make explicit the distinction
between thapecification of an entity in the PREMO standard, andithplementation
of that entity in a particular programming system. There need not be a one-to-one cor-
respondence between object types described in the PREMO standard and the classes in
an object-oriented implementation of PREMO. In principle at least, it is possible to im-
plement PREMO in a non object-oriented language. For similar reasons, the standard
uses the neutral terms ‘operation’ and ‘invocation’ to refer to the behavioural compo-
nent of objects, in place of the ‘method’ and ‘message passing’ which are biased to-
wards object-oriented implementations. An object type introduces variables that will be
part of the state of each instance of that type, and similarly, operations that will be avail-
able in the interface of each instaHc®REMO, like mainstream object-oriented lan-
guages such as C++, Ada'95 [7], and Java [36] has adopted a static object model, where
the structure of an object is fixed by its type, and cannot be modified at run-time. Mod-
els have been proposed in which the structure of an object can be modified dynamically,
i.e. while the system is running. Approaches such as CLOS [11] and Smalltalk [32], that
include some capability for reflection’, are good examples of this. A restricted dynamic
object model is also found in the Python language [87], where an object can gain new
operations. Although there is some evidence that multimedia systems might benefit
from the use of a more dynamic model, the practical difficulties of realising this kind of
behaviour in the languages currently in widespread use meant that the PREMO com-
mittee opted for a more traditional, static model. However, some support for dynamic
structures was subsequently provided through the properties mechanism, discussed in
Chapter 5.

3.2.2 Attributes

The restriction that all access to object state be via operations is strong, and in a number
of cases imposes a significant overhead. For example, a device for playing media may
have a number of parameters, such as speed of play, where it is intended that clients are
free to inspect and modify these parameters as needed. Although the value of these pa-
rameters will affect the behaviour of the object, the operation of setting or accessing the
parameter does no further work in itself. If the strict encapsulation model is followed in
detail, each such parameter in an object type must be defined implicitly through a pair
of operations for accessing and modifying the parameter. Doing this throughout the
standard would have added considerable overhead to the specification of the object
types. To overcome this, object types in PREMO can introdtidéutes, which can

further specialised into read-only, write-only, and read-and-write (the default). A read-
only attribute can be seen as a shorthand for an operation that retrieves and returns the

D The possihility of subtyping (see section 3.4) means that instances may also contain variables
and operations inherited from supertypes.

38

value of an internal state variable. Dually, a write-only attribute defines an operation
that setsthe value of a corresponding state variable. The default, an attribute that i s both
readable and writable, has both operations.

For read-and-write attributes, an implementation of a PREMO object type may be
able to realise the attribute simply as a variable that is publicly accessible, e.g. a ‘public’
state variable in C++ or Java. However, it should be noted that setting the value of an
attribute can result in an exception, and to implement this it may be necessary to realise
the attribute by a pair of methods. In any case, few languages support read/write per-
missions for variables, and consequently most attributes in the PREMO standard will
map on to methods in an implementation.

3.23 Non-object Types

The ideal of object oriented programming, that every entity in the system is an object
that can be manipulated through its interface, has probably found its purest expression
in systems such as Smalltalk and SELF [83]. In this environment, all entities — even
things such as numbers and characters — are construed to be objects. This brings a great
simplicity to the language, but creates a significant difficulty. All data manipulation
must (at least conceptually) be carried out by invoking operations, even things such as
adding one number to another. This overhead can be reduced with good optimisation
technology, but the resulting performance is still some way from that obtained with
more direct methods of storage and operation. Partly for this reason, object-oriented
languages have either been defined by adding features to existing programming lan-
guages (as in C++ and Ada’95), or by defining new languages that contain traditional
data types in addition to objects (for example, Eiffel [66]and Java). Efficiency concerns
aside, this approach also benefits from easing the migration path for existing program-
mers.

For very much the same pragmatic reasons, PREMO from the outset makes a distinc-
tion between object types, and non-object types. Each non-ghjeeis a member of
some non-object type, but non-object types are not part of the object type hierarchy de-
scribed in section 3.5. Values of non-object types are atomic, there is no concept of a
state or operations, rather, it is assumed that the environment in which PREMO operates
provides a set of operators for manipulating non-objects, for example arithmetic and re-
lational operators for working with integers and other numeric formats. There is how-
ever an important bridge between the world of objects and the world of values, which
is discussed in the next section.

Part 2 of PREMO (see Chapter 5) introduces a collection of non-object types that are
used widely in the remainder of the standard. Other PREMO components can and do
introduce further, specialised types (in the form of subranges or enumerations).

3.24 Object Identity and Object References
A basic tenet of the object-oriented metaphor is that each object has an identity that per-

sists, independent of the changing state [13]. Many object-oriented programming lan-
guages treat objects as pointer variables, with the object itself being but a pointer to

39

where the state variables, and data needed for method dispatch, are stored. In this ap-
proach the identity of an object isimplicit; it isthe address of the state in memory. Some
languages, notably C++ and Eiffel, also allow objects to be stored essentially ‘as val-
ues’, and in this case it is up to the programmer to take responsibility for defining any
notion of object identity.

The PREMO standard mandates that all access to a PREMO object must be through
an object reference; it is simply not possible to access an object directly in PREMO.
There are two main reasons for requiring this:

1. PREMO objects are potentially distributed,; if an object exists on a remote machine,
it simply is not possible to access the object directly. By requiring that all objects be
accessed via references, the standard allows a seamless migration from local to
remote access, and avoids the complication of an explicit distinction between local
and remote objects. An object reference can be used to encode both local address
information and the location of a particular object across a network.

2. If PREMO were implemented in a non object-oriented language, it might be neces-
sary to code a notion of object reference explicitly. Making the concept explicit in
the standard provides at least a conceptual handle on the problem.

A PREMO client obtains a reference to an object by requesting a facility called an
“object factory” (discussed in Chapter 5) to generate an object satisfying specific crite-
ria. If it is able to satisfy the criteria, the factory will return a reference for the new ob-
ject. Such a reference is a value afam object data type, called an object reference,
and can be used as any other item of non-object data. In particular, it can be copied,
stored, passed as a parameter to operations, and compared for equality against other val-
ues of the type. It does not make sense to apply other comparison operators to object
references. All subsequent activities involving the new object are then done via the ref-
erence. Consequently, the PREMO environment must provide support for activities,
such as invoking an operation on an object, which are often taken for granted as part of
a language-specific object model. In the case of a remote object, for example, an oper-
ation invocation must be translated into an appropriate remote invocation mechanism.
Such assumptions have a significant impact on the binding BRERIO specification
to a implementation model; more will be said about this problem later in this chapter.

As a way of highlighting the important of object references within the standard, a no-
tational convention was introduced: for object typeef T' denotes the non object type
containing references to objects that are instanc&slofa language such as C++ that
has explicit pointersréf T' will become the type of pointers) for a language like
Java in which object references are implicit, the declaration of an object of some class
is understood implicitly as the introduction of a valueref T'.

In common with most object-oriented systems, PREMO introduces a special con-
stant to designate an object reference that refers to no object. In the PREMO standard,
this value is denoteNULLObject; in a Java implementation, it would be represented
by thenul | object.

40
3.3 Operations

Object oriented programming languages often use the term ‘method’ for the definition
of the process that objects of a particular class should perform in response to a request
from some entity in the system. In keeping with the goal of separating the description
of PREMO from language concerns, the teperation is used in the standard. An op-
eration describes a process that can be applied to an object, thraymghation invo-
cation (also called an operatioequest).

Each operation has a signature, consisting of one or more input parameters, and zero
or more output parameters, e.g. a signature has the form

op P T PoiTo eetPn:iTy = 11:S,12:S, ooosfm: Sy

Herep; ... p, are the input parameters, and.. r,, are the output parameters. The
first input parameter to an operation represents the object ‘on which’ the operation is
being invoked. In many object oriented programming languages, the ‘receiver’ of a op-
eration invocation, or message, is implicit when an operation is defined, i.e. it is an ob-
ject of the class in which the method is written. This object is then designated specially
in the syntax for operation invocation, e.g. in Java or C++ the object on which the op-
eration is applied is written before the operation:

receiver.opName(argq, argp, ...,arg,)

There is a good reason for distinguishing the receiver. In the presence of subtypes
(discussed in section 3.4), the operation performed in response to an invocation is de-
termined by the type of the object that receives the request; this is called single dispatch-
ing. However, there are also languages which have a more general model of operations,
for example Ada’95 and CLOS treat all arguments to an operation equally, and choose
a suitable operation based on the typesdfi argument, so called multiple dispatching.

The model of operations in PREMO is intended to be neutral with respect to this issue
of language design.

The input and output parameters of a PREMO operation are required to be of non-
object types, i.e. it is not possible to pass an object directly to an operation; instead, a
reference to the object must be passed. If the object is of tiipen the parameter type
will be of the reference typRef T, which was previously mentioned, isa non-object
type. This requirement on parameter types is another consequence of the need to distin-
guish carefully between objects and object references within a potentially distributed
environment. By default, object references are passed directly to the called operation. It
is possible to indicate that the operation should instead be passed a reference to a copy
of the object, constructed using the create facility described in section 3.10.

3.4 Subtyping

Object oriented programs typically involve the manipulation of objects that have certain
similarities. For example, a drawing program may manipulate objects representing
points in 2, 3, or 4-dimensional cartesian coordinate systems. Each of these objects will

41

have at least an x and y coordinate. A video media stream may passfrom adevicewhich

reads data from an external source to a devicethat displays the video; while the devices

may be objects of different object types, both however may have the capability to stop,

pause, and resume their processing tasks. Subtyping is the relationship that holds be-

tween two object types when objects of one type can be used in contexts where objects

of the first type are ‘normally’ expected. In the examples abo8Bpaint object type

may be a subtype @Dpoint, while both the video stream producer and render may be
subtypes of a generic object type representing video devices. The definition of a PRE-
MO object type should indicate which object type(s) it is a subtype of.

Exactly what should and should not constitute ‘a subtype’ has been the subject of
much debate within the object-oriented systems communities (see for example [88]),
and indeed different approaches can be required at various stages of the software devel-
opment process. PREMO bases its notion of subtype on the interface of the object types.
ForT to be a subtype @, the following conditions must hold:

1. for each operatio®Pg in S, there should be an operati®fy in T with the same
name,

2. the number of parameters accepte@®By andOP+ should be the same;

3. with the exception of the first parameter, each the type of each paraméty to
should be the same as the type of the corresponding paraméfg tbhe excep-
tion is because the first parameter to an operation is taken to be a reference to the
object on which the operation is dispatched. Therefore this type will by definition
be distinct in different object types.

Two concepts which are useful in discussing subtyping are direct instance, and im-
mediate subtype:

e Each object in PREMO is a direct instance of exactly one type, which is called the
object’s immediate type. 10 is a direct instance of, this means thaD is an
instance ofT, but not an instance of any subtypeTofintuitively, an object is a
direct instance of the object type used to create the object.

« An object typeT is an immediate subtype of object tyBeif, informally, T is
‘immediately beneathS in the object type hierarchy. More preciséiymust be a
subtype ofS and there must be no other object typsuch that) is a subtype o,
andT is a subtype of).

An object type can have any number of subtypes, and can also have any number of
supertypes, that is, it can be a subtype of multiple object types. An object type, plus the
collection of its supertypes, plus their supertypes, etc., forms a directed graph called the
type graph of the object type. New subtypes are created by subtyping from some exist-
ing PREMO object type. In particular, all PREMO objects are subtypes (directly or in-
directly) of the type PREMOODbject, which defines the minimal functionality of each
object in a PREMO system. This includes:

« operations to enquire an object’s type and type graph;
¢ an initialize operation that is performed on an instance when it is first created; and

42

SateMachine Clock
transition tick
whichState time
reset reset
I |

Timer

transition

whichState

reset

tick

time

Figure 3-1 — Name collision in multiple inheritance

e aninitializeOnCopy operation to be performed on an instance if it is created by
copying an existing instance.

Some object types in PREMO have been introduced, not because they define objects
that are useful in themselves, but because they describe some significant functionality.
Such an object type is called alwstract type. The functionality described in an abstract
type might be realised in a number of subtypes. By subtyping from the abstract type,
these object types then clearly indicate that they are providing particular services. Ab-
stract types are non-instantiable, i.e. it is not possible to have an object which has an
abstract type as its immediate type. Instead, any behaviour of an abstract type must be
accessed through instances of some subtype.

3.5 Inheritance

Where subtyping is eelationship between object types, inheritance reethanism for
re-using the definitions of one object type in the description of another. Informally, if
object typeT inherits fromS, T acquires all of the state components and operations of
S it may also introduce state and operations of its own. If a PREMO objecT iyppe
herits from an object typ8 T is defined to be a subtype &f

Multiple inheritance, where an object type can inherit from more than one other ob-
ject type, is supported in the PREMO object model. While it is useful to be able to com-
bine features from various object types, in practice multiple inheritance introduces the
potential for conflict between names (of states or operations) inherited from different
sources. For example, Figure 3-1 showisnaer object type being defined by multiple
inheritance from object types representin@tateMachine, and aClock. Both the
SateMachine andClock introduce an operation callegset. The problem is that the
Timer object type inherits two conflicting implementationsesét.

Programming languages have adopted various approaches to dealing with this prob-
lem. C++ for example a number of rules that attempt to resolve potential ambiguities.
Java, in contrast, does not allow multiple inheritance of implementations, but does al-

43

low aclass to implement multiple interfaces. Because an interface is only an operation
signature, there is no scope for ambiguity. Multiple inheritance was felt to be a useful
technique for deriving new object typesin PREMO, and has been used in a number of
places in the standard. However, it was felt that the definition of rules to resolve any
ambiguity would impose an unnecessary implementation bias in the standard. Instead,
features (state variabl es, attributes and operations) of an inherited object type can bere-
named in order to avoid clashing with similarly named features from other object types
that are also inherited. Inherited features can a so be redefined; for example, the Timer
object typein Figure 3-1 might define a new reset method that overrides both inherited
versions. If aname clash does occur, theresults are not defined by the PREM O standard.

3.6 Protected Operations

Certain operations available on a PREMO object are not intended for use by clients.
Two examples of thesearetheinitialize andinitial i zeOnCopy operations de-
fined in PREMOODbject and are thus availablein all objects. These are intended for use
by specialised facilities described in section 3.10, not by arbitrary clients. Accessto op-
erations can be limited by the declaring the operation as protected. A protected opera-
tion can only be invoked by an instance that contains the operation. The behaviour of a
protected operation can be modified within subtypes, for example by overriding, but an
operation declared as protected cannot lose that status in a subtype. Attributes can also
be declared as protected, meaning that the operations for reading and/or writing the cor-
responding state component are marked as protected.

3.7 Operation Selection, and Casting

Operation invocation in object oriented systems is complicated by the presence of the
subtyping relationship. When an operation is invoked, its name is given, along with
(non-object) values for each input parameter. The type expected for each result param-
eter is also known. On the basis of thisinformation, the PREM O environment must se-
lect which of a number of possibly matching operations is to be executed. It does this
by examining theimmediate type of the controlling parameter (the first input argument,
which is always present). The following conditions must be met by any operation that
is a candidate for execution in response to the request:

1. Theimmediate type of the object must define an operation with the same name and
number of input and output parameters as appear in the invocation. Suppose that the
signature of this operationis

op P TP To s Pn:Th = 1S 12:S i It S
two further conditions must then be met.
2. For each input parameter p,

— if T, is ref T, for some object typ&, then the corresponding actual parameter
value must be a reference to an object of flype an subtype of T.

Clock

declared type -
counter : ref Clock P | tick
time
reset

-

Timer

immediate type

transition
reset(counter); whichState
reset

tick

time

Figure 3-2 — Operation Selection

— if Tj is not a reference type, then the corresponding actual parameter must be a
legitimate value of typ@;.

3. For each output parameter

— if §isref T, for some object typ&, then the destination for the corresponding
result must be of typesf U, whereU is eitherT itself, or some supertype of T.

— if §is not a reference type, then the destination for the corresponding result
must be of typ&.

Points 2 and 3 can be summarised by saying that PREMO assumes a contra-variant
rule for operation parameters.

If it happens that more than one operation in the immediate type of the controlling
parameter meets requirements 1-3. If the signatures of the operations are the same, the
PREMO standard requires that an exception be raised (see section 3.9). If however the
operations have different signatures which are nether the less compatible with the pa-
rameters given by operation invocation, the environment of PREMO may define a rule
or mechanism for choosing one of the candidate operations to be executed.

The importance of selecting an operation based on the immediate type of the control-
ling parameter is shown in Figure 3-2, using the object types from Figure 3-1. Here, an
object referencegounter, declared as typRef Clock has been assignedianer object.

This is quite legitimate, sinceTamer is aClock. However, if theeset operation is now
invoked oncounter, the operation that is executed should be the versimsadfdefined
by theTimer object type, not that defined by tBkock object type. And indeed this is
what will happen, since the immediate typeaidnter is Timer, rather tharClock.

A PREMO environment is required to provide a finer level of control over operation
selection via @ast facility. If the program containing the counter reference shown in
Figure 3-2 needs to access tlkset behaviour defined in th€lock object type, it can
use the facility to generate a new object reference whiclCleek as its immediate
type. The required behaviour can be then be accessed by inveddhgsing this new
reference as the controlling parameter. An object reference can only be cast to a super-

45

type of itsimmediate type, i.e. an object type that appears in the type graph of the im-
mediate type. Thisis supported by facilities defined in Part 2 of PREMO that allow all
objects to enquire their type graph.

3.8 Operation Request Modes

In ssimple models of program execution, operations are usualy carried out as synchro-
nous processes, with the caller suspending until the operation has been completed and
theresult (if any) isreturned. Thismodel of course breaks down in the presence of con-
current processes, and is untenable in a distributed system where the overhead of locat-
ing and communicating with a remote object can be non-trivial compared with actual
execution times. Distribution has been afundamental design goal in PREMO, and con-
sequently the PREMO object model must address the problem of how operation invo-
cation takes place. In PREMO, each operation on an object is defined to operate in one
of three possible request modes. These modes are called synchronous, asynchronous,
and sampled. The mode is an immutable property of an operation, specified when the
operation is defined. A subtype can override the implementation of an operation, but
cannot change the mode of the operation.

* Asynchronous operation request causes the caller of the request to be suspended
until the request has been serviced and a result returned. This is the usual model
found in and supported by default in most object oriented programming languages.

* The caller of arasynchronous request can continue its own thread of control as
soon as the call is made; at some point the requested operation will be invoked. By
the time the operation has been completed, the caller may be carrying out some dif-
ferent task, and it is not therefore possible to return a result. Communication
between asynchronous processes is a well known engineering problem, involving
techniques such as shared variables with mutual exclusive access.

« A sampled request is similar to an asynchronous request, except that any pending
request for a given operation (i.e. a call that has not been serviced) is over-written
by any new request. Conceptually, each operation has a 1-place buffer for storing
pending requests. Sampled mode has been supported in PREMO for tasks where the
rate at which an object can be informed of, and service, requests may be slower than
the changes that are causing clients to make requests. This may happen for example
where a server graphical objects in a distributed VR environment is being asked for
detailed object geometry by clients managing the interaction of remote participants.

Some care is needed in dealing with the suspension that results from invoking a syn-
chronous operation. When suspended, an object can still receive requests from other ob-
jects, which are managed in accordance with the behaviour described above. For
example, a synchronous request on a suspended object will be held as pending, with the
caller itself suspended, until the callee’s own invocation is completed and it is able to
service the request. While suspended however, an object can continue with its own in-
ternal thread of processing; it just cannot access information related to its own recep-

46

tors, for exampleto service arequest. When an object invokes an operation onitself, the
operation receptor mechanism is by-passed; the implementation of the operation isin-
voked immediately. If this were not done, such an invocation would deadlock.

Distribution, and the activity of objects, both mean that an object may receive oper-
ation requests concurrently. At any time, an object may have a number of requests out-
standing on any number of its operation receptors. In this case, the object chooses one
of these requests non-deterministically and servicesit, then selects another request. An
object also has the ability to limit the range of requests from which it will select one.
This facility is for example provided in the Ada programming language through the
sel ect statement.

3.9 Exceptions

An exception is a situation that arises during the execution of a PREMO operation
which makes it impossible or inappropriate to continue the execution of the operation.
For example, an object may be in a state for which the operation is inappropriate, or a
parameter value may beillegal. If a PREMO operation detects that an exception condi-
tion has been broken, execution of the operation should be abandoned, and an exception
should be raised. The state of the object is left unchanged (note that all exceptions de-
fined in PREMO relate to conditions that can be checked without modifying the state
of any object involved).

How an exception is raised, and communicated back to the object that invoked the
operation, is not defined in PREMO. Different programming languages support more
or less explicit constructs for exception management, and, for PREMO, exceptions are
part of alarger issue called the environment binding which is discussed in section 3.11.
PREMO however does mandate are the following rules.

« Different error conditions result in different exceptions, i.e. it is possible to deter-
mine the nature of the error that caused the exception from the exception itself.
Exceptions are defined in the PREMO standard as objects that, in addition to their
identity, can convey additional information about the cause of the exception.

» Facilities must be available for the caller of an operation to detect when an excep-
tion has occurred, and to unpack the information provided by exception objects.

One kind of operation is treated differently. Operations that initialise an object, de-
scribed in the next section, do not themselves raise an exception, instead, the services
of the PREMO environment responsible for object creation should raise the exception.
If an exception occurs during object initialisation, Mél_L Object reference is returned
as the result of the creation operation.

47

3.10 The Object and Object Reference Lifecycle

PREMO objects are created, manipulated and destroyed by facilities that form part of
what is called the environment binding. This binding will be discussed in general terms
in the next section; here, we describe the changes can take place in the evolution of an
object and object reference.

1. Creation. An object is created using the cr eat e facility from the PREM O environ-
ment. This facility is given the name of an object type of which an instance is
required. It is required to produce a suitable instance, and to invoke the protected
initialize operation ontheinstance. Any parameters for initialisation are passed
via the create facility, which returns either an object reference, or the NULLObject
reference if an exception occurred during initiaization. In the former case, the
immediate type of the reference will be the object type specified as an argument to
the create facility.

2. Copying. An object can be copied using acopy facility, which is given areference
to the object to be copied. Like the cr eat e facility, copy returns a reference to a
new object, satisfying the following requirements.

— The reference returned bgpy has the same immediate type as its argument.

— A protected operation, calleichi ti al i zeOnCopy, is invoked on the new
object by the copy facility. This operation does not accept any arguments (other
than the controlling parameter, which is the new object itself).i hihei al -

i ze operation is not invoked hyopy.

— If the copy isshallow, each component of the state of the new instance is set to
the value of the corresponding component in the original instance. In particular,
this means that a reference to an object in the state of the original instance
becomes a reference to the same object in the state of the new instance.

— If the copy isdeep, all non-object components of the state of the new instance
are set up as copies of the corresponding components in the original instance.
Each object reference in the new instance is then set to be a new reference pro-
duced by recursively invoking the deep copy operation on the corresponding
reference from the original instance.

The choice of shallow versus deep copy is indicated at the point whetehe
facility is utilised.

3. Destruction. A reference to an object can, conceptually, be destroyed using a facil-
ity calleddest r oyRef er ence. The result of using this is that the reference will
have the valudJULLODbject. The object, however, may still exist and be accessible
via other references. The term ‘conceptually’ is used here, because the destruction
of a reference is in many cases little more than the assignment of a (new) value to a
variable representing an object reference. Object instances are destroyed similarly
through thedest r oyQoj ect facility. The effect ofdest r oyCbj ect on any refer-
ence to that object is not defined. It is good practice for the PREMO application to

48

invoke destroyReference systematically, on each (former) reference to a
destroyed object.

3.11 TheEnvironment Binding

Facilities such as active objects and asynchronous operation dispatching impose re-
quirements on an implementation of PREMO. How they are realised depends both on
the programming language to which PREMO is bound, as well as the environment that
the implementation uses. For example:

» a Java implementation may realize object activity through the Java threads mecha-
nism, with access to remote objects provided by the RMI package [39];

» a C++ implementation might support active objects through a separate thread pack-
age (pthreads, for example), while remote object access may be based on an exter-
nal system such as CORBA [71].

In both cases (Java or C++), some facilities, such as operation request modes, may
need to be programmed explicitly.

It is not in general sufficient to produce just a language binding for PREM@&n-An
vironment binding may also be needed, to define the link between certain services re-
quired by a PREMO system, and some higher-level mechanisms implemented on top of
the selected programming language. There is also no fixed border between language
and environment binding. Some programming languages may for example support dis-
tribution as a fundamental concept, and therefore services such as remote method invo-
cation will be built in. Most languages however do not have such services, and instead
remote method invocation will need to be realised through a binding to a separate set of
higher level services, for example the Java RMI package, or a CORBA interface.

It has already been mentioned that PREMO assumes that its environment will pro-
vide a number of fundamental services, including:

» object creation and destruction;

* copying;

» operation invocation;

» generation and detection of exceptions

These facilities might be realised through explicit constructs in the host program-
ming language, or, like remote method invocation, they might need to be supported by
some package or other higher-level facility. To allow an implementor freedom to select
the most appropriate tools, these facilities are viewed not as fundamental components
of PREMO, but as services that a PREMO system requires from its environment. An
implementation of PREMO must therefore include a mapping from these generic facil-
ities onto appropriate implementations.

Chapter 4

General mplementation | ssues

PREMO is an abstract specification, i.e., the SO document describes its functionality
in a programming language and environment independent way. This follows the tradi-
tions set up by various standards, including standards in computer graphics such as
GKS or PHIGS[5]. Whereas this is perfectly appropriate for an official 1SO Standard,
we feel that, for the purposes of this book, it would be better to present PREMO in a
less abstract manner. This means:

« specifying objects in a well-known programming language rather than an abstract
specification formalism used in the ISO document; and

« referring to a real, albeit currently prototypical, implementation of PREMO.

To illustrate the first point, Figure 4-1 shows how an object is specified in the Standard
text (you do not have to understand all the details for now). This specification uses a
formalism inspired by Z[78] and Object—Z[24,25]; it is precise and usable, but it obvi-
ously requires a certain practice to read. By using a well-known language to define our
objects, the reader will have less difficulties to understand the type specifications them-
selves, and can concentrate on the semantics of the object types rather than the formal-
ism!

The prototypical implementation, referred to above, is being developed in parallel
with writing this book. We will therefore refer to “real” objects, rather than just a set of
paper—and—pencil entities; all the type specifications appearing in the book will undergo
the scrutiny of a compiler, thereby ensuring the correctness of all the code examples in
the book? “Prototypical” means that the implementation will only concentrate on the
key elements of a possible product—level implementation, but will ignore certain details
which do not add to understanding the essence of the PREMO model. As an example,
a powerful MPEG coder and decoder is obviously important in a multimedia system;
however, our prototypical implementation does not aim at a very efficient implementa-
tion of the MPEG compression algorithms, it just shows where a powerful coder/decod-
er can be plugged in. Of course, the prototypical implementation can (and hopefully
will) be used as the basis for a production level PREMO implementation, but this goes
beyond the scope of this book.

D All the specification code of the book are also freely available on the web site:ftp://ftp.cwi.nl/pub/premo

50

’: Propertylnquiryaperact
EnhancedPREMOObject

— inquireNativePropertyValue

keyin : Key
nativeValuey,; : seq Value
exceptions : {InvalidKey}

The operation returns the native property valuekégy, This native property value
represents the value or values the project instance can takekey foA native prop-

erty value is available for all properties which are defined as part of the object’s func-
tional specification.

ThenativeValue,; is typically a sequence of values (e.g., if the type of the correspond-
ing property is defined as@rring), or a minimum—maximum range (if the value is a
numerical type). The specification of the property shall define the return type of the re-
sult of operation invocation if this is not the case.

Exceptions raised:

InvalidKey The key is invalid.

\: Propertylnquiry

Figure 4-1 — Object Specification in the ISO PREMO Document

The core of this book describes the object interfaces and the semantic behaviour of
the objects only, to give a thorough presentation of the reference model advocated by
PREMO. However, a separate appendix gives also some more details of the implemen-
tation itself, for those who want to understand what happens “behind the scenes”, and
who may feel challenged to provide a full implementation of PREMO.

The choice of the programming language and the environment used for the imple-
mentation has a consequence on the way objects will be presented throughout this book.
The current chapter concentrates on some of the general issues and constraints which
directed our choices and how these constraints will be visible in the various type spec-
ification in the rest of this book. Of course, the problems we will describe, and the an-
swers we have found to those problems, reflect the chosen environment as well as our
own software engineering abilities, and the reader might perfectly be capable of greatly
improving our design. But that is all right; the goal of this book is to understand the ref-
erence model of PREMO, and an efficient implementation would not necessarily be the
most direct and clear account of PREMO.

51

When engaging into the implementation of any abstract specification, one has to
choose the programming language as well as the programming environment where this
implementation will exist. Thisiswhat we will detail in what follows.

4.1 Implementation Choices

4.1.1 Implementation Language

PREMO is an object—oriented standard. This means that the functionalities of PREMO
are defined in terms of object types and their behaviour. It is therefore quite natural to
choose an object-oriented programming language for the implementation.

However, things are not that simple. Traditional imperative languages, such as For-
tran or C, rely on a common computational model which can be broadly characterized
as a “von Neumann machine”, i.e., they all use concepts such as common variables, pro-
cedures, input and output variables, etc. Although there are of course great differences
among these languages, the underlying model is the same. As a consequence, the map-
ping of standards such as, in the area of computer graphics, GKS or PHIGS (see,
e.g., [5]) is relatively straightforward; these standards are defined as a large set of ab-
stract functions, which have to be mapped against the specific features of a particular
imperative language. There are a lot of details to fill in, but it is straightforward.

In spite of the abundance of object—oriented languages, the situation is far from being
that simple when an object-oriented design is adopted. One has to realize that the term
“object—orientedness” is, though widely used, rather vague, and each author of a partic-
ular object—oriented specification or each language designer have his or her own view
on how objects are defined and how they behave. To be somewhat more precise, the
ject models used in these designs differ. These differences are then reflected in the var-
ious programming languages that claim to be object—oriented (Smalltalk[31],
Eiffel[66], C++[79], Java[36], Python[87], Ada’95[7], to name only a few).

The differences can be very significant when it comes to an implementation. Without
trying to be exhaustive, here are some characteristics which may be different from one
object model to the other (see also [13)]):

« single vs. multiple inheritance (e.g., Java has single inheritance, C++ has multiple);
indeed, is the object model based on inheritance at all, or does it rely on the con-
cepts of prototypes and delegation (see, e.qg., [62]);

e separation, or not, between an interface and an object type (e.g., Java supports the
separation explicitly, Smalltalk, Python, or C++ dolh)ot

« existence of non—object types, such as integers and doubles (e.g., Smalltalk has only
objects, C++ and Java have non-obiject types, t00);

¢ how objects are created, destroyed;

D Although one could argue, in the case of C++, that abstract C++ classes may be considered as interfaces.

52

» are the interfaces of object instances fixed (e.g., is it possible to add new attributes
or methods to an object instance such as, for example, in Python or a delegation
based model);

and the list continues...

As a consequence of this diversity, if a very precise abstract specification is to be de-
fined, this specification must include its own object model description. This has been
the case for such industrial specification as CORBA[71]: OMG has its own specifica-
tion of what objects are in OMG's point of view. And this is the case with PREMO, too;
an important portion of the so—called “fundamental” part of PREMO (see Chapter 3)
has been devoted to the definition of the object model which PREMO relies on. Al-
though this object model is not particularly different from what people usually think of
objects, it had to be precisely defined, and this model did influence our choice for a pro-
gramming language as far as our implementation was concerned.

The language we have finally chosen is Java. Although the object model of Java is
not 100% identical to PREMO’s model, it is probably the closest we can get. Apart from
its large popularity and wide availability, the following features of Java influenced our
choice:

» Java has exceptions as part of the language (exceptions are also used in PREMO);
 threads are integral part of the Java design;

« Java has a large and very useful set of utilities in terms of the various Java pack-
ages;

» good portability across numerous platforms, including both the language and the set
of ‘core’ Java packages.

As a consequence, all object specifications, example code, etc., in this book will be in
Javd)

Java uses the concept of ‘packages’ which offers us a nice way of structuring the im-
plementation, as well as the various interfaces of PREMO. Our implementation is split
into the following packages:

preno. std. part2

preno.std. part3

preno. std. part4

preno.inpl.partl

preno.inpl.part2

preno.inpl.part3

preno.inpl.part4

premo.inpl.utils
The content of these packages is straightforward: ¢he’ ‘packages contain those
classes and interfaces which are the direct counterparts of PREMO specifications, the
‘i npl * packages contain the various implementation specific classes and interfaces.
Thepreno.inpl.utils package separates those implementation classes which are

D we will rely on the familiarity of the reader with Java. Apart from the book on Java by the designers of the
language[36], there are a large numbers of other books available (e.g., [28] or [39], to refer only to those
used by the authors), and the reader may consult these if necessary.

53

used in all parts of PREMO; the preno. i npl . part 1, etc., packages contain the im-
plementation classes which are specific to a PREMO part. Part 1 of PREMO does not
include object type specification, i.e., it does not appear in thislist asa st d package;
however, some of the requirements of the object model lead to the development of spe-
cial facilities, which constitute the pr ero. i npl . part 1 package.

412 Implementation Environment

Having an implementation language is not enough; afull implementation environment

has to be chosen, too. This entails the usual utility and 1/0O facilities, basic data struc-

tures such as hashtables, vectors, etc. Java offers a standard set of packages (the “java
core”) which are available with all Java implementations, and which are perfectly ap-
propriate for our implementation (e.g., thava. | ang, thejava. utils, and the

j ava. i o packages). There are no real problems in this respect.

There is, however, one area where a further choice has to be made, and this is distri-
bution. Indeed, one of the main characteristics of PREMO is that it should function in
a fully distributed environment, i.e., some of the PREMO objects can be accessed and
invoked through a network. This means that, beyond the choice of Java, we also have
to choose which kind of tool we would use to manage distribution. It also turns out that
his choice has its (albeit minor) consequences on the way the various specifications in
the book are defined and presented.

At the time of writing this book, there are, broadly speaking, three alternatives one
could choose from to control the distributed access of Java objects (see, e.g., [70] or
[86] for further details):

4. Microsoft's DCOM (Distributed Component Object Model) used with Java (i.e.,
Visual J++);

5. Some form of an OMG CORBA implementation with a Java interface (ILU,
Netscape’s ONE or Caffeine, OrbixWeb, etc.); or

6. Sun’s (i.e., Javasoft's) own RMI (Remote Method Invocation) facilities, bundled
into Sun’s JDK (Java Development Kit), starting from version 1.1.

We ruled out the usage of DCOM for portability reasons; we did not want to have an
implementation dependent on only one environment. The choice between RMI and a
CORBA implementation is less obvious. CORBA offers a greater compatibility with
other object environments and programming languages, and a richer set of functionality
with respect to object interface registry (although, by the time the reader reads these
lines, Sun may come up with additional registry services for RMI which are compatible
with CORBA). On the other hand, using CORBA means having to access and use yet
another large piece of software besides the Java environment itself, which may prove to
be a significant burden for portability (not all CORBA implementations are available
on all platforms where Java runs). We have therefore opted for RMI. Provided we use
Java JDK 1.1 or higher, this provides us with the level of portability Java itself has; it
also has the functionality necessary for our prototypical implementation. It must be em-
phasized, though, that a fully marketable implementation of PREMO might well prefer
to choose CORBA rather than RMI; development in this area is so rapid that our choices

54

may have been different had they occurred at alater time. Actually, the design philoso-
phies behind CORBA and RMI are very close to one another, so most of the specifica-
tion and code in this book would be valid for a CORBA environment, too. Both
environments rely on the concepts of client and server stubs, and the mgjor differences
between the two approaches can be localized in the way these stubs (i.e., remote ob-
jects) are created, and the references to the server objects are accessed. Aswe will see
in Chapter 5, the abstract PREM O specification localizes these functionalities into one
or two objects anyway, so the differences between the RMI and corresponding CORBA
implementation are minor and easily manageable.

Thereisoneimportant difference, however. In the case of CORBA, all objectsin the
CORBA world are, per definition, remotely accessible, hence only their references
should and can be passed as method arguments. Java’s RMI, on the other hand, allows
the user to differentiate between objects which are remotely accessible (i.e., they ‘reg-
ister’ as remote server, have a server and client stubs) and objects which cannot be ac-
cessed through the RMI mechanism but still exist in their own right. When transferring
references to objects in the second category, RMI passes the objects by value[91].

The possibility of passing objects by value is important from PREMO's point of
view. It so happens that the PREMO specification also differentiates between objects
which have their services available through the network, e.g., full-blown multimedia
players, and objects which are short-lived, simple, and are not supposed to provide
complicated services in a distributed environment, e.g., a geometric point (see
section 5.3.4). The distinction made by the RMI designers between ‘remote’ and ‘local’
objects perfectly suits our neebls.

4.2 PREMO Specificationsin Java and Java RMI

421 Constraintson the Specification Details

Using RMI for the specification of potentially remote objects creates some constraints
as to how the abstract PREMO object type specifications should be described in Java
terms. First of all, in Java’s RMI, stubs are createdrferfaces and not for classes. In

other words, one has to define a remote interface, which is used i thetub gen-

erator program to create the client stub and the implementation skeleton. The real serv-
ice itself is supposed to be defined through a separate remote server class which
implements the remote interface. This means, in practice, that the public interface of all
PREMO objects which are remotely accessible (a more precise definition will be given
in Chapter 5) will be defined as Jawterfaces and not as Jawdasses. These interfaces

will be placed into thest d' packages. The implementation has to provide classes
which implement these interfaces; these will form thepl ' packages.

D Pass ng objects by value is not yet defined in CORBA, but OMG has issued a Request for Proposal in
1996, and a specification may become available by the time this book goes to press. So, on long term, this
difference may disappear, too.

55

Another conseguence of using RMI is the requirement that all methods in a remote
interface are supposed to throw thej ava. r mi . Renot eExcept i on. Thefact of throw-
ing those exception also means that all method invocations should be surrounded by
try and cat ch clausesY) We have decided not to include the t hr ow clause for Re-
nmot eExcept i on in thetext describing the interface and the semantics of PREMO ob-
jects, nor do we enclose these method invocationsin at r y—cat ch pair in the example
code fragments in the text. Our concern was clarity and readability rather than minute
details. The detailed Java specification of all PREMO objects appear separately in
Chapter 8; those specification are fully precise and include the retevesw clauses,
too.
Let's look at a simple example. PREMO defines an object calledk, and an ob-
ject calledSysd ock; the latter is a subtype of tkeock object. TheSsysd ock object
is defined as a Java interface as follows:

package preno. std. part?2;
public interface SysC ock extends O ock {

/**
* Returns the nunber of tick since the start of the
* PREMO era, i.e., 00:00am 1st of January 1970, UTC.
*/
long inquireTick() throws java.rm .RenpteException;
}
The interface extends the interfadeock which, indirectly, extends a higher level ob-
ject in the PREMO hierarchy which, on its turn, extejnalga. r mi . Renot e. In other
words, the interface is (indirectly) defined to be potentially remote.
The following implementation class corresponds to=C ock interface:
package preno.inpl.part?2;
i mport preno.std. part?2;

public class Sysd ock_Inpl extends O ock_Inpl inplements Sysd ock {
public long inquireTick() throws java.rn .RenoteException

{

}

}

We omit the implementation details here, as well as the details on the constructors, ini-
tialization, etc.

Note that the clasSysCl ock_I npl is a subtype (“extends”, in Java—speak) of the
classC ock_I npl . This reflects the inheritance relationship defined in PREMO. This
scheme cannot be followed in all cases: Java does not allow for multiple inheritance of
classes, only of interfaces, whereas PREMO does allow for multiple inheritance. For-
tunately, the usage of multiple inheritance is rather limited in PREMO, so the scheme
used forsysd ock can be considered as fairly typical.

Finally, a fully functional Java code fragment would use the object as follows:

D Note that if a CORBA implementation were used, the constraints would not be very different. For exam-

ple, if the objects are defined in Netscape’s Caffeine, the only difference is that the exception to be thrown is
called CORBA. Syst enExcept i on instead of ava. r m . Renpt eExcept i on. Just as in the case of

RMI, objects should be defined in terms of interfaces for Caffeine, too.

56

SysC ock sysC ock;
sysC ock = (Sysd ock) Get TheObj ect Ref er enceFr onSomnher e() ;
int tinme;

try {

tinme = sysd ock.inquireTick();
} catch(java.rm . RenoteException e) {
Systemout.println(e.toString());

}
although, aswe said, we will not alwaysincludethet ry and cat ch clausesinto al our
examples. The Get TheObj ect Ref er enceFr onSomwher e is obviousy a dummy
method call for now; what should be noted, though, is that the method could return ei-
ther areferenceto alocal object or areferenceto alocal stub; the coderemainsidentical.

Average users of PREMO may refer exclusively to the interfaces defined én the *
packages. By the very nature of Java interfaces, these describe the publicly accessible
methods. However, PREMO also defines some protected methods, i.e., which are of im-
portance for subclasses only. These are of interest for programmers who wish to extend
existing objects. These protected methods are included inithpl" classes; indeed,
extending existing PREMO object types means in practice that these classes should be
extended in the Java sense.

As said before, this “dual” structure, i.e., the separation of a separate interface and
its implementation, is valid for those PREMO objects which may be used as server ob-
jects through RMI. PREMO also includes some simpler objects, which are implement-
ed in a more “straightforward” manner; more about it in the coming chapters. Also, the
choice of Java and Java’s RMI have some other, minor consequences on the way spe-
cific abstract PREMO specifications are mapped onto an implementation. These conse-
guences may be better understood if the specific PREMO concepts are also known, so
we will have to come back to those in later chapters.

4.2.2 Registering Server Objects

An issue which has not been addressed up to now is how an object instance, once cre-
ated, becomes a server object, i.e., how would its methods become available for remote
method invocation.

The usual approach when using RMI is that the implementation class would extend
from a pva. rni . Renot eSer ver class; in the current release of JDK this can be done
by extending it fromj ava. r mi . Uni cast Renot eChj ect . By ensuring that the con-
structor of the superclass is invoked at instantiation time, such an object instance would
then automatically be registered as a server object. We say “usual”, because most of the
Java textbooks, when describing RMI, describe this approach only.

This scheme, however, would lead to problems with the PREMO implementation
classes. Indeed, Java does not allow for multiple inheritance; i.e., if a server class would
already have to extefcva. r mi . Uni cast Renot eQbj ect in order to become a serv-
er object, the code of, for exampsysC ock_I npl above would become invalid. Fur-
thermore, this would mean thall instances of the given object type would become
server objects which, though semantically acceptable, may have some negative conse-
guences on efficiency.

57

Fortunately, the designers of RMI anticipated this problem. An object can also be
registered as a server object by issuing the call:
Uni cast Renpt ebj ect . export Obj ect (| nst anceRef);
call. This can be done either by the object instance itself, or by any other object. Thisis
the approach we have taken in our PREMO implementation; the object is registered
(“exported”) by the so—called factory objects; more about this in section 5.7.3 on
page 121. That is also why there is no trace of registration in the example code above.

58

Chapter 5

The Foundation Component

5.1 Introduction

The foundation component of PREMO provides a number of object types and non—ob-
ject types which are used in all the other PREMO components. These are rarely used in
isolation, but rather as constituents of more complex PREMO objects. This component
also defines the top—level of the full PREMO type hierarchy, thereby ensuring a set of
common facilities which all PREMO objects have.

The reader will realize that the terms “multimedia”, or “media”, will be very rarely
used when describing the objects in the foundation component (except for the synchro-
nizable objects). This may sound strange at first glance, but this is a necessity. The goal
of the foundation component is to provide those fundamental building blocks which are
necessary to do real multimedia processing and not to define the real processing units
themselves. These are left for further components.

5.2 PREMO Non-object Types

Similarly to a number of object—oriented programming languages and programming en-
vironments, the PREMO specification includes so—called non—object types. The reason
is primarily efficiency, i.e., to have the ability to define integers, floats, etc., without
paying for the overhead of object creation, object references, and so forth. (Actually,
with a few exceptions, most object—oriented languages that are feasible PREMO targets
would support this.)

PREMO does not really define what non—object types are, it rather tells us what they
are not. Non—objects represent final entities, i.e., there is no notion of subtyping for
non—objects. Non—objects are not part of the full PREMO object hierarchy (see
section 5.3 below). Non—objects cannot offer services over the network, nor can they be
active clients of those services. On the other hand, non—objects also have types, just as
objects do. Also, non—objects, aody non—objects, can appear as input or return argu-
ments for object methods. This last point seems to be a severe restriction at first glance,
but it is not. Indeed, PREMO defines object references as being non—objects, too. What
this restriction means is that only objeeferences can appear as input or return argu-
ments, and not the objects themselves.

PREMO non-obijects fall into three categories. These are as follows.

60

1. Basic data types. This is defined as a small set of non—object data types describing
fundamental entities such as integers or floats. All the basic data types are defined
in Part 2 of PREMO.

2. Constructed data types. It is possible to construct new non—object types using exist-
ing ones. A characteristic example is the construction of arrays. All Parts of
PREMO contain a small number of such constructed data types, related to the
proper specification of “real” PREMO objects.

3. Exceptions. These are, strictly speaking, not defined as non-object types in the
PREMO documents, but they logically belong to this category. Error management
in PREMO is based upon the ability to throw exceptions from within a method,
exceptions which can be then caught by the caller. Exceptions carry information
which can be extracted by whoever catches them.

It may be a source of confusion that some of these entities, referred to as “non—objects”
in PREMO, will be represented by Java classes, i.e., objects. This is the consequence of
the nature of Java, which does not have structures, enumerations, etc., and encourages
the programmers to use classes even for those relatively simple Entifiewever,

these “non-object classes” have some characteristics in common, which differentiate
them from the Java classes representing “real” PREMO objects. Namely:

e They are alfi nal classes, i.e., they cannot be extended by other classes.
» They are not part of the PREMO object hierarchy.
» They are never defined as possible server objects for RMI.

* They all implement thg ava.io. Serializabl e interface, i.e., they can be
passed as arguments through RMI calls.

» They are not active entities (i.e., do not run in separate threads), whereas PREMO
objects make extensive use of threads.

When necessary, we will refer to these classes as “non-object classes”.
The subsequent sections will give some details on each of the non—object categories.

521 Basic Data Types

Most of the PREMO basic data types are fairly straightforward, and they have their di-
rect counterpart in Java. These are:

PREMO non-object types Java types
Integer (Z) i nt
Red (R) doubl e
Object type java.l ang. d ass
Time | ong

D More fundamentally, there will rarely be a direct mapping between the PREMO view of objects and non—
objects, and that of any target programming language.

61

PREMO non-object types Java types
Object references implicitly part of the language, no
Separate type is necessary
Boolean bool ean
String String

The type names, as appearing in the PREM O document, are not reused literally, and this
may be a source of confusion for whoever wants to consult the original PREM O docu-
ment while reading thisbook. The main reason istherelative inflexibility of Javain this
respect. Indeed, whereasin C or C++ it would be possible to say, e.g.,

typedef |ong Tine;

which just gives anew nameto an existing type, thisfacility does not exist in Java. The

only other possibility would have been to wrap all PREMO non-object types into sep-
arate Java classes for the purpose of renaming, which would have been an unnecessary
complication. In this book, we refer to the Java names only.

The “Time” non—object type is used to describe the ticks of a clock, and plays an im-
portant role in multimedia synchronization. PREMO gives the implementors the choice
of choosing either a real number or a large integer number to represent time. We have
chosen the latter, based on the fact that Java’s view on elapsed time (see,®ig-, the
rent Ti mreM | | i s method of the ava. | ang. Syst emobject) uses long integers, too.

The PREMO standard makes extensive use of a non—object data type/alaked
which acts as a union type encompassing all of the other PREMO non-object data types,
including object references. Java does not provide a union constructor over its basic
data types. Instead, our PREMO Java binding uses the Javaigjlass in place of
value. PREMO non-obiject values (which are basic values in Java) are then represented
by instances of the so—called Java “Envelope” classes when they appear as values of this
union type. For example, a value of type , whenused in the union type, is represented
as an object of typeava. | ang. | nt eger.

5.2.2 Constructed Data Types

Creating arrays is probably the most important non—object data mechanism used in
PREMO. These are represented by Java arrays. Internally, when variable length arrays
are necessarjava. util . Vect or is also used, but this does not appear on the level

of interface specifications.

Another mechanism is the creation of simple classes, called structures, for collecting
attributes (i.e., public variables) of other non—object types. The only method imple-
mented in a structure is thequals method (automatically inherited from
j ava. | ang. Obj ect) to ensure a proper use (comparing the constituent attributes rath-
er than the object references), as well as obvious constructors to fill the attribute values.
They may also appear as nested top—level classes as in the following example:

62

public class Structure extends Sinpl ePREMOChj ect {
public static class SoneData {
public String key;
public Ooject val ue;

}
public SoneData[] soneData;

}

(the exampleisfictitious). Using the nested SoneDat a class in the example makes the
specification cleaner and simpler. The dataitself can be accessed through a statement
such as:

obj . soneDat a[0] . key

where bbj ' is an object of type&t r uct ur e.

A further construction mechanism, widely used in the PREMO specification, is enu-
meratior?. Formally, this means defining a type whose value is restricted to a finite
(usually small) set of symbols. For example, PREMO defines the enumeration

ActionType::= Enter O Leave

to denote a type which may have only two values, symbolically denoteghtay’‘and

“Leave’, respectively. The usual counterpart for this data type in programming languag-
es is what is denoted asumin C or C++. Because this construction does not exist in
Java, a separate mechanism had to be constructed to implement PREMO enumerations
with Java classes. The public interface of the common superclass, which is defined in
preno.inpl.utils,is as follows:

package preno.inpl.utils;
publ i c abstract class PREMOEnuneration i npl enents java.io. Serializable
{

protected PREMOEnuneration();

publ i ¢ bool ean equal s(Cbj ect obj);

}

Note that the constructor of the object is protected, i.e., clients, in general, cannot con-
struct instances of this class directly. Using this superclass, a PREMO enumeration is
defined as:

package preno.std. part2;
public final class ActionType
extends preno.inpl.utils. PREMOEnuneration {
public static ActionType Enter;
public static ActionType Leave;
private ActionType(int i) { super(i); }
static {
Enter = new ActionType(O0);
Leave = new ActionType(1);

D Not to be confused with thej ava. uti |l . Enuner ati on interface!

63

Thest at i ¢ section of the class creates a fixed humber of enumeration instances. The
names of these instances constitute the enumeration tags. The separate integer valueis
used to differentiate among the various enumeration instances, and is used internally in
the equal s operation (inherited from PREMCEnuner at i on). Because the constructor
is private, clients do not have the ability to define new instances, which corresponds to
the fact that enumerations may only have a finite, pre—defined set of values. In the rest
of the book, when defining a PREMO enumeration, only the constants will be listed,
and we will omit the standard constructor andsthat i ¢ section.

Part 2 of PREMO defines a number of constructed non—object types (as all other
PREMO Parts do). To make the text more readable, these specifications will be present-
ed together with the objects which use them.

5.2.3 Exceptions

Exceptions in PREMO are simple extensions of the standard Java exceptions. A com-
mon superclass for all PREMO exceptions is defined as follows:
package preno.inpl.utils;
public abstract class PREMOException
extends java.l ang. Runti meException inplenents java.io.Serializable

{ public Qoject[] Val;
publ i ¢ PREMOException();
publ i ¢ PREMOException(String s);
}
which is used by all exceptions defined by PREMO. This class also has an extra at-
tributeVval . This is used by some PREMO objects to add additional information to the
exception they throw. Another noteworthy aspect of this class is that it extends
j ava. |l ang. Runt i meExcepti on, rather than ava. | ang. Excepti on. This means
that methods need not declare these exception int tivedms clause (although we will
always do it to make the specifications more complete) and, more importantly, the in-
vocation of operations raising these exceptions are not obliged to be enclosgd in a
catch pair.
The PREMO exceptions themselves are simple subtypes of PREMOException , de-
fined in the same way as the exceptions in the standard Java packages. Part 2 defines
the following exceptions:

Cannot Meet Capabi lities NoKey

Incorrectlnit Not | nTypeGr aph

Inval i dCapabilities Oper at i onNot Def i ned
I nval i dKey ReadOnl yProperty

I nval i dRef erence Repeat edEvent

I nval i dType WongSt at e

I nval i dval ue W ongVal ue

The semantics assigned to throwing these exceptions are explained in conjunction with
the object methods throwing them.

64
5.3 Top Layer of the PREMO Object Hierarchy

531 ThePREMOObj ect Interface

All abjectsin the PREM O object hierarchy implement the PREMOOhj ect interface. In
other words, this type represents the “root” of the entire PREMO hierarchy.

PREMOObj ect defines three methods which, by virtue of inheritance and the imple-
mentation of interfaces, are available for all PREMO objects. Here is the complete spec-
ification of PREMOOhj ect :

package preno. std. part2;

import java.l ang. d ass;
public interface PREMOOhject extends java.rnm .Renpte {

Cl ass i nqui reType();
Class[] inquireTypeG aph();
Class[] inquirel nmedi at eSupertypes();

}

The methods return the class of the object, the sequence of all supertypes, and the se-
guence of immediate supertypes, respectively. These methods are very similar to anal-
ogous to methods describing the class hierarchy of Java classes, and available in the
standard ava. | ang. O ass object. The ones defined RREMOObj ect are compli-
mentary in the sense that all returned information refers to speeidied in the PRE-

MO document only, i.e., the various implementation dependent classes and interfaces
are filtered out. Of course, if knowledge of the complete inheritance and implementa-
tion hierarchy is necessary for the client, tla@a. | ang. d ass methods are always
available.

Although not appearing in tHeRREMOObj ect interface (a Java interface specifica-
tion cannot contain protected methods), PREMO also defines three protected operations
which are to be implemented by the classes implementireRIENO D ect interface.

These are:

protected void initialize(Ooject initValue) throws Incorrectlnit;

protected void initializeOnCopy()

protected void destruct()

These methods are invoked when the object is created, cloned, or destroyed, respective-
ly. In terms of Java, they are essentially constructors (with a fixed signature), clone op-
eration, and finalizers, albeit defined in a language independent way.

The complete PREMO hierarchy branches off flelREMOObj ect into three large
categories of PREMO objects: so—called simple PREMO objects, callbacks, and en-
hanced PREMO objects (see Figure 5-1). Simple PREMO objects are essentially data
structures which, in contrast to non—object data types, can be folded into a PREMO sub-
typing hierarchy. Callbacks consist of two interfaces only, and represents therefore a
fairly small category. The real multimedia service objects form the category of the en-
hanced PREMO objects and, not surprisingly, the bulk of the PREMO document is de-
voted to the specification of various enhanced PREMO objects. In what follows, the
type structure of all three categories will be presented.

65

PREMOObject

callbacks

simple PREMO objects enhanced PREMO objects

Figure 5-1 — Main categories of PREMO objects

532 Simple PREMO Objects

Simple PREMO objects are, conceptually, data structures needed for the proper speci-
fication of various multimedia service objects. They are very similar to constructed
non—object data type classes (see section 5.2.2) in the sense that the intention is a com-
pact representation of entities such as a geometric point, an event, or a constraint spec-
ification. The similarity is also reinforced by the fact that simple PREMO objects do not
define multimediaservices, e.g., over a network. The major difference between con-
structed data types and simple PREMO objects is that the latter are part of the full PRE-
MO hierarchy, and they can also be subject to various subtyping patterns. For example,
it is possible to build a complete hierarchy of various events using subtyping (this is
done very frequently in various interactive systei"hs).

Formally, simple PREMO objects are defined to be subclasses of the following class:

package preno. std. part?2;

public abstract class Sinpl ePREMOObj ect

i mpl enents PREMOCbj ect, java.io.Serializable {

}
The class is abstract, i.e., non-instantiable, and it is a direct subtype, in the PREMO
sense, of PREMOObj ect. Note that the class also implements the standard
java.io. Serializabl e interface, i.e., instances of this class can appear, for exam-
ple, as arguments of remote object calls.

D1t must be noted that the strong similarity between simple PREM O objects and constructed datatypesisan
artefact of the nature of Java, and not of the PREMO specification proper. Other languages may offer much
richer data structuring possibilities, such as enumerations and data structures. In this case, most of the
PREMO non-object data types could be described independently of the object/class hierarchy.

66

The various simple PREMO abjects are al subclasses from Si npl ePREMOObj ect ,
either directly or indirectly. To reinforce the “data” nature of these classes, they are usu-
ally defined in terms of public variables and not methods. These variables are also re-
ferred to as “structure tags”, and simple PREMO objects are also referred to as
“structures”?

Part 2 of PREMO defines only four simple PREMO objects. Other parts of PREMO,
especially Part 4, make a much more elaborate use of them. Two of these simple ob-
jects,Act i onEl ement andSyncEl enent , are closely related to the semantics of other
objects, such as tl@ant r ol | er inthe case oict i onEl ement , and the synchroniza-
tion objects in the case 8fncEl ement . They will be defined in later sections. The
two other simple PREMO objects, defined in Part 2, are of a very broad use in the stand-
ard, so it is better to define them in general. They are also very good examples of how
the various constructions described so far converge in concrete type specifications.

53.2.1 Event Structures

Event handling and event management play a central role in all dynamic systems, in-
cluding PREMO. Events represent basic building blocks to convey information through
the system in an asynchronous fashion. Events are used to manage interaction, synchro-
nization patterns, to monitor various activities in other objects, etc.

The complete event handling model in PREMO involves several different objects,
which will be defined later (see section 5.4.1). All these objects make use of the simple
PREMO objectEvent , which carries the necessary information. Bwent structure
has aname, which can be used to identify the event itself, it containevant data
which, at the abstract level, consists of an array of key—value pairs, eveshbsource,
which is a reference to the object which has created (“raised”) the event instance.

Here is the class specification®fent :

package preno. std. part?2;

i mport java.lang.*;

public class Event extends Sinpl ePREMOObject {

public String event Nang;

public static class EventData inplenents java.io.Serializable {
public String key;
public oject val ue;

}
public EventData[] event Dat a;

publ i ¢ EnhancedPREMOObj ect event Sour ce;
}
Note the use of a nested top—level class for the specification of a simple data structure
(see also page 61). The tygehancedPREMOObj ect is the “root” of all enhanced
PREMO objects, see section 5.3.4.

D Of course, an implementation may aso redefine operations such as equal s, inherited from
java. |l ang. Obj ect .

67

5.3.2.2 Constraint Structures

The term “constraint” is used in a restricted sense in PREMO, and does not refer to
some kind of a complex constraint management system. It rather refers to a conceptu-
ally simple, albeit extremely important set of operations over values of different types,
leading to boolean results. Just such as events, these constraints appear at various places
in PREMO, e.g., in controlling the creation of PREMO objects, in managing and inquir-
ing their properties, etc.

A constraint structure contains a key—value pair, which must be compared to some
other key—value pairs, and the description of the comparison operator itself. The latter
is simply an enumeration of operations such as equal, not equal, greater than, includes,
excludes, etc. which are to be applied to the values of the keys.

Formally, theConst r ai nt structure makes use of the following enumeration:

package preno.std. part?2;

public final class ConstraintQp
extends preno.inpl.utils. PREMOEnuneration {

public static ConstraintOp Equal;

public static ConstraintOp Not Equal ;

public static ConstraintOp G eaterThan;
public static Constraint Op G eater ThanO Equal ;
public static ConstraintOp LessThan;

public static ConstraintOp LessThanOr Equal ;
public static ConstraintOp Prefix;

public static ConstraintOp Suffix;

public static ConstraintOp NotPrefix;
public static ConstraintOp Not Suffix;
public static ConstraintOp I|ncludes;

public static ConstraintOp Excludes;

}

(see page 62 for the descriptionRFEMOENnuner at i on). Using this enumeration, the
specification of &onst r ai nt structure is as follows:

package preno. std. part?2;
i mport java.lang.*;
public class Constraint extends SinplePREMOObject {
publ i c ConstraintOp constraint Op;
public static class KeyVal ue inplenments java.io.Serializable {
public String key;
public oject val ue;
}
publ i ¢ KeyVal ue keyVal ue;
}

(Note that arrays can also be representetbpsct in Java, so this structure may also
store a full sequence of values associated with a key.)

68

5.3.3 Callbacks

Management of events dynamically is usually achieved by “registering interest” in
some events. This is done by publishing the reference of the interested party. The object
which raises or forwards the event may then notify the interested party of the occurrence
of the event.

Thecal | back interface is defined to facilitate this mechanism, by defining a single
entry point for any interested party. The interface has the following, very simple defini-
tion:

package preno. std. part?2;

public interface Callback extends PREMOObject {
voi d cal | back(Event cal |l backVal ue);

}
Various enhanced PREMO objects implement this interface, thereby assigning a specif-
ic behaviour to theal | back operation.

Although the interface specification is simple, there is an underlying semantics to the
operationcal | back which must be taken into account when the interface is imple-
mented. Two features should be emphasized:

* If the operation’s semantics is such that the callback value is forwarded to a third
party, or the structure tags are changed, a copy of the event structure should be
made. Indeed, the same event structure can be forwarded (througdi theack
operation) to a number of objects, whose identity and number is not known in
advance. Changing the callback values may lead to uncontrollable situations.

» Callbacks are usually used for interaction and synchronization. In other words, in
time critical situations. It is therefore of a paramount importance that the caller to
thecal | back operationis not suspended for a long time while the operation per-
forms its own activity. Theal | back operation is therefore defined to be asyn-
chronous (see Section 3.8).

Whereas, in simple cases, the semantics ofdhéback operation may be defined to
affect the state of the object directly, it is very often the case that this operation acts only
as an entry point to call other operations on the object. To facilitate this second case,
PREMO also defines an interface which extetald back, calledCal | backByNane.
This extension does not add any new methods, but overrides the (inherited) asynchro-
nouscal | back operation:

package preno. std. part2;

public interface Call backByName extends Callback {
voi d cal | back(Event call backVal ue) throws QOperati onNot Defi ned;

}
The cal | back of Cal | backByNane has the following behaviour: thevent Narme
structure tag of thBvent structure (appearing as the input argumentadi back) is
interpreted to be the name of a local operation which is then internally invoked by the
cal | back operation (an exception is raised if the name does not refer to any valid op-

69

eration). By default, al other structure tags of the Event structure are disregarded by
thecal | back operation. Subtypes of Cal | backByNane may add an additional behav-
iour to the operation which also takes these tags into consideration.

5.34 Enhanced PREMO Objects

Most of the objects defined by PREMO are enhanced PREMO objects. All other cate-

gories of objects, as well as the various hon—object types, are defined and used in order
to make the specification of enhanced PREMO objects concise and precise. Enhanced
PREMO objects have a common supertype within the PREMO hierarchy called, not
surprisingly,EnhancedPREMOObj ect .

5.34.1 Enhanced PREMO Objects as Service Objects

A fundamental restriction of PREMO is thathanced PREMO objects, and only those,
offer services over a distributed PREMO environment. In terms of our implementation
strategy, based on Java RMI, this means that enhanced PREMO objects, and only those,
should be registered as RMI server objects. This means that the “dual” implementation
structure, as described in section 4.2.1, is valid for all enhanced PREMO objects.

Formally, enhanced PREMO objects are those which implement an interface, called
EnhancedPREMOObj ect , defined as follows:

package preno. std. part?2;

i mport java.lang.*;

public interface EnhancedPREMOObj ect

ext ends PREMOOhj ect, java.rm .Renmpte {

}
[Note: we have omitted the various methods define@&riianced PREMOhj ect for
now, see section 5.3.4.2]. Note that the interface also ext¢ras. r i . Renot e,
which is necessary to ensure that the object could serve as an RMI server object.

This interface is implemented by a separate class iprtteo. i npl . part 2 pack-
age:

package preno.inpl.part2;

i mport preno.std.part2.*;

public abstract class EnhancedPREMOObj ect I npl
i mpl enent s EnhancedPREMOObj ect {

}
The various enhanced PREMO objects are implemented by classes extending, either di-
rectly or indirectly, this class (and implementing their corresponding interface, of
course).

5.34.2 Property Management

Properties are used to store values with an object that may be dynamically defined and
are outside of the type system. Properties are pairs of keys (i.e., strings) and arrays of
values which are conceptually stored within an enhanced PREMO object (to use anoth-
er terminology, each enhanced PREMO object has an associated dictionary). Opera-

70

tions are introduced to define, delete, and inquire values from the array associated with
akey. Properties can be used to implement various naming mechanisms, store informa-
tion on the location of the object in a network, create annotations on object instances,
and they also play an essentiad role in negotiation mechanisms within PREMO
(section 5.6). The existence of some properties (i.e., the keys) may be stipulated by the
standard for aspecific object type, but clients can attach new propertiesto objectsat any
time.

Properties may be defined as read only. This means that they cannot be defined
through an operation on the object, nor can they, or their associated val ues, be changed
or deleted. Read only properties are typically set by the object when initialized, and are
used to describe the various capabilities of the object.

Why use properties? The fundamental reason lies, in fact, in the conservative nature
of the PREMO object model. Indeed, in PREM O, operations on atype are defined stat-
ically, when defining (“declaring”) the object. Once the object type has been defined,
and an object instance of that type is created, no new operation can be added to that ob-
ject instance dynamically. On the other hand, it has been advocated elsewhere that more
dynamic object models should be used for graphics or multimedia (see, e.g., [12] or
[42]). Indeed, the use of delegation[62] or, on a more “modest” level, a more dynamic
view of objects such as, for example, the approach adopted in Python[87] (which allows
the addition of operations dynamically), would be more appropriate for graphics and
multimedia systems. These features would play an important role, for example, in con-
straint management, in the adaptability of objects, etc. However, experience has also
shown that implementing such features on top of languages or environments which are
not prepared for them represents a significant burden and leads to a loss of efficiency.
And, unfortunately, none of the widespread object—oriented systems or languages (C++,
OMG specifications, Java, etc.) implement delegation or anything similar. As a conse-
guence, and after some discussion, the adoption of such features was rejected for the
development of PREMO.

Properties aim at offering a replacement for such advanced features on a lower level.
Although properties do not allow new operations to be added to an object instance, the
mechanism can at least be used to simulate adding and manipulating new attributes (es-
sentially, data) to object instances. Obviously, the implementation of properties does not
represent a significant problem. The dynamic nature of properties is quite beneficial to
PREMO. This will become clear in later chapters. One could therefore say that proper-
ties play a somewhat less elegant, but very useful role in PREMO in increasing the dy-
namic nature of object instances.

Basic property management can be carried out with a set of methods defined in the
EnhancedPREMOObj ect interface, thereby available for all enhanced PREMO objects,
and implemented in thenhancedPREMOOhj ect _| npl class. In the remainder of this
section, we will go through these operations in somewhat more details.

5.3.4.2.1 Property Definition

The EnhancedPREMOObj ect interface contains the following operations to create or
to modify properties.

71

voi d defineProperty(String key, Object[] val ue)
t hrows ReadOnl yProperty;
This method adds a new property to the object. If the key identifies a property already
defined for the object, the new value is assigned to the property, replacing the previous
value(s). Otherwise, a new property is created with key and value.

voi d addVal ue(String key, Object value)

t hrows ReadOnl yProperty;
This method adds a value to the properties for the argument key. If the key has not been
used yet, anew property isdefined. Both of these methods may raise an exception if the
key refers to a read—only property.

By default, if a property value is defined for a key which already exists for the object
instance, the old value is silently overridden. However, the client has the ability to add
a reference to @l | back object to a property key to monitor those changes. The call-
back is activated whenever a new value is defined for the key. Adding a callback refer-
ence is done through the method:

voi d set PropertyCal | back(String key,

Cal | back cal | back,
String eventNane)
t hrows NoKey;
The newly created event instance, forwarded to the callback, uses the name given in the
method argument. The event structure contains the key—value pair corresponding to the
new setting.

5.3.4.2.2 Removal of Properties

Two methods are defined to remove properties from an object. The method

voi d undefineProperty(String key)
throws ReadOnl yProperty, NoKey;

removes the property altogether, deleting both the key and all the corresponding values,
whereas the operation

voi d renoveVal ue(String key, Object val ue)
throws ReadOnl yProperty, NoKey, InvalidVal ue;

removes a single value from the property defined for a key. (The exceptiahi d-
Val ue is raised if the value does not appear on the property list.) Both of these opera-
tions raise an exception if a read only property is referred to in their argument.

5.3.4.2.3 Property Inquiry Operations

A single property can be inquired through the
bj ect[] getProperty(String key) throws NoKey;

method. If all the properties are to be inquired, they can also be accessed through the
PropertyPair[] getPairs();

72

method, where PropertyPair is a separately defined non—object data type of the
form:
public final class PropertyPair inplements Serializable {
public String key;
public Object[] val ue;
}
Most of the methods so far could raise an exception if the key was not present, or it re-
ferred to a read—only property. The full set of keys can also be retrieved through the
public static class Keylnfo {
public String key;
publ i c bool ean readOnly;
}

Keyl nfo[] inquireProperties();

method, which may aid the client to form a proper call sequence.
5.3.4.2.4 Property Matching

Property matching is the most powerful operation among the property management
methods of th&nhancedPREMOObj ect interface. It allows for a constraint—based re-
trieval of properties, serving as a basis for various negotiation mechanisms occurring in
multimedia systems.
The interface specification of the method is as follows:
public static class MatchPropertyResults {
public PropertyPair[] satisfied;
public PropertyPair[] unsati sfi ed;

]l’\/at chPropertyResul ts matchProperties(Constraint[] constraintList);

(theConst r ai nt structure is defined in Chapter 5.3.2.2 on page 67ManchPr op-
ertyResul ts is a top—level nested class.) Semantically, what happens is as follows:
The properties defined for the object are matched against the property sequences in
constrai nt Li st. For each key appearing in this constraint list, the values are com-
pared against the value or values stored with an identical key in the object. Comparison
is based on the boolean operation defined by the enumetatienr ai nt Op (also de-

fined in Chapter 5.3.2.2), and appearing as the structure tag of constraint list. The left
operand of the operation is the property stored in the object, and the right operand of the
operation is the value appearing in thenstrai nt Li st structure. If the operation

does not make sense, the result of the comparisan & (for example, I'ncl udes”

for numerical types).

Thesati sfi ed array contains those keys with associated values for which the com-
parison has resulted imue. Theunsati sfi ed array contains those keys with asso-
ciated values for which the comparison has resultédlise.

An example will clarify the use of this method. A fictitious audio object may store
the various audio formats it can decode in a property list. The object providing the serv-
ice may define a (read-only) sequence of values for the A&li 6For mat K”, e.g.,
<"Al FF”", “Al FC">, describing the audio file formats it can recognise. irhech-
Properti es method may be invoked with a pair consisting of a key and a value:

73

Figure 5-2 — Top classes and interfaces of PREMO

[“AudioFormatK”, “AlIFF"]
using the comparison operatdqual ". The result will be:
sati sfied: [‘AudioFormatK”, <"AlIFF">]
unsatisfied: [“AudioFormatK”, <“AIFC">]
Another call, using:
[“AudioFormatK”, “lIRCAM”]
will resultin

satisfied: [“AudioFormatK”, <>]

unsatisfied: [“AudioFormatK”, <“AlIFF",“AIFC">]
etc. Based on this information the client can choose the Al FF file format which can be
managed both by itself and the audio service.

The example can be made more complex. For example, using more than one key in
the invocation of the mat chPr operti es operation (e.g., aso include sampling size),
and optimizing the calls through the use of arrays of values andrtheddes” oper-
ator instead of Equal ”, further information can be retrieved on the object. This can
serve as a basis for powerful negotiations.

535 TopLayer of PREMO
Figure 5-2 gives an overview of all the interface and class definitions appearing at the

top level of the PREMO type hierarchy and is a detailed version of Figure 5-1. Only
those simple objects are depicted on the figure which have already been presented.

74
54 General Utility Objects

We have, somewhat arbitrarily, re—grouped a few PREMO Part 2 objects under a cate-
gory called general utility objects, although this categorization does not appear in the
original Standard itself. The objects in this category provide some elementary building

blocks which are used in various other places in PREMO, but they are rarely used in
isolation, i.e., without being bound to some other, more complex objects. There are
three groups of general utility objects:

» Event handler objects, which provide an event propagation mechanism in PREMO.
» Controller objects, providing an interface for controlled finite state machines.

» Timer objects, which define the interfaces to measure time in PREMO.

This section will present these objects in more detail.

54.1 Event Management

Forwarding information, i.e., data, through operation invocation is a relatively static ac-
tion. The caller has a direct knowledge of the callee (modulo the actual value of an ob-
ject reference), only one callee can be invoked at a time, the callee has no real control
over the occurrence of the call, etc. Whereas this approach to information transfer is ap-
propriate most of the time, it has long been recognized that dynamic systems need a
more flexible way of forwarding information, too. As opposed to a direct call, this dy-
namic form of data transfer should be such that:

» The caller, or the source of the information, should be separated from the callee, or
the possible consumer of the data. The caller does not need to know about the con-
sumer of the data.

» Data transfer should be as asynchronous as possible. The source of the information
should just make the data “known” to its environment, and continue its own activi-
ties.

* It should be possible to have more than one consumer at a time.

» The receiver should have the ability to dynamically control whether it is interested
in the information or not.

Event handling, or event management, has become the standard answer to these con-
cerns, and event management is ubiquitous in dynamic and interactive systems nowa-
days. Events were already present as early as 1982, when the first version of GKS
became more widely available as a technical document. The GKS standard included the
notion of event mode input which had some of the characteristics described above[5].
The notion of events became more familiar through various windowing environments,
such as X11, and is now part of almost all graphics and multimedia systems. Java’s
AWT has the notion of events, too, and the listener—based event model, present in AWT
since Java version 1.1, shares a lot of common characteristics with what will be de-
scribed below for PREMO.

75

— EventClient; -

3
§ |
S .
. EventHandler 8 > ATy N
EventSource dispatch event
dispatchEvent . |
i register :
| |
| S EventClient, = _l
| |
| register/unregister |
Lo - 4

Figure 5-3 — Event management in PREMO

Just asin the case of a precise object model, various systems have their own view of
event management, but none of the present schemes suffices for PREM O. Consequent-
ly, PREMO defines its own event management model.

5411 ThePREMO Event Model

Figure 5-3 givesarough overview of themain notionsinvolved. Eventsare simple PRE-

MO objects which were already defined in section 5.3.2.1 on page 66. Events have a

name, a source, and they may contain event data. A name is also referred to as event

type, whichisasSt ri ng. A sourceisthe reference to a PREMO object (usually arefer-

ence to the object which creates a specific instance). The event data is conatined in a
sequence of key—value pairs, much like properties. Event management is concerned
about how these units of information are propagated among PREMO objects.

The main feature of event management is the separation between the source of the
events and the objects receiving the events, calledeegabclients. This separation is
done through the use of a special object in PREMO, callestemh handler. Objects,
which intend to propagate an event, send the event instance to this event handler object.
and it is the event handler’s task to broadcast the event instance to a set of event clients.
Objects, which want to become event clienggjster to the event handler. If they do
not want to be an event client any more, theywaegister. In other words, event han-
dlers embody a one—to—many propagation of events with a dynamic management of
prospective event receivers. The event source does not know who the event recipients
are for a specific event; it only sends the event to the event handler.

Prospective event clients can register themselves to several event handler instances,
thereby having some control over which category of events they want to receive. How-
ever, registration, and the corresponding event propagation, is much more finely tuned.
Indeed:

1. When registering, the client gives an event name to the event handler, too. When a
new event arrives, the event handler compares the name of the event to the names
which are part of client registrations. Only those registrations are considered where

76

these names coincide. In other words, the client registers its interest for a specific
type of event. If the client isinterested in several different event types from the same
event handler, it should register separately for each of them.

2. Beyond the event name, clients can also impose some constraints on the event data
as part of registration. These constraints are checked by the event handler by com-
paring the event data to the constraints. If the result of thiscomparisonisf al se, the
event is not propagated to that event client. As a simple example, the client may
specify that it is interested in an event of a specific type if and only if its data con-
tains an entry with a specific key and value. More complicated constraints are also
possible.

Prospective event client objects should implement the Cal | back interface (see
section 5.3.3). Event propagation is done by the event handler through the cal | back
operation. The event handler object is defined to be a Cal | back object, too, with the

cal | back object identified with the event dispatch operation. This means that various

event handler objects may be “chained”, thereby forming a complex network of event
propagation patterns.

Event handlers are frequently used as building blocks for interaction. The require-
ment of asynchronicity in event propagation is therefore essential. The main action of
the event handler, i.e., managing the constraints and effectively propagate the events,
should never suspend the event source which intends to dispatch a new event. The ac-
tivity of the event handler is therefore of a primary importance: conceptually, the real
effect of thedi spat chEvent is simply to place the event instance into some sort of
internal event queue and a separate thread should be responsible for emptying this
gueue and propagate the events. In other words, this operation is defineasyo-by
chronous.

Note that the PREMO event model is not unlike the event model used by Java in
AWT or in the Java Beans specification. The major difference is that, although the “phi-
losophy” is similar, the mechanism is more explicit in PREMO than in Java. (Indeed, in
the latter, the various AWT components play the role of both the event sources and the
event handlers, rather than separating the two into different object types.)

54.1.2 TheEvent Handler Object

The “core” of the PREMO event management mechanism B/é& Handl er object
type. The interface of the object is as follows:

public interface EventHandl er
extends Cal | back, EnhancedPREMObj ect, java.rni.Renote
{
long register(String event Type, Constraint[] constraints,
AndOr mat chMode, Cal | back theCal | back) ;
voi d unregister(long id) throws InvalidEventld;
voi d di spat chEvent (Event e);

7

The di spat chEvent operation is defined to be asynchronous. Event registration
makes use of the Const r ai nt structure, defined in section 5.3.2.2 (see page 67) and a
simple PREM O enumeration:

public final class AndOr

extends preno.inpl.utils. PREMOEnuneration {
public static AndOr And;
public static AndOr O;

}
Theregistration operation returns aregistration identifier. Thisidentifier should be used
to unregister (an exception israised if an invalid event registration identifier is used as
argument for unregistration).

Dispatching an event is achieved through the di spat chEvent call although, aspre-
viously stated, the “real” effect of this operation is merely to put a copy of the event
structure into an internal queue; actual dispatch is done in a separate thread. The imple-
mentation of theEvent Handl er interface must provide an implementation for the
cal | back operation, too (in order to implement t@& | back interface). The effect
of cal | back is identical todi spat chEvent in this case. The two operations can be
considered as simple synonyms.

The details of event propagation are at the heart of the object’s semantics. Here is
what the object has to do when a new event instance is received:

1. The type of the new event is compared to all registrations. Only those are retained
where the new event's type matches with the registered event type.

2. For all retained registrations:

2.1. If either the event data or the registered constraint array is empty, the event is
forwarded. This is done by invoking thel | back operation on the registered
object with the event instance as an argument.

2.2.If the arrays are not empty, all key—value pairs with identical keys, in the con-
straint and the event data arrays, respectively, are compared. Comparison
means using the operation defined in@hest r ai nt Op field of the constraint
(which tells whether the comparison means ‘equal’, ‘greater than’, ‘contains’,
etc., see page 67). The left operand of the comparison operator is the value
stored in the event handler, i.e., the registered value, and the right operand is the
value in the new event instante.

2.3. If the registered value for th@adOr enumeration ignd, the logicalaAND of all
comparisons is considered. Otherwise, @Res considered. This leads to the
result of the full constraint checking:tlf ue, the event is forwarded (like in 2.1
above). Iff al se, this registration is not considered for event dispatch for this
event instance.

Let us see some examples. In a very simple case, registration with no constraints is used:
long id = eHandler.register(“PREMOEvent”,null,null,this);

DIf the operation does not make sense, e.g., a ‘contains’ is required for two numerical types, the result is
fal se.

78

Figure 5-4 — Event handler objects

which is issued by the prospective event client on an event handler. The event source
object might perform the following set of operations:

Event ev = new Event();

ev. event Nane =*“PREMOEvent”;

ev.eventSource = this;

ev.eventData = new Event.EventData[] { new Event.EventData() };

ev.eventData[0].key = “MyKey”;

ev.eventData[0].value = “MyValue”;

eHandler.dispatchEvent(ev);
which creates an event instance with an event data array of length 1. The new event in-
stance is dispatched. Because the event client has not defined any constraints, it will re-
ceive a copy of the event ev. If, however, event registration were done through the
following sequence:

Constraint[] cons = new Constraint[] { new Constraint() };
cons[0].key = “MyKey";
cons[0].value = “AnotherValue”;

cons[0].constraintOp = new ConstraintOp(ConstraintOp.Equal);
long id = eHandler.register(“PREMOEvent”,cons,AndOr.And,this);

Then the client will not receive acopy of ev. Indeed, the constraint imposed on the key
“MyKey” is not fulfilled in this case.

5.4.1.3 Synchronization Points
General event handler objects, as described in the previous paragraph, do not impose

any restrictions on the type of events which they are ready to forward. Any event is ac-
cepted and forwarded, subject of course to the constraints imposed on registration.

79

Synchronization points are specialized event handlerswhich do impose somefurther
restrictions on their “dispatch” side. A synchronization point object maintains an inter-
nal table of events, referred to as “synchronization events”. Operations are defined to
add and delete a synchronization event. These events are those which are accepted by
the synchronization point for event propagation. Dispatching an event which is not a
synchronization event results in an exception and the evaottfirwarded. (One must
be somewhat more precise about what it means that an event is a synchronization event
or not. The internal table of synchronization events contains a set of object references;
an event, which appears as an argument talite@at chEvent operation, must be
equal to one of the events in the table. Equality means that the event source refers to the
same object, the event names are identical, and that the event data atg equal

Note the fact that evenburces should be equal for dispatch (a reference to the event
source is part of an event structure): this means that synchronization objects accept
events from specific objects only. Hence their name — these objects are used in multi-
media synchronization schemes where they synchronize information flow among spe-
cific object instances.

The interface of a synchronization point object is quite straightforward:

public interface Synchroni zati onPoi nt
extends Event Handl er, java.rm.Renote

{
voi d addSyncEvent (Event e) t hrows Repeat edEvent;

voi d del eteSyncEvent (Event e) throws UnknownEvent;
long register(String event Type, Constraint[] constraints,
AndOr mat chMode, Cal | back theCal | back)
throws InvalidEventld,
voi d di spat chEvent (Event e) t hrows UnknownEvent;

}
The operationaddSyncEvent anddel et eSyncEvent are used to add, respectively
delete, a synchronization event. An exception is raiseatlbigyncEvent if an event
has already been added as a synchronization event.

The operationsegi st er anddi spat chEvent are inherited frontvent Handl er,
but their semantics is extended slightly, and they may throw exceptions which their an-
cestors don't. In the case of a synchronization point, the event type must coincide with
the event type of at least one of the synchronization events (an event of another type
would not be forwarded anyway), and this is checked by ¢hést er operation be-
fore performing the “original” registration. Th#i spat chEvent operation (which
overloads the operation inherited fr@vent Handl er) checks its argument and raises
anUnknownExcept i on if the event is not a synchronization event, further disregarding
the g)vent. Otherwise, the original (inherited) meaning of the operation comes into ef-
fect:

D Eventually, what this boils down to, is the equality of the values in the event data, i.e., the equality of the
objects the values represent. In the case of Java, one has to define the operation equal s to give amore spe-
cific meaning to equality.

80

evl, ev2

— Clientl

Sourcel evl

P eHandler]

ev2

Source2

P Client2

evl, ev2

Figure 5-5 — Synchronization points

A further specialization of the synchronization point is the AND synchronization
point. This object does not add any new operation to the synchronization objects, i.e.,
its specification is simply:

public interface ANDSynchroni zati onPoi nt
ext ends Synchroni zationPoint, java.rm .Renmpte {

}
However, while implementing the semantics of synchronization points, this object also
delays event propagation. The goal is to “collect” a number of incoming events, which
are identicabxcept that they originate from different event sources. Only when all such
events arrive to thaND synchronization point would the object forward the accumulat-
ed events. This is done by, conceptually, categorizing all synchronization events by
event name and event data. All synchronization events, having identical name and data,
fall into the same categomggardless of their source. When an event arrives for dis-
patching, its category is located and, within its category, the synchronization event itself
found. However, instead of being dispatched, this information is just flagged.alVhen
events within a category are flaggedd only then, will all the events be dispatched
(following, of course, the original semantics of dispatching, i.e., the constraint mecha-
nism may still block the propagation of a specific event instance for a specific client).

TheANDSynchr oni zat i onPoi nt can be functionally described as an arrasf
components, each of which requires all registered events for a given category to be col-
lected before dispatching these events to registered clients. It is important to note that
multiple categories of events can be handled withinADSynchr oni zat i onPoi nt
instance.

As an example, let us consider the following code (see also Figure 5-5). First of all,
two event registrations are performed, both with the event naPREMOEvent ”, one
for the clientd i ent 1 and the other fo@l i ent 2. To simplify the code, no constraints
are added to the registration:

long id1 = eHandler.register(“PREMOEvent”, null, null, Client1);
long id2 = eHandler.register(“PREMOEvent”, null, null, Client2);

2 Note avery subtle difference between the operations cal | back and di spat chEvent . The callback is not

listed here, i.e., the extra exception is not raised (although a non—synchronization event is disregarded all the
same). This is because, when using callback, the external world would consider a@¢néealk object

only, and it cannot be expected to check this special exception.

81

Then, two event instances, both haviREMOEvent ” as a type, are created, for the
sake of the example, with empty data. Also, both events are registered by the synchro-
nization point as synchronization events:

Event evl = new Event ();
evl. event Name = “PREMOEvent”;
evl.eventSource = Sourcel,;

Event ev2 = new Event();
ev2.eventName = “PREMOEvent”;
ev2.eventSource = Source2;

eHandler.addSyncEvent(evl);
eHandler.addSyncEvent(ev2);

Finally, an event dispatching sequence is done through:

eHandler.dispatchEvent(evl);
Do SomethingElse();
eHandler.dispatchEvent(ev2);

If eHandl er isasynchronization point the sequence on the reception of eventswill be:

Clientl receives evl

Client2 receives evl

SomethingElse is done

Clientl receives ev2

Client2 receives ev2
However, if eHandl er isan AND synchronization point, dispatching ev1 isdelayed. In-
deed, this event belongs to the same category as ev2 (only their event source differ).
Consequently, the sequence on the reception of events will be thistime:

SomethingElse is done

Clientl receives evl

Client2 receives evl

Clientl receives ev2

Client2 receives ev2

This is the result of the fact that the “real” event propagation has to wait for the call:
eHandl er . di spat chEvent (ev2);

before proceeding further.
The importance of synchronization points will become clear when event-based mul-
timedia synchronization is addressed (see section 5.5).

5.4.2 Finite State Machines. Controller Objects

The notion of finite state machines is ubiquitous in computing, and it should not be nec-
essary to define the notion here. Finite state machines (FSMs) are commonly used as
elementary tools, e.g., to manage user interactions, to control communication among
objects, etc. The behaviour of PREMO objects are often described in terms of states and
state transitions, i.e., in terms of finite state machines. This usually provides a clear, and
unambiguous specification. There is also a need to have finite state machines defined
as separate object types. Multimedia systems are almost always interactive, and provid-
ing the elementary building blocks to create, e.g., interaction patterns is necessary for a
proper specification of middleware.

82

Figure 5-6 — PREMO types related to ent r ol | er object

The finite machines appearing in an interactive setting have some extra require-
ments. They must be:

e programmable, i.e., the end—user should have means to attach his/her own methods
to each state transition of the object.

« monitorable, i.e., it should be possible to monitor state transitions from the outside
easily, typically through some event propagation mechanism.

TheControl | er object type of PREMO provides these facilities. The programmabil-

ity of theCont r ol | er objects is ensured by the specification of a number of protected
methods as part of the object. The client Gbat r ol | er object does not (and should

not) access these methods directly, because their invocation sequence is closely related
to the state transition of the object. That is why they are protected. On the other hand,
by defining a subtype for@nt r ol | er object, one can create specialized finite state
machines where the required behaviour is coded into these protected methods.

The ability to monitor state transition is accomplished by dynamically attaching call-
back routines to state transitions. This means that if a state transition occurs, these call-
backs are notified. For example, event handlers can be attached as callbacks to specific
state transitions and, through these event handlers, any object which intends to monitor
the state transitions can express its interest. Further®@wores ol | er objects are de-
fined as subtypes dfal | back, too, which means thalont r ol | er objects can be
chained together to form very complex interaction patterns.

5.4.21 Detailed Specification of a Control | er

Satesin Control | er are represented by strings. The allowable states, as well as the
current state of the object, can be retrieved by the operations:

83

public String getCurrentState();
public String[]getPossibleStates();

These attributes are set during the initialization of the object (formally, thisis done in
subtypes. Cont r ol | er itself is abstract). The attributes are “read—only”, i.e., the set of
possible states cannot be changed by the client, nor can it directly change the current
state.

The user can attach callbacks to various state transitions. This is done using a simple
PREMO object:

public class ActionEl enent extends Sinpl ePREMOObj ect {

public Call back eventHandl er;

public String event Nane;
}

describing the callback, and a PREMO enumeration of the form:

public final class ActionType
extends preno.inpl.utils. PREMOEnuneration {
public static ActionType Enter;
public static ActionType Leave;

}

The semantics of th&ct i onEl enent structure is clear: it holds the reference for the
callback object which has to be notified of a state changeevidre Nane field is used

to construct a suitable event structure. This event construction will be more thoroughly
explained later.

Conceptually, each state may have twoi onEl enent instances assigned to them:
one labelled as “enter” and the other labelled as “leave” action. Furthermorg@agach
of states may refer to another instance oAan onEl enent . These instances can be
set and removed through the following methods (which are part of the public interface
of Control l er):

voi d setAction(String state, ActionEl enent action, ActionType aType)

throws WongSt at e;
voi d renpveAction(String state, ActionType aType)
throws WongSt at e;
voi d set ActionOnPair(String stated d, String stateNew,
Acti onEl ement action)
throws WongSt at e;

voi d renoveActi onOnPair(String stated d, String stateNew)

throws WongSt ate;

The semantics of these routines is quite straightforward\{ttvegSt at e exception is
raised if the required state is not a possible state faatihier ol | er instance).

Finally, the last two methods of the public interfac€aft r ol | er is:

voi d handl eEvent (Event e);

voi d cal |l back(Event e);
The two methods are completely identical; they are synonyms. This also meanst the the
handl eEvent operation is (just like callback) asynchronous. The operations trigger the
state transition of the object. The new required state isviet Nane field of the ar-
guments (see page 66 for the specification ofebhent structure). Thecal | back

2. calllocal operation
‘onLeave’
1. check validity of 3. perform callback for
State; to State, tran- ‘Leave’

sition

handleEvent

. 4. perform callback for
(State;, State,) —_—

5. call local operation
‘onEnter’
6. perform callback for
‘Enter’ \
Figure 5-7 — Behaviour of@nt r ol | er object

method makesthe Cont r ol | er object aCal | back object, too. By declaring that Con-
trol | er alsoextendsthe Cal | back interface, we ensure that the finite state machines
can be chained through event propagation.

As said earlier, the exact semantics of the object depends on a set of protected oper-
ations, too (these are part of the implementation class of the Controller, i.e,
Control | er_I npl). These are asfollows:

protected bool ean checkTransition(Event e);

protected Event. Event Dat a[]

onLeave(Event e, String oldState, String newState);
protected Event. EventDat a[]
onEnter (Event e, String oldState, String newState);

protected voi d handl eUnknownEvent (Event e);

All elements are now in place for a precise specification of the object behaviour (see
also Figure 5-7).

1. A state transition is requested by a client through the invocation of the operations
handl eEvent or cal | back. The event name isinterpreted to be the state name to
which the Cont r ol | er object should transit. For the sake of this discussion, Satel
is the name of the current state of the object, and Sate2 is the name of the requested
State.

2. The controller object invokes the (protected) operation checkTr ansi ti on, for-
warding the argument of handl eEvent/cal | back. This operation returns a
boolean value indicating whether the transition is alowed. (By default, all transi-
tionsare allowed, i.e., checkTr ansi t i on just tests whether the new state has been
defined as a genuine state for the object. Subtypes may implement a more complex
transition table by overriding this method).

85

3. If the transition is not allowed, the operation handl eUnknownEvent is invoked,
forwarding the argument of handl eEvent, and handl eEvent/cal | back fin-
ishes. handl eUnknownEvent may decide to report an error, to forward the event to
another Cont r ol | er instance or an event handler, etc.

4. If thetransition is allowed, the following steps are executed:

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

The operation onLeave is invoked. This operation receives, as argument, the
event structure appearing as the argument of handl eEvent , as well as (the
strings) Satel and Sate?2. The operation returns data suitable to be used as an
event data tag in an event structure.

If there is no Acti onEl ement structure associated with Satel labelled as
“leave”, this step is ignored, and go to 4.3 below. Otherwise, an event instance
is created, using the event name inAbei onEl enent structure associated to
Satel labelled as “leave”, and the event data returnednygave. A callback

is then executed with the newly created event instance as argument.

The value of the attribute denoting the current state is Setd® i.e., thereal
state transition occurs.

If anAct i onEl enent is associated with the pai®ftel, State?), a new event
instance is created using the event name imthéonEl enent and the array
[Satel,Sate2] as event data with the keyransi ti on”. Thecal | back oper-

ation on theCal | back object, referenced by th&cti onEl ement, is then

invoked using this new event instance.

The operatiomnEnt er is invoked. This operation receives as arguments the
event structure appearing as the argumerttaofll eEvent , as well as (the
strings)Satel and3ate2. The operation returns data suitable to be used as an
event data tag in an event structure.

If there is noActi onEl ement structure associated ®ate2, and labelled as
“enter”, this step is ignored. Otherwise, an event instance is created, using the
event name in théct i onEl enent structure associated ®ate? labelled as
“enter”, and the event data returneddnEnt er. A callback is executed with

the newly created event instance as argument.

The default behaviour of tlenLeave andonEnt er methods is to copy the data of the
input event argument to the output. In other wordxra r ol | er can simply forward
the event data it receives without touching it.

The specification looks a bit complicated, but it is long rather than complex.
Figure 5-7 shows the three possible places in a state transition whereabvthiesick
objects may be “hooked”, i.e., which can be used to chainar ol | er object into,

e.g., an interaction pattern. The following example shows how a specialized FSM can
be defined:

86

public class FSM extends Controller_Inpl inplements Controller
{
/1 Initialization: fills up the state table
public FSM) {
super();
possibleStates.addElement(“First”);
possibleStates.addElement(*Second”);
possibleStates.addElement(“Third”);
currentState = “One”;
}
/I Specialize through the protected methods
protected Event.EventData[]
onLeave(Event e, String oldState,String newState)

{
System.out.printin(“Leave “ + oldState + “ for “ + newState);
/I return the event data (using default action)
return super.onLeave(e,oldState,newState);

}

protected Event.EventData[]
onEnter(Event e,String oldState,String newState)

{
System.out.printin(“Arrive to “ + newState +“from “ + oldState);
/I return the event data (using default action):
return super.onEnter(e,oldState,newState);

}

}

The example is of course not very exciting, but it shows how FSMs can be defined in
PREMO. Here is how an FSM instance can be monitored:

FSM fsm = new FSM();

ActionElement act = new ActionElement();

act.eventHandler = new MyCallback();

act.eventName = “Monitor”;

fsm.setAction(“Third”, act, ActionType.Leave);
The effect of the code fragment isthat any time the FSMobject instance leaves the state
“Thi rd”, the callback inMyCal | back will be invoked with event whose name is
“ Monitor”.

5.4.2.2 Activity of Controllers

Another issue, related to the Controller object, should be mentioned. As said in the
introduction, controllers are frequently used as building blocks for interaction. It is
therefore important that the state transition action would not suspend the caller of han-
dleEvent for toolong, i.e., thisoperation is asynchronous. Thisisalso in line with the
requirement on Callback objects, see page 68. Much like event handler objects (see
page 76), the effect of handleEvent (and of callback) isto place the event instance
into an internal event queue. A separate thread should be responsible for emptying this
gueue, possibly perform a state transition, and propagate the events through the call-
backs.

87

54.3 TimeObjects
54.3.1 General Notions

Timeisan essential notion in multimedia systems, and also one of the most difficult to

grasp, primarily if full generality and distribution isto be taken into account. Although

there are systems, special hardware equipment, etc., which are capabl e of providing pre-

cise control over time, these arerarely availablein the type of computing environments
inwhich PREMO is supposed to run. As a consequence, PREM O cannot include object
specifications which rely on real-time control. In most of the cases implementation of
such facilities would be impossible.

The pragmatic approach adopted by PREMO is to define a simple interface to time
control, withoutrequiring a certain accuracy. Instead, the local accuracy value can be
inquired, and it is expected that the client would adapt its behaviour if the accuracy is,
for example, reduced.

PREMO time objects may return elapsed time in different time units, ranging from
picoseconds to years. Which unit to use is set by the client (a separatdi t enu-
meration type is defined for that purpose). The accuracy of the time objects will, of
course, depend on the current setting of the unit. Time objects may easily commit
rounding errors and be off, for example, by one year if the unit is set to years. (For ex-
ample, because our implementation relies on long integer values to measure time, it is
not possible to express the value of 2.5 years!). On another extreme, it is very rare to
have a computing environment which can provide an accurate measurement on the pi-
cosecond level. The typical case is that the various time objects would be reasonably
accurate on the millisecond level, which is enough for multimedia presentation purpos-
es. The current accuracy can be inquired by the client, and the unit used for the accuracy
value can also be chosen. It is possible to measure the returned time value in years, but
expect the corresponding accuracy value in milliseconds.

88

Figure 5-8 — Time objects

On the abstract level, represented by the abstract type called A ock, elapsed timeis
measured as the returned value of an operation called i nqui r eTi ck. Various subtypes
of thed ock object attach amore detailed semanticsto what theticksreally mean. This
value and the accuracy obey the following relation. Suppose that the output of i n-
qui r eTi ck is T, and the value of the accuracy is A (both values are long integers in our
case). If the moment used by i nqui r eTi ck asastarting point in time is E then, math-
ematically, the real actual time T, , wheni nqui r eTi ck is called, follows the relation:

E+T-5<T <E+T+5

This also means that an accuracy of value zero represents the most accurate timing pos-
sible, and increasing values represent alossin precision.?

54.3.2 Specification of the PREMO Time Objects

The more formal specification of the time objects rely on the enumeration Ti neUni t ,
which is defined as follows:

D To be precise, thisrelation is valid if accuracy and time are measured using the same units. If thisis not the
case, A should be replaced by a function f(A), which converts the accuracy value from its own units to the
unitsused by T.

89

package preno.std. part2;

public final class TinmeUnit
extends preno.inpl.utils. PREMOEnuneration {
public static TineUnit Picoseconds;
public static TineUnit Nanoseconds;
public static TineUnit M croseconds;
public static TineUnit MIiseconds;
public static TinmeUnit Second;
public static TimeUnit M nute;
public static TimeUnit Hour;
public static TimeUnit Day;
public static TimeUnit Month;
public static TimeUnit Year;

}
which simply liststhe varioustime units usablein PREMO. Using this enumeration, the
abstract A ock interfaceis defined as follows:

package preno. std. part?2;

public interface d ock
ext ends EnhancedPREMOCbj ect, java.rm . Renote

{
TineUnit getTickUnit();
voi d set Ti ckUnit (TineUnit unit);
Ti meUni t get AccuracyUnit();
voi d set AccuracyUnit (TimeUnit unit);
| ong get Accuracy();
| ong inquireTick();
}

Based on the general description of the previous section, the semantics of each of these
operations should be clear by now.

Thereare severa objectsin PREMO which implement thisinterface; two of them are
usable by themselves, too. These are the system clock and the timer object.

The system clock object (called Sysd ock) providesreal timeinformation (modulo
the accuracy of the clock, of course) to PREMO. Sysd ock does not add any new op-
erationsto itsinterface:

package preno. std. part2;
public interface SysCl ock extends C ock, java.rm .Rempte {

}
but defines the exact semantics of the i nqui r eTi ck operation. It returns the elapsed
time since 00:00AM, 1st of January 1970, UTC. For historical reasons, this starting
point in time has been chosen by numerous computer systems (including Java), hence
its choice in PREMO, too.

The Ti mer object models a stop—watch. It can be viewed as a tiny finite state ma-
chine, with three state$STOPPED, TSTARTED, andTPAUSED (these are static integer
constants defined in a simple Java class called e) and managing an internal time
register. This register is reset to zero either when the object leaVESTRPED state,
or through an expliciteset operationi nqui r eTi ck returns the elapsed time the ob-
ject spent inMTSTARTED state since the last reset of the counter, but ignoring the time it
spent iINTPAUSED is ignored. The complete interface of the object is:

0

start
pause

resume

stop

TSTOPPED TPAUSED

\Sﬂ’/

Figure 5-9 — State transitions iMManer object

public interface Timer extends C ock,java.rm . Renote

{
int getTimerCurrentState();

void start();

voi d stop();

voi d pause();

voi d resumne();

void reset();

}

which include the obvious state transition operations and the explicit r eset . Figure 5-
9 shows the meaningful state transition operations. All other state transition calls (e.g.,
calling pause when the object isin the TSTOPPED state) are ignored.

5.5 Synchronization Facilities

One generally accepted and important characterization of multimedia systems is that

they manage continuous media data. “This term refers to the temporal dimension of me-

dia, such as digital video and audio in that at the lowest level, the data are a sequence
of samples — each with a time position. The timing constraints are enforced during
playback or capture when the data are being viewed by humans.”[60] In some cases,
such as animation and synthetic 3D sound, the samples may result from (sometimes
complex) internal calculations (synthesis) whereas, in other cases, the samples are
available through some data capture process.

Maintaining the presentation of a continuous media data stream at a sufficient rate
and quality for human perception represents a significant challenge for multimedia sys-
tems, and may impose significant resource requirements on the multimedia computing
environment. Aside from this inherent constraint (sometimes referred to as the problem
of intra—media synchronizatigm further difficulty arisesfrom the fact that multimedia
applications often wish to use severalinstances of continuous media data at the same
time, such as an animation sequence with some accompanying sound or a video se-
guence with textual annotations. The difficulty here isthat not only should the individ-

91

ual media data be presented with an acceptable quality, but well-defined portions of the
various media content should appear, at least from a perceptual point of view, simulta-
neously; some parts of a sound track belong to a specific animation sequence, subtitles
should appear with specified frames in a video sequence, etc. This problem is usually
referred to ainter—-mediasynchronization. The specific problems raised by intra—me-
dia synchronization is not addressed by PREMO, because this is media specific and
falls outside the charter of a general reference model. In what follows, the term synchro-
nization is always used to refer to inter—-media synchronization.

Synchronization has received significant attention in the multimedia literature, see,
for example, the book by Gibbs and Tsichritzis[34] or the survey paper Blakowki and
Steinmetz[10] for further information and references on the topic. An efficient imple-
mentation of inter—media synchronization represents a major load on a multimedia sys-
tem, and it is one of the major challenges in the field. What emerges from the experience
of recent years is that, as is very often the case, one cannot pin down one specific place
among all the computing layers (from hardware to the application) where the synchro-
nization problem should be solved. Instead, the requirements of synchronization should
be considered across all layers, i.e., in network technology, operating systems, software
architectures, programming languages, etc. and user interfaces.

The synchronization facilities of PREMO concentrate on one aspect of a complete
solution, namely, on a conceptual model and software architecture aimed at inter—media
synchronization. It provides general facilities which can be usedplement various
synchronization specifications which use interval-based, axes—based, or other declara-
tive methods (see again, e.g., the survey paper in [10] for further details and references).
In line with the middleware nature of PREMO, the goal is to provide a general mecha-
nism upon which these various declarations can be implemented, instead of dictating
one specific approach to be used for synchronization.

The PREMO synchronization model is based on the fact that objects in PREMO are
active. Different continuous media (e.g., a video sequence and corresponding sound
track) are modelled as concurrent activities that may have to reach specific milestones
at distinct and possibly user definable synchronization points. This é&vém—based
synchronization approach, which forms the basic layer of synchronization in PREMO.
Although alarge number of synchronization tasks are, in practice, related to synchroni-
zation in time, the choice of an essentially “timeless” synchronization scheme as a basis
offers greater flexibility. While time—related synchronization schemes can be built on
top of an event-based synchronization model, it is sometimes necessary to support
purely event—based synchronization to achieve special effects required by some appli-
cation (see, for example, the application described on page 98).

In line with the object—oriented approach of PREMO, the synchronization model
uses abstract object types that capture the essential features of synchronization. Some
of them have already been presented in earlier chapters, whereas some are more specif-
ically tailored at synchronization. These are:

« synchronizable objects, and their various subtypes (see Figure 5-10), to be presented
in more detailed in this section.

« synchronization points, (and event handlers in general), see section 5.4.1.3.

92

Figure 5-10 — Objects for synchronization

* time objects, see section 5.4.3.

Among all these, the various synchronizable objects are by far the most complex ones.
The rest of this section concentrates on their detailed specification.

5,5.1 Synchronizable Objects
55.1.1 Overview: Event-Based Synchronization

Synchronizable objects in PREMO provide a high—level abstraction for media data
presentation and synchronization. Media datum is taken here in a very abstract sense,
and it is only the various subtypes which attach specific semantics to it. On this abstract
level, synchronizable objects have an internal progression along an internal, one dimen-
sional coordinate space, also referred tpragression space. The active nature of the
synchronizable objects play a paramount importance. Synchronizable objects progress
along their progression spaces independently from one another, using their own thread
of control (their “virtual processor”).

The progression space can be represented by integers, doubles, or long integers. To
be more precise, the progression space is, conceptually, one of:

93

double, ==double O {0, o}
int, ==int O {—o, co}
long,, ==long O { 0, o0}

i.e., the concepts of positive and negative “infinity” are also meaningful. The obvious
extension of the notions “greater than”, “smaller than”, etc., on these spaces allows the
behaviour of synchronizable objects to be defined more succinctly. We define no special
Java classes to represent these types. We will simply identifyathe/ALUE and the

M N_VALUE constants of thént eger, Doubl e, andLong Java classes with their re-
spective infinity valueR. It is up to the implementation of the synchronizable objects
to manage the arithmetic properly. To simplify the discussion, the symbanill be

used in this section to denote this progression space. Subtypes of synchronizable objects

specify the exact numeric type being used and add a semantic meaning to this coordi-

nate space. Attributes of the progression, such as span (the interval of interest within

this coordinate space), can be set through operations defined on the synchronizable ob-

ject.

The progression spacez) can be used to describe varioustypes of progression. For ex-
ample, media objects may represent time, video frame numbers along this space, ani-
mation frame numbers, sound samples, etc. The choice of the semantic content of the
progression space may aso depend on the application. For example, if the object repre-
sents a symphony, the progression space units may represent either the various move-
ments of the symphony, or the bars within amovement, or the notes themselves, or even
the individual musical samples. The choice will obviously depend on the level of syn-
chronization granularity the application requires.

Reference pointare points on the internal coordinate space of synchronizable ob-
jects where synchronization elementan be attached (see also Figure 5-11). Synchro-
nization elements are structures which contain a reference to in an event instance, a
reference to aPREMO Cal | back object, and, finally, aboolean Wai t flag. When pro-
gression goes over a reference point, the synchronizable object makes a call to the
cal | back operation of the object stored in the reference point, using the stored event
instance as an argument to the call. Then, it suspends itself if the Vai t flag is set to
t r ue, or continues progression otherwise. Through this mechanism, the synchronizable
object can stop other objects, restart them, suspend them, etc. Operations are defined on
synchronizable objects to add or delete reference points with their related synchroniza-
tion elements.

In more precise terms, a Synchr oni zabl e object type is defined in PREMO as a
supertypefor all objectswhich may be subject to synchronization. Thisobject isdefined
to be afinite state machine. The possible states, the mgjor state transitions, and the op-
erations resulting in state transitions, are shown in Figure 5-12. The initial state is

D Note that the PREMO document defines these types as separate non—object types. The rich facilities pro-
vided by the Javant eger, Doubl e, andLong classes makes it unnecessary to define separate types for the
Java version.

2 The multimedia literature also uses the t&ib (for Logical Data Units) to denote the same concept[10].

Reference Point

GNGHGNG NEEN B

Synchronizable Object |
I

Object reference
Event Instance
Wait Flag

Synchronization Element

Figure 5-11 — A synchronizable object

resume
start

resume
K .

stop

PAUSED | Pause

STOPPED b
sto\—/

Figure 5-12 — State transitions of a synchronizable object

STOPPED. Note that no operation is defined for a transition into state WAI TI NG The
only way aSynchr oni zabl e object can go into the WAl TI NG state is through itsinter-
nal processing cycle (see below).

The object maintains a current position on its progression space. The progression of
the object along itsinternal coordinate space happens within a (possibly infinite) inter-
val of this space, called the span, defined through a start and an end point. If the object’s
state iISSTARTED, the object carries out its internal processing in a loop of processing
stages. Each stage consists of the following steps:

1. The value of the current position is advanced using a (protected) operation
gressPosi tion (defined as part of the object’s specification) which returns the
required next position.

2. This required position is compared with the current position and the end position,

and the following actions are performed:

2.1. If there are reference points lying between the current position and the newly
calculated position (or there is a reference point set at the new position), then

95

any associated synchronization actions are performed (in the order in which
they are defined on C). This means:

— Perform data presentation for any data identified by the points on the pro-
gression space between the current position or the previous reference point
and the next reference point (or the end point). Formally, this is again done
through the invocation of a protected operation, callettessDat a.

— Invoke thecal | back operation on th€al | back object, whose reference
is stored in the reference point, using the stored event as an argument.

— Ifthewai t flag stored in the synchronization element belonging to the ref-
erence point is set ta ue, the object’s state is changedv TI NG. If the
state of the object is set back, eventual\5TARTED, the stage continues at
this point.
2.2. If the required position is smaller than the end position, then this becomes the
local position and the processing stage is finished.

While in PAUSED or WAI TI NG state, the object can only react to a very restricted set of
operation requests. The attributes of the object may be retrieved (but not set) and the
r esume Or st op operations may be invoked, which may result in a change in state. The
difference betweeRAUSED andWAl TI NGis that, in the latter case, the object returns to
the place where it had been suspended Wi a flag, whereas, in the former case, a
complete new processing stage begins. In other words, no newpasiiocessPosi -

ti on occurs when returning fromal TI NG state. The differentiation between these
two states, i.e., the use of i t flag, is essential. This mechanism ensures an instan-
taneous control over the behaviour of the object at a synchronization point. If the object
could only be stopped by another object vigaase call, an unwanted race condition
could occur.

This description refers to the situation where the direction of progression is identical
to the inherent ordering of C. The direction can also be reversed by the client. This
means that the roles of the span’s start and end points are reversed, as well as the order
with which the reference points and the data presentation are considered.

What happens if the progression reaches the end of the span? Attributes are defined
which control whether the object should loop at that stage or not. There are two such
controlling attributes: aepeat Fl ag, which is a boolean, and\hoop value, which is
a positive integer. When the required new position is greater or equal to the end of the
span, this is how the object behaves:

e Iftherepeat Fl ag ist r ue, this means that the object repeats playing over the span
indefinitely while inSTARTED state. In other words, the current position value is set
to the start of the span (or the end of the span if progression is backward) and the
next processing stage starts there.

< If the flag is set td al se, the number of loops the object has to perform is control-
led by thenl oop value. The object maintains an internal loop counter (whose value
can be inquired, by the way), which is initialized to the valuel @fop when the
object enters th8TARTED state fronSTOPPED. This counter represents the number
of times the object has to play the defined span. When the required number of loops

96

have been played, the synchronizable object automatically changes its state to
STOPPED.

Note that two aspects of this specification are left hitherto unspecified in the definition
of Synchroni zabl e:

* what “data presentation” means (i.e., the semantics oprtheessDat a opera-
tion), and

» what it means to progress through the reference points (i.e., the semantics of the
pr ogr essPosi ti on operation).

Both these aspects should be specified in the subtymsiohr oni zabl e. The ab-
stract specification of a synchronizable object is such that no media specific semantics
are directly attached to it. Subtypes, realizing specific media control should, through
specialization, attach semantics to the object through their choice of the type of the in-
ternal coordinate system, through a proper specification qfrtheessDat a and the
pr ogr essPosi ti on operations. Processing data may mean, in simple cases, to present
the data on a screen (e.g., to put the video frames into a window). In more complicated
situations, however, processing the data may involve the control of other devices, either
software or hardware. The following chapters will elaborate on this aspect further. The
operatiompr ogr essPosi t i on defines what it really means to “advance” along the in-
ternal coordinate system and also controls the granularity of progression. For example,
this progression may mean the generation of the next animation frame, decoding the
next video frame, advance in time, etc. A good example for the role®oéssDat a
andpr ogr essPosi ti on is the way a simple MPEG decoder could work in this setting.
Thepr ogr essPosi ti on operation can successively return the frame positions corre-
sponding to the key frames (“I-frames”, in the MPEG specification) in the MPEG en-
coding process. Indeed, key frames represent the natural points where an MPEG object
could stop for synchronization in combination with its procedure to fetch data. Data
processing may then mean to display the frames between two keyframes.
The “target” object in the synchronization element (i.e., the object which is notified
that the synchronizable object has reached a reference point) can be any BREMO
back object. This means that, for example, a synchronizable object can be combined
with various event handlers or controller objects; furthermoreSythehr oni zabl e
object type is also defined to implement tte | back interface, i.e., th&ynchr o-
ni zabl e objects can also notify one another when crossing reference points. The com-
bination of all these objects in one synchronization pattern offers very rich facilities.
Figure 5-13 shows a very simple example using the synchronization mechanism de-
scribed above. The three media objects (video, audio, and graphics) in the figure are
subtypes oBynchr oni zabl e, as is the time line object. They all add specific seman-
tics to this supertype. Reference points and synchronization points are set up for the ob-
jects. The name of the operations eventually used throughath®&ack operations are
denoted on the figure. The effective synchronization pattern is:

1. The video starts to play; when it reaches its reference point, it sends a message to
the audio object. The video object then continues to progress.

97

video[0 0 0 o HEEE B

“start audio”

audio bAA < /\Vf\ . \/V{\ - /III""AI/ \/“”"\V/\V/\\

“dispatch”

event handler

“map graphics”)
start timer”
raphics . .
grap time line

“unmap graphics”
PREMO

Figure 5-13 — A simple example for the use of synchronizable objects

2. Asaresult of the message received from the video object, the audio object beginsto
play (in parallel with the video object). When it reaches its reference point, it sends
a message to both the graphics and the time line objects (the role of the event han-
dler object is to dispatch the same event among severa targets). The audio object
then continues to progress.

3. The graphics appears on the screen and, in parallel, atimer beginsto tick. The timer
has its own reference point set to, e.g., 15 seconds; when this reference point is
reached, the message “unmap graphics” is sent to the graphics media object, which
unmaps the image from the screen.

Although this example is obviously a simplified one, it illustrates the main mechanism
at work when event-based synchronization is used.

The reader may wonder why PREMO chose the event—based synchronization ap-
proach as its basic model; most of the synchronization literature and practice deals with
time—based synchronization only, i.e., where synchronization is expressed in terms of
milliseconds, time intervals, etc. The reason is that there are important multimedia ap-
plications where the purely time—based notions break down, where time does not really
make sense. A real-life example is as follows. The application involves so—called
cineloops, which are a movie-like representation of a sequence of ultrasound scans
made for medical purposes. Details of how these cineloops are created are not of real
interest here. They should be considered as special media objects which behave much
like a sequence of images. Figure 5-14 shows a screen snapshot involving two

98

Figure 5-14 — A cineloop example

cineloops, taken by scanning the human heart. When a cineloop is recorded, one will
usually also record an ECG trace (an el ectrocardiogram), shown below the cineloop im-
ages. Also, in many cases, it is useful to compare cineloops recorded under different
conditions or at different times. For example, a stress test compares the movement of
the heart wall after arest and just after the person has exercised, when the heart rateis
much higher. Figure 5-14 shows two such recordings, each with its corresponding ECG
trace.

The difficulty of playback, when these cineloops are used, isthat physicianswant to
seeside by side aparticular event of the heart beat, e.g., the start or the end of a contrac-
tion of a heart chamber. They are not really interested in the timing of the movements.
However, the different phases of movement that constitute a heartbeat do not speed up
with the same rate when the heart beatsfaster, i.e., it is not sufficient to just speed up or
slow down the cineloops. In other words, synchronizing between the two cineloops can-
not be done in terms of time. Indeed, the notion of time does not really make any sense
inthis particular case.

The synchronization problem can be solved if event—based approach is used. Syn-
chronization elements are set against reference points representing the required events
in the cineloop (or can be set on the ECG playback, and have a close synchronization
of a cineloop with its corresponding ECG), and the playback can be synchronized with-
in a framework using synchronizable objects and synchronization points. Details of
how this can be done can be found in the paper of Lie and Correia[63], which uses the

99

MADE toolkit[42] for this purpose in a real-life medical application involving such
cineloops (this toolkit uses a very similar synchronization mechanism to the one pro-
posed by PREMO).

Similar examples can also be found in other application areas, e.g., computer anima-
tion, virtual reality, etc. Of course, time—based synchronization is extremely important,
and subtypes of th&/nchr oni zabl e objects are defined in PREMO for that purpose
(see section 5.5.2 below) but choosing event—based synchronization gives the generality
which is necessary for a standard reference model for multimedia applications.

55.1.2 StateTransition Monitoring

The mechanism described in the previous allows various PREMO objects to monitor
media progress. This can be done in setting the appropriate reference points and (for ex-
ample) registering to the event handlers which might handle the events coming from
that synchronizable object.

Independently from media progress, however, objects may also wish to monitor the
state transition of thBynchr oni zabl e object. For this purpose, much like in the case
of Control | er objects, references teal | back objects can be assigned to pairs of
states; whenever th&/nchr oni zabl e object makes a state transition which corre-
sponds to this pair, theal | back operation on the registered object will be invoked.

55.1.3 Detailed Specification of the Synchr oni zabl e Object

The detailed (Java) specification of thenchr oni zabl e object is not very complex,
once the underlying principles are understood. The only slightly complicated feature is
how the exact type of the progression space is defined.

Remember that the progression spaceSyfrechr oni zabl e object can be based on
double, integer, or long integer values (see page 92). The choice of which type is being
used is the subtype’s, and it depends on the semantics of the media which is processed.
TheSynchr oni zabl e object is abstract (i.e., it cannot be instantiated per se), and sub-
types have the ability to fix the type through, e.g., their constructors.

In the Java interface specification, the (standard) Javantlabsr is used to access
points on the progression space. This class is a common superclagaobthe | nt ,
andLong Java classes, that is it can provide the necessary generality and abstraction
level. There is, however, one complication: for one spe&iechr oni zabl e in-
stance, the type to be used for its progression space must be the same for all calls, and
this must be checked fal method invocations which involve a progression space val-
ue. In our interface specification and implementation, all these methods may therefore
throw the standard Javal egal Ar gunent Excepti on in case the exact type of the
Nunber argument does not match the type of the progression Qpace.

TheSynchr oni zabl e object interface has the following inheritance structure:

D For C++ connoisseurs: the origina 1SO PREMO document makes use of a template class like mechanism
at this point, where the type parameter makes the exact choice for the progression space type. In other words,
the type would then be checked automatically. However, Java does not have any templates, so an explicit
check, with a corresponding exception, had to substitute the template specification.

100

public interface Synchroni zabl e
ext ends Cal | backByName, EnhancedPREMOObj ect, java.rm .Renpte

The only important point is that it is a subtype of Cal | backByNane, too. This means
that itisaCal | back, and that the semantics of the cal | back operation is such that it
would use the name of the event in its argument to find the operation to be invoked in-
ternally (see section 5.3.3). Thismeansthat, if Synchr oni zabl e objects are bound to-
gether in various patterns, operations such as st op, pause, €tc., can be coded into the
synchronization elements easily.

The methods defined in the Synchr oni zabl e interface can be grouped in various
categories. This categorization will be used in what followsto gain a better overview of
the methods.

55.1.3.1 Retrieve Only Attributes

Synchr oni zabl e objects define a number of internal attributes which are retrieve on-
ly, i.e., they are either constants, or they can be changed only by the object itself. They
are dl related to the internal processing loop of the object.

int getCurrentState() throws java.rm . RenpteException;

This operation returns the state of the object. The integer codes for the states are

grouped asfinal static integer values of the class St at e. The relevant constants are:
public static final int STOPPED
public static final int STARTED

public static final int PAUSED
public static final int WAITING

The operations

Nk o

Nunmber get M ni munPosi tion();
Nunber get Maxi nunPosi tion();

return the absolute minimal and maximal positions for the given instance. All position
values, when using this object instance, must bein thisinterval. The values MAX_VAL UE
or M N_VAL UE may also bereturned, denoting positive, or negative, infinity, respective-

ly.
The operation

Nunmber get Current Position();
returns, as its name suggests, the current position value, while the operation
int getLoopCounter();

returns the current loop counter value. Both these values change while the object
progresses in its processing loop.

101
5.5.1.3.2 Settable Attributes

These attributes control and/or modify the progression of the object along the progres-
sion space. All of them have in common that they can be set only if the object isin
STOPPED state, although they can beretrieved at any time. The exception W ongSt at e
isthrown if an attempt is made to change these values in awrong state. The semantics
of all these attributes must be clear by now.

void setDirection(Direction where) throwsWongState;
Direction getDirection()

voi d set StartPosition(Nunber position)
throws WongVal ue, WongState, |11 egal Argunent Excepti on;
Nunber get StartPosition()

voi d set EndPosi ti on(Nunber position)
throws WongVal ue, WongState, |11 egal Argunent Excepti on;
Nunmber get EndPosition()

voi d set Repeat FlI ag(bool ean flag) throwsWongState;
bool ean get Repeat Fl ag();

voi d set NLoop(int value)throws WongState, ||| egal Argument Excepti on;
int getNLoop();

voi d reset LoopCounter() throws WongSt at e;

The operation r eset LoopCount er setstheloop counter value back to NLoop, i.e., all
theloops will start all over again. Di r ect i on, which is used in some of the operations
above, is asimple enumeration:

public final class Direction extends preno.inpl.utils. PREMOEnumerati on

{

public static Direction Forward,
public static Direction Backward;

}

One more operation should be listed in this category, insofar as it modifies the current
position value:

voi d j unp(Nunmber position)
throws WongState, WongVal ue, |11 egal Argunment Excepti on;

The difference is that this operation can also be issued when the object is in PAUSED
state and not only in STOPPED state.

55.1.3.3 Management of Reference Points

Operations in this category can add or delete reference points and their corresponding
synchronization element. There are basically two ways reference points can be defined:

« specifying a synchronization element at an absolute position, or
¢ specifying a repeated (periodic) synchronization element.

102

The second possibility means that the same synchronization element is (conceptually)
repeated at the points:

startRefPoint + p, startRefPoint + 2 [, ..., startRefPoint + n [p

until an endRefPoint value is exceeded. The value of pisthe periodicity of the synchro-
nization element.

Reference points can be set or deleted only when the object isin STOPPED or PAUSED
state. The W ongSt at e exception isthrown in all other cases. All operations make use
of the simple PREMO object:

public class SyncEl enment extends Sinpl ePREMOObj ect {
public Call back eventHandl er;

publ i c Event syncEvent;
public boolean waitFlag;

}
to describe a synchronization element. The operations themselves are as follows:

voi d set SyncEl ement (Nunmber position, SyncEl enent syncEl ement)

throws WongState, WongVal ue, |11 egal Argunent Excepti on;
voi d del et eSyncEl enent (Nunber position)
throws WongState, WongVal ue, |11 egal Argunent Excepti on;

voi d set Peri odi cSyncEl ement (Nunber start Ref Poi nt, Nunber endRef Poi nt,
Nurber periodicity,
SyncEl ement syncDat a)
throws WongState, WongVal ue, |11 egal Argunent Excepti on;
voi d del et ePeri odi cSyncEl enent (Number start Ref Point,
Nurmber endRef Poi nt,
Nunber periodicity)
throws WongState, WongVal ue, |11 egal Argunent Excepti on;

A separate operation is defined to inquire the synchronization elementsin a specificin-
terval. This operation can be invoked at any time (note the use of an inner class in the
specification):

public class Synclnfo {

publ i ¢ SyncEl enment syncEl enment ;
public Nunber position;

public Synclnfo[] getSyncEl ements(Nunber posM n, Number posMax)
throws WongVal ue, 111 egal Argunent Excepti on;

55.1.34 Management of Action Elements

The following two operations are related to state transition monitoring actions. They set
and delete an action element to apair of allowable states. An action element isidentical
to the structure used for Cont r ol | er objects:

public class ActionEl enent extends Sinpl ePREMOObj ect {

public Call back eventHandler;
public String event Nane;

103

Using this action element means creating an Event instance with the specific name. The
event data (which is a key—value pair) uses the Kewrisi ti on” the pair of states,
which has just been used for transition, as value.
The operations themselves are quite simple; just as in the case of reference point
management, they can be invoke®&TtOPPED or PAUSED states only.
voi d set ActionOnPair(int statedd, int stateNew, ActionEl enent action)
throws WongState;
voi d renpveActionOnPair(int stated d, int stateNew)
throws WongState;
Again, aw ongSt at e exception is thrown if one of the arguments does not refer to a
valid state.

55.1.35 General Reset

This category has only one operation:
voi d cl ear SyncEl ements() throws WongState;

which deletesll reference points and action elements. It can be issU&DRPED or
PAUSED states only, of course.

5.5.1.4 Synchroni zabl e Objectsas Callbacks

A Synchr oni zabl e object has been defined as a subtypeabf backByName. This
means that other objects (most often o8yerchr oni zabl e objects) may call the var-
ious state transition operations, sucts@art, r esune, etc., through their respective
reference points. This is done by simply setting the name of the event being used in the
callback to the right call.

There is, however, a subtle but very important difference between calling these op-
erations directly, or doing it indirectly, through tbal | back method. All operations
on Synchr oni zabl e are defined as synchronous, i.e., the caller of the operation will
be suspended as long as the operation is not performed. By contrast, hoalever,
back is essentially asynchronous (see section 5.3.3), i.e., the catiet $sispended
when the state transition operation is invoked through this mechanism. This detail is
very important in practice; if this was not the case then, for example, the video object
on Figure 5-13 (see page 97) would be unnecessarily suspended while starting the au-
dio.

552 Timeand Synchronizable Objects

The synchronization model presented in section 5.5.1 is event-based, i.e., the notion of
time is not part of the abstraction level in that model. Clearly, applications also require
a more elaborate version, which would allow them to reason with time. This is achieved
in PREMO through the specification of a separate hierarchy of time objects and the spe-
cialization of a basic synchronizable object which would include the notion of time. The
time objects have already been presented in section 5.4.3. This section presents how
PREMO combines the notion of time with that of synchronization.

104

start resume

STARTED
TSTARTED

. — —

TPAUSED ™
resume e
Y pause N
stop / WAITING \\
STOPPED PAUSED | | ause /
TSTOPPED y
7
_ =

Figure 5-15 — State transitions of a time synchronizable object

The combination of thetwo facilitiesisembodied inthe Ti meSynchr oni zabl e ob-
ject type, which implements both the Ti mer interface (see page 90) and the Synchr o-
ni zabl e interface, as defined earlier in this section. In other words, a
Ti meSynchr oni zabl e has its own progression space with its own autonomous pro-
gression, as well as being essentially a stop—watch with its own notion of time.

Of course, implementing both interfaces is not enough; the semantics of the two ob-
ject types have to be reconciled. The semantic issues which arise are:

» How do the two finite state machines, represented by the two supertypes, coexist?
» What is the relationship of the progression space and the clock?
» How can the client control progression data in terms of time?

Let us take these questions one by one.
5521 Stop—Watch and Progression

The Ti mer object is a finite state machine, whose state transitions are represented on

Figure 5-9 on page 90. The Synchr oni zabl e object’s state transitions are depicted on
Figure 5-12 on page 94. The two state machines are very similar to one another. The
most noticeable difference is that thgnchr oni zabl e state machine has one extra
state Y\l TI NG), with some extra state transition operations. A straightforward way of
defining a “derived” state machine for thiemeSynchr oni zabl e object is to adopt the

state machine o$ynchroni zabl e, and identify the states of the stop—watch with
states of th&ynchr oni zabl e. This is shown on Figure 5-15. What this merger means,
semantically, is that

» while the object progresses along its progression space, the clock is running, too;

» “pausing” the progression means pausing the clock as well; also, if the object is
waiting on a reference point, the clock is paused;

» stopping progression means stopping and resetting the stop—watch, too.

105

speed / , / /

Reference Point

GRGHGNG EEn B

Synchronizable Object |
I

Object reference
Event Instance
Wait Flag

Synchronization Element

Figure 5-16 — A time synchronizable object

The effects of the various state transition operations, inherited both from Ti mer and
Synchr oni zabl e are clear from the figure; resuming a clock and resuming progres-
sion is done simultaneously, etc.

5.5.2.2 Timeand Progression Space

Merging the state machines does not yet create a link between two “progressions”,
namely moving along the progression space and along time. This link is created by an
additional attribute, called thepeed (see Figure 5-16). As its name suggests, this at-
tribute expresses the ratio between time and moving along the progression space. It is
the number of units on the progression space per clock tick. It must be emphasized, that
the value of the speed depends on the units used to measure time, settable through the
set Ti meUni t operations (inherited from the ner).

In general, the value of speed can be set and retrieved through the operations:

voi d set Speed(doubl e speed) throwsW ongSt at e;

doubl e get Speed();
These operations are defined as part offiheeSynchr oni zabl e interface (setting
speed is possible BIroPPED state only, hence th& ongSt at e exception in the spec-
ification). However, subtypes @f neSynchr oni zabl e may not have a settable speed
(see theTi neLi ne object below, for example) in which case #w Speed operation
is without effect. Most of th& meSynchr oni zabl e objects do allow a variable speed,
which can be used to speed up or slow down sound rates, animation frame rates, etc.

55.2.3 Reference Point Specificationsin Time
TheTi meSynchr oni zabl e object inherits a time register fromner , too. In ari mer

object, this register is reset to zero either when the object leaveESTHRPED state, or
through an explicit eset operation. In the case of tlieneSynchr oni zabl e object,

106

resetting this time register has additional semantics; it also puts a conceptual marker
against the current position on the progression space as well as resetting the time regis-
terD). Thismarked position on the progression space and the speed value together define
alinear transformation between the two spaces which makes an identification of time
and progression possible.

Ti meSynchr oni zabl e defines two operations which can be used to convert pro-
gression space values into time and vice versa. These operations are:

Nunber ti meToSpace(l ong tine)

| ong spaceToTi me(Nunber position) throwsll|egal Argunent Excepti on;
Using these two conversion methods, the client can choose to define reference pointsin
time, converting the time values into position values, and use the inherited reference
point management operations to set the reference points.

PREMO also defines a set of operations for Ti meSynchr oni zabl e, which are the
semantic equivalents of the operations defined in sections 5.5.1.3.1, 5.5.1.3.2, and
5.5.1.3.3, with the notabl e exception that thetypel ong isusedinstead of Nunber . Their
semanticsisidentical to their Synchr oni zabl e counterpart, except that positioning is
donein time and the current linear transformation between time and progression space
is used to identify the active reference points. The operations are (for smplicity, the ex-
ceptions are not listed thistime):

| ong get Ti neCurrent Posi tion();

| ong get Ti meM ni munPosi tion();

| ong get Ti meMaxi munPosi tion();

voi d setTimeStartPosition(long position);

I ong getTi neStartPosition();

voi d set Ti mreEndPosi ti on(l ong position);

| ong get Ti neEndPosi tion();

voi d junp(long position);

voi d set SyncEl enent (1 ong position, SyncEl enent syncEl enent);

voi d del et eSyncEl enent (1 ong position);

public class TimeSynclnfo {

publ i ¢ SyncEl enment syncEl enment ;
public |ong posi tion;

}Ti meSyncl nfo[] get SyncEl enents(l ong posMn, |ong posMax)
voi d set Periodi cSyncEl enent(|ong startRefPoint, |ong endRef Point,
long periodicity,
SyncEl ement syncDat a)
voi d del et ePeri odi cSyncEl enent (| ong startRefPoint, |ong endRef Point,
I ong periodicity)
Using these methods the client can, for example, make ajump in time directly, without
using the progression space.

There may, however, be a difference between using these operations explicitly, or
setting a synchronization element through the use of t i neToSpace. Synchronization
elements defined in terms of time are also stored internally in terms of time. This be-
comes important if the client resets the time register through an explicit r eset opera-

D Note that, if the register is reset through leaving the TSTOPPED state, this position is the default start pos-
tion of the object.

107

tion. Indeed, resetting the time register means changing the linear transformation
connecting time to progression space; consequently, if this reset is done while “play-
ing”, some reference points may, for example, become “active” again. Of course, if an
explicitr eset is never used, i.e., the linear transformation changes only through state
transition fromSTOPPED, use of time or use of the progression space becomes synony-
mous.

It must be emphasized that the abstTacteSynchr oni zabl e object still leaves a
lot of implementation details for the specific subtypes of this object. How the progres-
sion in time and progression in “space” are related to one another is often media specif-
ic. To take a simple example, let us consider at a (subtypé @Synchr oni zabl e
managing a video frame sequence. When asked for the next frame (i.e., when the
gr essPosi ti on operation is invoked), the object has to consider the local clock, the
value ofspeed and, maybe, some specifics of the video frame sequence, before decid-
ing on the next “current” position. Sophisticated implementations of PREMO, i.e., of
theTi meSynchr oni zabl e object, might decide to generalize such mechanisms, there-
by simplifying the task of the implementors of specific devices, but PREMO does not
specify these details.

The Ti meSynchr oni zabl e object has all the usual synchronization features at-
tached by various multimedia systems to their basic media representation. However, in
most of the systems, the distinction between (relative) time and the internal progression
space (e.g., video frames) is blurred, usually in favour of time only. PREMO maintains
this dual nature of media data, and leaves it to applications to decide which aspect of
media behaviour is more relevant in a concrete synchronization setting. This separation
is one of the advantages of a clear object oriented specification offered by a standard
such as PREMO

55.3 Combining Ti meSynchr oni zabl e Oobjects: Time Slaves

Ti meSynchr oni zabl e objects are appropriate for creating complex synchronization
patterns involving time. In an ideal world, where all local timers would represent an ab-
solutely precise real time, this would be enough. However, multimedia systems rarely
operate in an ideal world, and in practice all local timers will have a slightly different
speed, accuracy, etc. Hence the necessity of implementing mechanisms which may
monitor possible discrepancies.

PREMO does not aim at offering a full solution for this problem, because the neces-
sary reactions, the tolerated discrepancies, etc., are usually application dependent. PRE-
MO defines the basic mechanism which allows applications to implement a specific
behaviour, and it does this in terms of a new object type, calfédesl ave object.

What this object essentially does is to control its own behaviour in terms of the timer
data ofanother Ti meSynchr oni zabl e object..

As we saw in section 5.5.2.2, the notion of speed is the essential attribute which binds
the progression space of TameSynchroni zabl e object and its own clock. The
Ti meSl ave object is a subtype @i meSynchr oni zabl e, which allows the client to
set amaster Ti meSynchr oni zabl e object:

108

TimeSynchronizable (master)

;
|
|
9909 LTI

I/ E/I/I } } } } }
speed /://‘
,/,//,
L
T L
o
.

P
SERE R |
TimeSlave :

]

Figure 5-17 — A time slave object

public interface Ti meSl ave
extends Ti meSynchroni zable, java.rm . Renpte

{

voi d set Mast er (Ti meSynchroni zabl e master) throws WongSt at e;
Ti meSynchroni zabl e get Master ()

}
(as usual, the setting of such an attribute can be done in STOPPED state only, hence the
exception). The default value for the master is nul |, in which case the behaviour of
Ti meSl ave isexactly analogousto Ti meSynchr oni zabl e. However, if the master is
not nul | , the speed value of the object, hence the transformations governing the refer-
ence point specifications, the progression speed, etc., isto be understood relative to the
clock of the master object. This means that, for example, if the pr ogr essPosi ti on
operation uses the current time value to decide on the next position (see page 107), the
“current time” should refer to theaster in this case. Also, if the client changes the way
the master operates (e.g., changing the units of measurement) this change will affect the
behaviour of all th&i neSl ave objects attached to the same master. On the other hand,
because all slaves use the same clock, their behaviour in time is guaranteed to be prop-
erly synchronized.

Does the internal clock of theé meSl ave object play any role in this case? It does.
Indeed, one should not forget that the internal clock TifreSynchr oni zabl e can
be seen as being the “ideal” clock for the object, that is why it is internal to it in the first
place. Conceptually, the state machine for this local clock is still in effect, and it is only
the progression in time which is “delegated” to the master. It is therefore very important
to measure whether a discrepancy exists between the clock of the master and the inher-
ent clock of the object. For that purpose, the TimeSlave object continuously monitors
thealignment value between the two clocks. This alignment between the two clocks can
be measured as follows:

109

| Tickgave —9(Tick

master) ‘

where g() is a function which transforms the ticks of the master into the units of the
slave, and takes into account the tick value of the master when ther eset operation has
beeninvoked on Ti meSl ave. A discrepancy occursif thisvalue exceeds certain thresh-
olds.

The client has two means of monitoring for a discrepancy. First of all, the alignment
may beinquired at any time through the operation:

I ong inquireAlignnent();

which will return the value in the time measurement units of the Ti neS| ave object.
This can help the client in implementing various monitoring policiesto react against in-
creasing discrepancies. However, this approach till requires an activeinquiry; asan al-
ternative, the PREMO event handling mechanism can also be used. Through the
operation

public class syncHandl er {

Cal | back handl er;
| ong t hr eshol d;

3/oi d set SyncEvent Handl ers(syncHandl er[] syncEventHandl ers);
the client can set a series of callback references. The events are raised by the
Ti meSl ave object when thresholds are exceeded by the aignment. The events them-
selves have the following structure tags: event nameuisCf Sync”, event data con-
tains one key—value pair, usindi‘scr epancy” as key and the actual alignment as a
float value. (By default, no events are raised, i.e., the client has to set the threshold val-
ues and the corresponding callback references through an esgiigitncEvent Han-
dl er s operation request; by setting an empty array, the default is restored.) Setting
appropriate event handlers the client, and indeed the application, can react to various
discrepancies instantaneously, by making TheeSl ave object jump over certain
frames, by slowing down the pace of the master, by trying to acquire additional resourc-
es, etc.

554 Time-Lines

The Ti neLi ne object of PREMO does not add any significantly new feature to PRE-
MO, but is agood example of how the abstractions of the various objects may be used
to derive aspecific, and useful object type. A Ti neLi ne object isdefined asasubtype
of Ti meSynchr oni zabl e, where the progression space is defined to be Long, and the
value of speed isset to be of constant value 1. In other words, the abstract progression
space and time are fully merged with one another in this case. This object can be used
to send events at predefined moments in time to dedicated PREMO objects, and may
thereby serve as a basic tool for time—based synchronization patterns:

public interface TineLine
extends TimeSynchronizable, java.rni.Renote

{}

110
5.6 Negotiation and Configuration M anagement

One of the main challenges of distributed multimediaapplicationsisto cope with an ex-

treme variety of environmental constraints. These constraints may include resource
problems (e.g., processor speed, memory sizes), availability of special hardware exten-

sions (e.g., graphics accelerators, MPEG coder and decoder hardware, audio exten-

sions), detailed capabilities of specific services, etc. Furthermore, a distributed
application may not be prepared to meet all these constraints at “compile—time”, i.e.,
when the application is defined and installed; some of these constraints may change dy-
namically, and the application may be required to adapt itself to a changing environ-
ment. This adaptation may mean starting up the most appropriate object instance
depending of the constraints at the time of activation, dynamically changing the behav-
iour of the client and/or service objects, etc. Another way of saying this is that the ap-
plication is supposed to “negotiate” with its environment, and reconfigure itself in an
optimal way.

This problem, as stated here, is very general and has numerous facets; PREMO can-
not deal with it in its entirety. Indeed, this would, for example, require that PREMO pro-
vides a detailed specification of a number of object—oriented services which are
necessary for a “smart” application management, such as metadata information about
objects, rich interface repositories, global access information, etc. These specification
are the subject of a series of ongoing work within, for example, OMG (so—called trad-
ers, interface repositories, etc.; see, e.g. [70,86]) and it is very probable that appropriate
Java APIs will also be published in the near future. It is not the goal of PREMO to com-
pete with these. Instead, it should rely on the general concepts underlying these speci-
fications. In line with the charter of PREMO, i.e., to provide a reference model for
“middleware” in multimedia, PREMO does not define general constraint management
or negotiation algorithms either. Instead, it defines the necessary “hooks” in its object
specifications, which would allow the implementation of various algorithms on the top
of the PREMO objects. These hooks should also be easily usable with, for example, the
newest trader services of OMG or the future Java APIs.

To answer these challenges, the fundamental approach chosen by PREMO is to build
upon the general notion of properties, described in section 5.3.4.2. Properties are the ba-
sic building blocks for various configuration and negotiation mechanisms; as described
already, they provide a means to specialize object instances, beyond what the type spec-
ification can do. As a general principle, the parameters governing the behaviour of ob-
jects in PREMO are described in terms of properties, rather than class attributes, if they
are subject to further dynamic negotiations.

5.6.1 General Notions

The properties services, as defined in section 5.3.4.2, give clients the ability to attach
any property to an object instance. Both the keys used by the client and the attached val-
ues are at the client’s discretion. However, for the purpose of negotiations, the specifi-
cation of an object type may alsmjuire the existence of certain properties. This means
that the object specification defines a number of property keys whielways present

11

for aspecific object (they are defined automatically when the object is constructed); fur-
thermore, the specification also defines the type of values which may be assigned to a

specific key, in the same way that the type of an object attribute is defined when it is

defined as part of an object type. The fact that these pre—defined properties are always
present makes it possible to define a negotiation mechanism based on setting and in-
quiring their values.

As a notational convention, we will refer to properties defined by clients, i.e., prop-
erties which are not part of the object type specification, as “private” properties. Being
private means that no guarantee for the existence of these properties can Behigiven.
chapter deals exclusively with non—private properJt?es

A negotiation based on propertiesrequiresthat the client can inquire the possible val-
uesfor aspecific property key. This goes beyond what the object specification may pro-
vide; whereas the object specification may define the type of the property value, it
cannot specify the possible rangeof values. To refer to our audio example on page 72,

a property was defined to describe the possible audio formats an object may handle;
however, the maximum aformal object specification may contain isthat the type of the
values are, asin our example, strings. Additional information may be necessary to de-
scribe that, e.g., the value of this property may contain the sti#ngs", “ Al FC’, and
only those. This additional piece of information is referred asaahbility of the object
for a key.

Things can get more complicated. Indeed, the capability describes the possible range
of property values for a specifigpe. However, when an object is instantiated, the ob-
ject may discover that not all admissible property values may really be used. For exam-
ple, the object may realize that the specific graphics hardware does not allow for proper
texture mapping, which means that most of the properties, which may be defined for
texture mapping, may become meaningfesshis instance. In other words, whereas
the objectype is prepared for a full generality, the object instance, which has to run in
a specific environment, may not fulfill all the requirements which are defined in the ob-
ject type. Consequently, there is a need for an additional piece of information, referred
to as thenative property value for a key. This is the counterpart of the capability, but for
aninstance and not for a type. The native property value constrains the values which
can be set for a property.

Finally, the object may have additional knowledge about what the best values are for
a specific key on a specific instance. For example, the native property value for a key
describing the shading algorithm of a graphics renderer might include the values
“Phong”, “Gour aul d”, or “Fl at”. In other words, the client does have the ability to
set any of the three shading methods, because all three values are permissible. However,
the renderer object might be able to measure the load of the machine it is running on, as
well as the resource requirements to perform a full Phong shading; based on these data,
it can provide information to the client on what the optimal values are for a specific key
(e.g., by stripping thePhong” value, deemed to require too many resources).

D Another general notational convention, adopted by PREMO, is that the names of non—private properties,
as defined as part of the functional specification of objects, usually end with the chdfacter “

112

Capability
Possible values for a type
— - - - \
— - \
__ — 7 Native Property Values ~
o Possible values for an instance
— =
— — = — —~ - ~
c — 1
| | |]
=

— — ~1 1

~~ _Preferred values via select() Pz
~
-~ e

~ - /

~
— e
~

Constrained values

Figure 5-18 — Type properties, capabilities, constraining properties

Figure 5-19 — Objects for property-based negotiations

Figure 5-18 gives a schematic overview of the notions involved. The object may de-
fine, as part of itstype specification, the possible values for akey on the type level; this
is the capability. An instance of the object type may restrict the possible values to the
native property values. Both the capability and the native property values, if defined by
the object specification, can be inquired by any client. If the client sets the values for
this property, these valueswill be constrained to the permissible ones. Finally, the object
may also return the set of preferred values, depending on the state of the environment.

These general notions are realized through two PREMO object types. The abstract
type Proper t yl nqui ry, asits name suggests, allows the client to inquire the capabil-
itiesand the native property values. The Pr oper t yConst r ai nt object, whichisasub-
type of Propertyl nqui ry, contains all methods which may constrain the values of
properties. These objects will be described in detail in the following pages.

113
5.6.2 Property Inquiry Objects

Propertyl nqui ry object are subtypes of Enhanced PREMO objects so they inherit

the general property management operations described in section 5.3.4.2. Furthermore,
capabilities may also be defined for non—private properties. Although capabilities have
a well specified semantics (see the previous section), from a purely formal point of view
they are no different from other properties: they are defined through special, read—only
properties. In other words, they are properties which provide information about other
properties? To differentiate capabilities from the other properties, a naming convention
is adopted: for a property namsaheK”, the corresponding capability can be retrieved
through the property keyNameCK”. The value of the property for a capability (yes, it
does get a bit confusing sometimes; this refers to the array for the capability, e.g., the
array belonging to the property kenaireCK”...) is usually a list of admissible values.

In some cases, the array may contain only two numerical values, referring to an admis-
sible numerical interval. This depends on the semantics of the object.

It must be emphasized that itrist required that all non—private properties have a
corresponding capability. For example, a property is definedeasiér TagK”, denot-
ing the vendor of a specific object (see below); although PREMO might require that all
objects of a specific type should have this property defined, there is no sensible way of
defining the capability to this property because the set of possible vendors is dynamic
and possibly large.

Native property values are, essentially, copies of the corresponding capabilities, with
possibly some values omitted. They can be accessed through a special method specified
for thePr oper t yl nqui ry type and this is the only additional method on this interface,
compared t&nhancedPREMOObj ect . Here is the full specification of the type:

public interface Propertylnquiry
ext ends EnhancedPREMOObj ect, java.rm . Renpte {
Obj ect[] inquireNativePropertyValue(String key)
throws InvalidKey;

}

Beyond the type specification, PREMO also requires the existence of some properties
for the typePr oper t yl nqui ry objects (and hence for all its subtypes). Thes&:are

Key Type Read—only? Description
Locat i onK String yes Network location.
Vendor TagK String yes Implementation dependent.
Rel easeK String yes Implementation dependent.

D Formally, capabilities might have been defined as special class variables, too, one per capability. However,

this would have meant defining a large number of accessor methods to those class variables (using direct

access to the class variables in a distributed setting is not really possible) which might have cluttered the

type specifications.

2 Formally, a property is defined as an array of values, see page 71. The “Type” column refers to the type of
the objects appearing in this array.

114

The semantics of these properties are straightforward. The network location should be
a string which can be used to address a node on the network, e.g., the Internet (usually
the hostname, e.g., r oei boot . cwi . nl). The two other properties have no special se-
mantics attached to them.

5.6.3 Constraining Properties

Properties may be constrained through the methods defined in the Pr opert yCon-
straint interface.
First of al, thisinterface overridesthe def i nePr oper t y and the addVval ue meth-
ods, both inherited from the EnhancedPREMOObj ect interface:
voi d defineProperty(String key, Object[] val ue)
t hrows ReadOnl yProperty, InvalidVal ue;
voi d addVal ue(String key, Object val ue)
throws ReadOnl yProperty, InvalidVal ue;
Compared to the “original” versions, both methods have one more exception that they
can throw, namelynval i dval ue. This happens if the value or values are outside the
range of the native property value of the object (for the specific key). The data in the
exception returns the unacceptable values, and the properties are not changed if an ex-
ception is raised.
The type defines an additional property setting operation which can be used to “col-
lect” a series of properties and set them all at once:
PropertyPair[] constrain(PropertyPair[] constraints)
throws InvalidKey, InvalidValue;
(ThePropert yPai r non—object type has been defined on page 72.) The method at-
tempts to set all the properties as defined in its argument; however, for all property keys,
it also checks the values, which should be within the range defined by the native prop-
erty values. In other words, it takes the intersection of the property values in the argu-
ment and the native property value for the same keyl hal i dval ue exception is
only raised if one of the values is of an inapproprigte. Instead of raising an excep-
tion if a value is not permitted (e.g., not listed as an acceptable native property value),
the value will be simply ignored. On the other hand, the operation returns the new set
of values automatically, i.e., the client can check the result of the constraining operation.
This operation is particularly useful in a distributed environment where the number of
operation calls should be kept low; usitwnst r ai n the client can set the properties
in a batch.
Thesel ect operation gives a much more active role tortheper t yConst r ai nt
object. Formally, it is similar to theonst r ai n operation above:
PropertyPair[] select(PropertyPair[] constraints)
throws InvalidKey, InvalidValue;
However, this operation not only calculates the intersection of the values with the native
property values; it may also apply some further selection, thereby restricting the accept-
ed property values. Of course, the restriction depends on the exact type of the object per-
forming this operation; obviously, by default, the effect of this method is identical to
constrain.

115

5.6.4 Dynamic Change of Properties

Constraining properties to specific values may also be related to the state of the object.

The problem is that the distinction between read—only and general properties does not
account for the fact that, in some cases, the lifetime of an object may clearly be divided
into a “configuration” phase and a real “working” phase; depending on the phase the
object is in, a property may have to be static, i.e., read—only, or changeable. For exam-
ple, properties may control the sample size and the sample rate of some data, such as
audio. These properties may be set in a configuration phase; however, once the media
stream flows, neither the client nor the object itself should change these values, i.e., the
properties should become (temporarily) read—only.

Changeable properties may again fall into two categories: mutable or dynamic. Mu-
table properties are such thatatient should be able to change these values when the
media stream flows, although the object itself may change them. Such values might, for
example, change as a result of decoding a protocol found within the media stream which
defines the mutable property value (e.g., the quantization matrix of an MPEG flow). Fi-
nally, there may be properties which may be changed at any time. These are referred to
as dynamic properties.

To manage these situations, theper t yConst r ai nt object should be viewed as
a tiny finite state machine which has two states: bound and unbound. There are two
methods to change the state of the object:

voi d bind() throws InvalidValue, java.rm .RenpteException;

voi d unbind() throws java.rm .RenoteException;

(the reader should disregard theval i dval ue exception for now, we will come back

to it in the next section). When in the bound state, properties which are not defined to
be fully dynamic become read—only. The corresponding exceptions are raised if the cli-
ent attempts to change these values through, e.guqdval ue method. Once the state

of the object becomes unbound again, the property values may be changed.

How does the client know which are the dynamic and the mutable properties, or none
of the two? Of course, through additional read—only properties again... PREMO defines
the following read—only properties fBr opert yConst r ai nt :

Key Type Read—only? Description
Mut abl ePr opert yK String yes List of mutable property
keys.
Dynani cPropertyK String yes List of dynamic property
keys.

i.e., these properties may be inquired to find out whtblr properties are mutable or
dynamic. In other words, if the state of the object is bound, only the properties, whose
keys are listed in the property value Bynani cPr oper t yK, can be changed; all other
properties (the non—private ones, that is) become temporarily read—only.

These properties are the first examples where capabilities are also defined:

116

Key Type Description

Mut abl ePr oper t yCK String Type dependent list of
mutable properties

Dynani cPropert yCK String Type dependent list of
dynamic properties.

Of course, these capabilities have a limited interest only, because the corresponding
keys are read—only, i.e., the property constraining mechanism cannot be applied. How-
ever, because a capability is defined, a native property value is also available, and this
may be of real interest. Indeed, if the native property value provides a subset of, say,
what is listed in th®ynani cPr oper t yCK array, this means that the object instance im-
poses a further restriction on the changing of certain properties, compared to what the
object type allows.

At construction time (and only then, of course!) each subtype of thePtyyper -
tyConstrai nt may add its own values to these capability arrays, i.e., if a key is de-
fined to be, e.g., dynamic, it remains dynamic in subtypes, too.

5.6.5 Interaction among Properties

The mechanisms described in the preceding section are missing a feature. All property
constraining mechanism hitherto described refeort® property key only. In other
words, how one property value is set for a specific key is independent of the values set
for another key.

However, in reality, mutual dependencies also occur. Referring to an audio object
again, it may have two properties, say, sample size and sample rate. In our example, the
sample size can be of 8 bits or 16 bits, while sample rate can be 8 KHz or 40 KHz. If all
combinations of properties are possible, then the possible options are

Sr=8KHz Sr=40KHz
Ss=8bhit Sz=8hit, Sr=8KHz Sz=8hit, Sr=40KHz
Ss=16bit Ss=16hit, Sr=BKHz Ss=16bit, Sr=40KHz

The complication is that, in practice, media objects abstract real media devices. These
media devices often allow only restricted combinations of property values for a specific
instance. The audio device, for example, could support the following combinations on-

ly:

Sr=8KHz Sr=40KHz
Ss=8bit Sz=8bit, Sr=8KHz
Ss=16bit Ss=16bhit, Sr=40KHz

117

in other words, only certain combinations of property values are acceptable.

To remedy the problem, yet another pair of property and capability value is defined
for Propert yConst r ai nt, which describes the permissible combinations of proper-
ties. The property is as follows:

Key Type Read—only? Description
Val ueSpaceNaneK PropertyPair[] yes List of mutual property
dependencies.

What does this property describe? First of all, the property value is an array of the

“Type” in the table, i.e., it is an array of an array of property pairs. That means that each
element of the array describes a sequence of possible key—value combinations, which
refer to non—private keys of the object. When checking the correctness of the property
settings, one of the elements of this outer array should describe a combination which
fits with the current values.

What does it mean “fitting with the current values™? All non—private properties of
the objects should be considered, and these values should be compared to the values list-
ed in theval ueSpaceNameK array element. If the current values are all subsets of the
required values, than the values are accepted. If this is true for all elements appearing
in theVval ueSpaceNameK array element, than the overall property settings for the ob-
ject instance are accepted. (There are some boundary conditions: if a key does not ap-
pear in aval ueSpaceNameK array element, this means that the combination does not
impose any further constraints on this property, i.e., all values are accepted; finally, if
the full val ueSpaceNaneK array is empty, than no mutual dependency is imposed
upon the properties of the object at all.) A capability,ueSpaceNaneCK, is also de-
fined for the object with the obvious meaning.

A question remains: when is this mutual dependency check done? This is done by
the bi nd operation. Recall that this operation (see page 115) changes the state of the
object from unbound to bound; essentially, this operation closes the “configuration
phase” in the lifetime of the object. However, before changing the state of the object,
the operation performs the check on the property values of the object, usiry the
ueSpaceNanmeK property, as described above. If a problem is found, the state of the ob-
ject doesnot change, and anhnval i dval ue exception is raised. The exception
instance will contain an array of property pair classes, listing the key and value pairs
which were not accepted. Using this information, the caller can check where things
went wrong in setting the properties of the object.

5.6.6 Some Conclusions on the Negotiation Facilities

The mechanism which has been described in this chapter by no means offers a full so-
lution for all possible constraint problems. For example, PREMO does not include ex-

plicit management for general constraints, such as geometric constraints, although this
might be a very important feature in practice. This decision was not easily made, and
was the result of long and sometimes passionate discussions within the PREMO team.

118

There isindeed a classic tension between the genera requirements of constraint man-
agement and the essence of object—orientedness. Whereas the latter advocates informa-
tion hiding, the former requires a complete knowledge of all the attributes related to an
object (see, for example [27]). It was recognised that there is no widely accepted object
model which would solve this problem in a satisfactory manner and in general terms.
Because PREMO is an international standard, i.e., a platform for general consensus, the
development team finally decided not to include a fully general mechanism for con-
straint management.

However, the property constraining mechanism is a very powerful tool, and can be
used to implement a large number of algorithms. It uses concepts which are very famil-
iar in the distributed object world, like the OMG property services, which makes it easy
to implement and match with external facilities. As we will see in other chapters of this
book, its level of abstraction is quite appropriate for the kind of negotiations PREMO
tries to cover, without requiring very complex concepts — this is, in fact, its major
strength.

5.7 Creation of Service Objects

All previous sections were silent on one important issue: how are PREMO objects cre-
ated?

This seems to be a simple problem at first glance. Practically all object—oriented en-
vironments, including Java, have language features to create new instances of objects.
In Java, for example, one uses tleev statement which creates a new and properly in-
itialized instance of a class. However, when an application is embedded into a distrib-
uted environment, things are much less obvious. An object may have to be created on
another node on a network (i.e., within another instance of a Java Virtual Machine, in
the case of Java) which cannot be done directly méth The newly created object
must be “exported” somehow as a server object on the network, etc. Furthermore, in
most cases, the caller (i.e., the object which initiates object creation) receives a refer-
ence to “stub” object rather than to the real object itself. This must also be handled.

Obviously, the intimate details of object creation belong to the somewhat grey area
which separates the pure PREMO world from its implementation environment, and
PREMO cannot control all aspects of this process. Just as in the case of the general
property and negotiation management facilities (see page 110), the approach of PRE-
MO is to specify only a few, rather abstract objects which describe what is necessary in
terms of PREMO, and leave all the details for the implementors of these objects. In the
case of object creation, two such objects are defined: generic factories and factory find-
ers.

5.71 Generic Factory Objects

The purpose of the generic factory object is to provide a wrapper around the object cre-
ation facilities, but taking a list of property requirements into consideration, too, when
creating an object. These properties describe the required characteristics of the object
to be created.

119

The interface of the object isrelatively simple:

public interface GenericFactory
extends Propertylnquiry, java.rm .Renpte

{

Propertylnquiry createQoject(d ass obj ect Type,
PropertyPair[] constraints,
oj ect i ni tVval ue)

throws InvalidCapabilities, CannotMeetCapabilities,
I nval i dType, Incorrectlnit;

}
however, this apparent ssmplicity hides avery complex operation. The semantics of the
cal isasfollows.

Thegoal isto create an instance of thetype obj ect Type, and to initialize this object
instance with the valuei ni t Val ue (throughthei ni ti al i ze operation, see page 64).
This object creation may be remote, i.e., the object instance itself may run on aremote
node, and only a reference to this remote object (or its stub) isto be returned. In other
words, the factory implementation should hide the peculiarities of remote object crea-
tion.

Furthermore, asinglefactory instance may have the ability to instantiate various em-
bodiments of the same object type. For example, thefactory may have accessto all com-
puters within an internal network and it could therefore create an instance on any node
of this network. Which node should it choose? How should it control the choice?

Thisiswheretheconst r ai nt s argument comesinto play. Thisargumentisan array
of property keys and corresponding values; the goal is to control the properties of the
object to be created. To be more precise, the native property values of the new object
instance should be a superset of the values appearing in the const r ai nt array. Recall
(see section 5.6.2) that the native property valuestell us the possible values for a prop-
erty an object instance may have. Therole of the const r ai nt argument isthereforeto
define some kind of a minimal capacity of this object. Of course, the factory may not
be able to fulfil all these requirements; various exceptions are defined to designate fail-
ure. These exceptions are quite self-evident.

A full-blown implementation of a generic factory object may be very complicated.
It relies on a complex infrastructure governing a distributed object environment. Inter-
face repositories should be available where descriptions of the various possible object
instantiations are made available to factories, which can then choose the optimal in-
stances; access to remote instantiation procedures should be provided to create an object
on a remote node (by setting thecat i onK property within theconst r ai nt argu-
ment, the caller of ther eat eCbj ect method can control where the new instance
should run!), etc. Fortunately, such infrastructures are emerging, both in the OMG
world, as well as within Javh which makes the implementation of powerful generic
factories feasible.

D At the time of writi ng, the interface repository facilities of Java are quite simple, but we can be sure that by
the time this book appears on the bookshelves, much better facilitieswill be available.

120

1) Client requests a reference to a factory capable of
satisfying a capability list passed as parameter.

2) Factory Finder returns a Factory refer-
ence.

3) Client requests the creation of an object
from the Factory, with a constraint list on the

) object to be created.
4) Factory possibly creates the ob-

5) Later, the client destroys the ject and returns reference to its cli-
reference, and the object itself. ent.

Figure 5-20 — use of factory finders and factories

The attentive reader may have realized that the return type of cr eat eoj ect is
Propert yl nqui ry, and not EnhancedPREMOObj ect . Indeed, only these objects have
a native property value defined. This al'so means that a majority of the objects defined
in Part 2 of PREMO cannot be instantiated through a generic factory. They have to be
instantiated locally, albeit making them available to the full distributed setting. This
may seem asarestriction at first glance. However, asit will become clear in the chapters
to come, all “big” objects, abstracting virtual multimedia devices, renderers, etc., are,
in fact,Pr oper t yl nqui ry objects. They may have internal instances of other objects,
such as event handlers, which may have to be exported, but they usually control the cre-
ation of these simpler entities. As a consequence, factories are not really needed for the
creation of the objects which are mptopert yI nqui ry objects, tod

5.7.2 Factory Finders
Of course, to use a factory, the caller must have access to it. In other words, a reference

to a factory object has to be located. This is done by a separate object, called the factory
finder object, whose specification is as follows:

D Strictly speaking, this is not always true. Exporting an object through RMI in Java requires some addi-
tional calls beyond the simple construction of the objects. Of course, these statements could be added to the
constructor of al the objects, thereby hiding the problem. However, experience shows that access to objects
which are exported as RMI serversis somewhat slower than accessing them directly, especially if accessed
within the same JVM. As a consequence, optimization may require to separate object creation from their
export through RMI, and this separation leads to separate facilities for object creation. Thisis, however, and
optimization issue which is not, and should not be, addressed by PREMO.

121

public interface FactoryFi nder
ext ends EnhancedPREMOObj ect, java.rm . Renpte

{

GenericFactory[] findFactories(
Cl ass obj ect Type,
PropertyPair[] objectConstraints,
PropertyPair[] factoryConstraints)
throws InvalidCapabilities, CannotMeetCapabilities,
I nval i dType;

}
The goal isto locate an set of factories, which have the following characteristics:

e they can all create an object typeatfj ect Type (which must be a subtype of
Propertyl ngiry);

« the capabilities of the objects of typkj ect Type should be a superset of the prop-
erty values described bj ect Const rai nt s argument; and

« the capabilities of the factory objects themselves should be a superset of the proper-
ties described ihact or yConst r ai nt s argument.

All three arguments may beil | , meaning that the corresponding constraints do not
apply. For example, the valuealj ect Type may benul | , governing thé&act or y-

Fi nder object to locate a set of factories with general capabilities described by the ar-
gumentf act or yConstraints.

The semantics is a bit similar to the behaviour of the generic factory itself. The idea
is to locate a set of factories which will be able to create certain types of objects. The
constraints used for this purpose are simply more specifically tailored to the need of fac-
tory access. Here again, just like in the case of the factory objects themselves, the oper-
ation may not find the appropriate factories, either because it does not have necessary
information available, or because appropriate factories are not accessible. Exceptions
are raised in this case with an obvious meaning.

Of course, the “recursion” could continue; in order to find a factory finder object, a
finder of factory finders should be defined, etc., and this could go on ad infinitum. How-
ever, PREMO stops at this point. It is implementation dependent how an application can
access a factory finder.

5.7.3 Useof Factoriesand Factory Finders

We emphasized on page 119 that the full-blown implementation of a factory (as well as
of a factory finder, as a matter of fact) can be very complex, and it relies heavily on the
facilities provided by the implementation environment of a specific PREMO implemen-
tation. In what follows, only a very simple scheme is shown how factories and factory
finders may operate in practice. We emphasized in Chapter 4 that this book relies on a
prototypical implementation only, which waives a number of issues and complexities,
concentrating on the main points only. However, even such a simple scheme may help
in understanding how these object may cooperate.

122

0
C Z
Network *

- -
®

GenericFactory GenericFactory
,

B

Figure 5-21 — Simple use of factories

Figure 5-20 gives a schematic view of how a client, a factory finder, and a factory

cooperate in the life cycle of a PREMO object instance. In fact, this schemeis still in-
dependent of any implementation, and reflects the general notions described earlier.
Figure 5-21 shows how factories operate in our practice. Each box represents a separate
JavaVirtual Machine, running PREMO, and cooperating through Java RMI. In this ex-
ample thereis only one JVM running on a specific network location (i.e., one VM per
machine) which simplify theidentification of aJvV M. Each virtual machinerunsonein-
stance of a generic factory, and only one. Thisinstance is al'so exported to RMI, i.e., it
operates as a service over the network. The restriction in our case is that a factory in-
stance can create objects within its own JVM only.

If an object, running in JVM marked “A” on the figure, wants to instantiate another
object within the JVM marked “B”, it must refer to the factory objects assigned to JVM
“B”, and invoke itscr eat eObj ect operation (this invocation goes through the Java
RMI facilities). The factory object of JVM “B” will create an object instance, initialize
it, export its reference to RMI to make it a service object, and return the reference to the
object to the caller. To be somewhat more precise, the request to the factory object refers
to an object typas defined in PREMO, i.e., it refers to an interface defined in one of
the preno. st d. part X packages. In view of our “dual” scheme of object interfaces
and their implementation (see section 4.2.1), the factory will instantiate ting!*”
counterpart of the interface, i.e., its implementation, and a stub reference to this imple-
mentation instance will be returned to the caller.

Each node also runs one and only one instance of a factory finder object (not shown
on the figure). The role of the factory finder objects is to locate the various Java JVMs,
using their network location name. This network location name can be requested by the
user of the factory finder object by filling in thedcat i onK” property in thef act o-
ryConst rai nt argument of théi ndFact ori es call. Because in our example there
is only one generic factory running per network location, the hostname is enough to ex-
trapolate the name of the generic factory object, and locate it through the standard Java
RMI facilities (the details are not really of importance here). Slightly more complex fa-
cilities can also be easily implemented (e.g., underspecifying the host domain name in
the location, allowing the localization of a range of factory objects, etc.).

123

Using these facilities, here is how a generic factory, running on the host called
“hydral. cwi . nl”, can be located (theREMORunt i ne class, used in the example, is

an object which collects some general, static variables and methods which are necessary

to start—up and run PREMO applications):

Fact oryFi nder fFi nder = PREMORunt i ne. | ocal Fact or yFi nder;
PropertyPairl ocs[] = new PropertyPair[1];
bj ect[] vals new Object[] { “hydral.cwi.nl” };

PropertyPairlocation = new PropertyPair(“LocationsK”,vals);
locs[0] = location;
GenericFactory CWI = (fFinder.findFactories(null,null,locs))[0];

of course, thisis abit long, because all data structures had to be created from scratch.
If, as a next step, the factory on the nodier'st er . yor k. ac. uk” is to be located, this
is simply done by:

| ocation. val s[0] = “minster.york.ac.uk”;

GenericFactory York = (fFinder.findFactories(null,null,locs))[0];
Note that no further constraints have been imposed on the factories this time, not even
for the type of objectsthey can create.

Using the factories retrieved above, new object instances are created easily (again,
the property constraint features are not used):

AudioDevice vDev = (AudioDevice) CWI.createObject(audioClass,null);

Renderer ren = (Renderer) York.createObject(rendererClass,null);
which will create avirtual device and a renderer object, one on a machine on the CWI
domain in the Netherlands, the other on a machine at York, in the UK (audi oC ass
and r ender er Cl ass are supposed to be O ass objects referring to the relevant PRE-
MO interfaces). Provided the network throughput is fast enough (which is never the
casel) the two authors of thisbook can then cooperate through these objects for the pur-
pose of multimedia rendering...

124

Chapter 6

Multimedia Systems Services Component

6.1 Introduction

“Multimedia Systems Services” (MSS) was the name given by the Interactive Multime-
dia Association (IMA}) to a model for distributed multimedia applications. This model
was specified by a working party of IMA which grouped representatives of various mul-
timedia technology and content providers as well as workstation manufacturers. Later,
in 1995, this specification was submitted to ISO to be included in the PREMO standard.
After some major editing work, which significantly influenced other parts of PREMO,
MSS has become a core component of PREMO (as Part 3 of the document), with its
original name retained.

The original goal of the MSS was to provide “an infrastructure for building multime-
dia computing platforms that would support interactive multimedia applications dealing
with synchronized, time—based media in a heterogeneous distributed environment”.
Operation in a distributed environment was considered to be very important, in line with
the significant trends in the computer industry towards client/server and collaborative
computing. While achieving the original goals, the model put forward by IMA has prov-
en to be very powerful, and potentially applicable as a conceptual model for multimedia
processing in general, not only for distribution. This is the role it now plays as part of
the PREMO standard.

The conceptual model of MSS is based on a dataflow network of devices, the so—
calledvirtual devices, each of which is an autonomous processing unit (see Figure 6-1).
The nature of the processing (capture, encoding, filtering, display, etc.) varies according
to the specific device object (and is implemented through subtyping). The directed links
among the virtual devices are timedia streams, which serve as a way to send media
data from one node to the other. Each virtual device has a numb@tfwhich can
be either input or output, and which are used to convey the content of the media streams
to and from virtual devices. The number of ports, as well as their “direction”, is device
specific. A device may have no input port at all (for example, by producing an anima-
tion sequence on its output port, based only on some internal data), or have no output
port (for example, a graphics display engine, which receives data to display, but does

D The Interactive Multimedia Association (IMA) is alarge, international trade association of multimedia
technology providers, multimedia content providers, and users. For further details, see their web page:
http://ww. i ma. org.

126

|:| Audio rendering

I

I:I Video processing

|:| Video rendering
Modeller E

D Surface modeller l] |:| Graphics

Figure 6-1 — Dataflow network of virtual devices

not forward media data to other MSS devices). By “plugging” various virtual devices
together, complex processing networks can be created with extremely rich functionali-
ties.

It must be emphasized that, although the word “distribution” has been used, MSS
doesnot require that the virtual devices be necessarily distributed in the traditional
sense, i.e., over a physical network. If we refgrai@llelism as the application of more
than one processor to carry out a solution of a problem (of which distribution is a special
case), and tooncurrency as carrying out a set of activities which overlap in time, then
the MSS model refers to concurrency rather than parallelism. Although virtual devices
may indeed run on different machines on a wide—area or a local-area network, they may
also run as concurrent processes within a single machine, or as threads within the same
process. The model does not specify any of these choices, and it is up to the implemen-
tation of MSS whether they provide all these facilities or only some.

The use of a dataflow model for the description and control of multimedia systems
was not invented by MSS. The approach taken in the multimedia framework described
in [65] (see also [34]), or in various packages for scientific visualization, such as AVS,
is very similar to that of MSS. This model is also very natural when dealing with true
distribution, where any sort of synchronous control of concurrency essentially breaks
down.

MSS defines the so-callad r t ual Devi ce object type, shown in Figure 6-2. This
consists of a collection of input and output ports, through which media data can flow in
and out. The real processing of a device (the “processing element” in the figure) is not
specified within PREMO as an object type, nor is the means by which this element com-
municates with its resources specified. The goal of MSS is simply to ensure that,
through a well specified interface, virtual devices can cooperate properly. Devices for
specific media are to be defined by subtypes of virtual devices. To ensure a clean co—
operation, various objects are associated to each port that together characterize the na-
ture of the communication that may take place via that port. This characterization is

127

/ Port—mM ——— \
Callback
[rome Vsmeone]- -]

’Protocol ‘ ‘QoSDescriptor‘

Port—————————— processing Element—,

Callback
II StreamControl Callback ‘

g |
|Protoco| | IQoSDescriptorl Configuration StreamControl‘}

Port——M %
Callback

o vemcama] - -

‘Protocol I |QoSDescriptor‘ j

N

Figure 6-2 — A virtual device

done through object properties. These objects are instances of the types For mat , Pr o-
tocol , QoSDescri ptor, and StreanControl (all these object types will be de-
scribed in more detail later in this chapter).

One of the fundamental features of MSSisthat clients can configure a dataflow net-
work. This configuration is done in a negotiation phase, when a client retrieves infor-
mation about the virtual devices it has at its disposal, and tries to “plug” a media stream
into a matching pair of ports. This mechanism is based on the general negotiation and
configuration management tools provided by the foundation component of PREMO,
see section 5.6 (page 110). Using these tools, the client can make sure that, for example,
the media format produced on a port of a virtual device can be understood and decoded
by the receiving port. MSS defines general objects (so culiithl connection ob-
jects), which give finer control over this mechanism.

MSS does not define the detailaghaviour of media streams in terms of networking
or other forms of communication. It only defines the ways through which a client can
control and possibly synchronize the flow of media data on either end of the stream
(there is no suchbject as a St r eanf in PREMO). From the point of view of MSS,
streams are abstract communication channels among devices. The only requirement is
that they must provide an order—preserving and reliable communication. How the com-
munication is actually realized will depend on the kind of environment in which the
PREMO system is runnin@.

D Unfortunately, there is an conflict of terminology here: “streams” in the PREMO sense and “streams” in
the Java sense are not identical although they have similarities. To make things even more confusing, Java
streams may indeed be used to implement PREMO streams...

128

MSS does not define what the content of the media data is either. The goal of the
MSS is to concentrate on the facilities for configuration, negotiation, etc.. The details
of the data formats which constitute the media data are | ft to the specific devices. This
is one point where various other multimedia specifications and standards meet with
PREMO. As an example, while the ISO MPEG specification describes the details of a
video format (in the terminology of PREMO, it describesthe media data detailsflowing
through a media stream), PREMO concentrates on how an MPEG coder/decoder
(which can be abstracted by a virtual device) can be used together with other media
processing entities.

MSS aso provides tools to create hierarchies of dataflow networks. A special sub-
class of virtual device, called alogical device, may contain afull dataflow network of
virtual devices, which isinvisible to the external observer. Ports of such logical device
are merely transition points toward ports of “internal” devices. MSS also defines other
object types which help to manage, create, or control dataflow networks. In a truly ob-
ject—oriented fashion, MSS defines thtual resource object type as a common super-
type for virtual devices, logical devices, and various controlling objects. These are the
objects which are typically created (through an object factory mechanism) and accessed
directly by the client.

All'in all, MSS is a reamiddlieware, in the sense that it provides a standard model
for various entities to cooperate, but it does not specify the detailed behaviour of these
entities. This also means that there is a delicate balance in the specification of each MSS
object; it should not be too detailed, otherwise it would restrict the family of cooperating
entities, but it should not be too vague, either. This strive for balance underpins the spec-
ification of each object described in this chapter.

Figure 6-2 also shows that virtual devices, and virtual resources in general, are like
puzzles, insofar that they aggregate a number of MSS object into one logical entity. In
what follows, the basic constituents of virtual resources will be presented in more detail;
these are the so—called configuration objects and the stream control objects. These ob-
jects are then used to build up the virtual resources, which will be presented in a separate
sub—chapter.

6.2 Configuration Objects

The family of MSS object types, categorizedcasfiguration objects, are used as in-
formation depositories for other objects (see Figure 6-3). The role of configuration ob-
jects is to act as placeholders for the necessary parameters, irdqrfoation, which

allow other objects to function properly. These parameters may describe, for example,
media coding (AIFF, MPEG, JPEG, CGM, etc.), communication protocol types (TCP,
NETBIOS, ATM), and the like. One could view them as sorts of attributes whose setting
and retrieval follow a more complicated pattern than simply read and write values.

D 1t must be noted, however, that Part 4 of PREMO (i.e, the Modelling, Rendering, and Interaction compo-
nent) goes beyond this, and it does define, up to a certain extent, the content of media flow with a particular
application area in mind. However, it is perfectly feasible to build up valid applications using the facilities
provided by the MSS only. It is therefore important to keep this distinction in mind.

129

Figure 6-3 — Configuration objects

This “attribute—like” behaviour is realized through the subtyping relationship which
binds configuration objects to the rest of the PREMO hierarchy. All configuration ob-
jects are subtypes of opert yConstrai nt objects (see section 5.6 on page 110), i.e,
the various values they provide to clients are stored and manipulated through the prop-
erty constraining mechanisms which characterizertloper t yConst r ai nt objects.
Typically, configurable MSS objects, such as virtual resources, contain several instanc-
es of configuration objects, whose references can be accessed by external clients. These
clients can then set the required values for the configuration objects througinthe
strai n andsel ect operations.

The use of configuration objects is the basic mechanism for configurability in PRE-
MO. Clients may inquire the key—value pairs associated with these objects and, through
the property constraining and selection mechanism, may restrict these values. Configu-
ration objects do not define additional methods. Various subtypes of configuration ob-
jects differ from one another only through the property keys, capabilities, and native
property values they define. This might give the impression that configuration objects
are simple. However, one should not forget that the behaviour inherite@fegrar -
tyConstrai nt objects, especially theonstrain and sel ect operations (see
page 114), represents a significant level of complexity when it comes to specific config-
uration objects. Subtypes of configuration objects may be defined with a constraint al-
gorithm, which is made available through #e¢ ect operation. These algorithms may
take into consideration the full set of configuration objects associated with the same de-
vice, or with a set of cooperating devices. However, details of these algorithms are not
specified by PREMO (beyond the inherited behaviour oktheect operation).

130

AsPropertyConstraint objects, configuration objects also act as tiny two—state
finite state machines. Objects can be “bound” through bihed operation (see
page 115), which means that even writable properties may become temporarily fixed.
Typically, configuration objects are automatically bound when the media data begins to
flow. This will be more fully explained later. What this means, however, is that the man-
agement of the information through configuration objects is typically done in a sepa-
rate, “negotiation” phase, prior to any media flow. It is only when the negotiations are
over that the media data is allowed to enter or leave a virtual device, or a set of virtual
devices.

Configuration object instances belong to a virtual resource instance just like at-
tributes belong to object instances. Clients are not supposssateconfiguration ob-
jects. Instead, these objects are created by the virtual resources themselves, and clients
can retrieve the configuration objects related to a specific virtual resource instance. This
view is reinforced by the conceptsaimantic names. Semantic names are simply strings
and are used to identify configuration objects used by a virtual resource. To access con-
figuration objects, virtual resources (e.g., all virtual devices) have a separate property
which lists the semantic names of the configuration objects they define for themselves.
Using the standard property inquiry operations, clients can retrieve these names. Virtual
resources also have an operation callesb! ve:

PropertyConstraint resolve(String semanti cNane)

which can be used by clients to get the object reference of a specific configuration ob-
ject instance.

As an example, the semantic name for a specific device might include, for example,
the strings “MPEG” or “ATM". This means that the device can operate with these video
formats. The call

PropertyConstraint protocol = dev.resolve(*“ATM")

will return areference to a configuration object, representing an ATM protocol descrip-
tion, but characteristic to the device which “owns” Details of al these operations
will be given later.)

Configuration objects of PREMO fall into three categories:

1. Format objects

2. Transport and Media Stream Protocol objects

3. Quality of Service objects

In what follows, the use of each of these categories will be presented.

D Thereisno way in Java, or in most of the object oriented environments for that matter, to restrict which
other object can create a specific object instance (defining a constructor to be pr ot ect ed or to have a pack-
age visibility only may be much too restrictive in practice). Consequently, this restriction on configuration
object creation cannot be reinforced by the environment. It can only be a convention when using PREMO.

131

6.21 Format Objects

Format objects are the most genuinely multimedia configuration objects; their roleisto
give information on the media formats (that is, the organization of the bitstream) of a
particular device, or at a particular port of a device (see Figure 6-2 on page 127). The
characteristics of aspecific mediaformat are described in the form of object properties.

The formal specification of aFor mat object issimple:

public interface Format

extends preno.std. part2. PropertyConstraint, java.rm .Renote {}

which corresponds to the fact that configuration objects do not define any more opera-
tions beyond those which are inherited from Pr opert yConst r ai nt . Furthermore,
PREMO defines a read—only property fdf@a mat object, namely:

Key Type Read—only? Description

NaneK String yes Semantic name of the object.

An example should help in understanding the structure and use of format objects (note
that, in the example below, we anticipate methods for virtual devices which will be de-
fined more formally later). In this example, we take a very simple virtual device, which
has only one input port. The device can receive a digital image on this port and can dis-
play the image on a screen. Because there is a large number of image formats used in
practice, the device is prepared to receive image data in various formats, such as GIF,
JPEG, PNG, TIFF, etc.

For each of these formats, a sepafFatarat object type is defined by the implemen-
tation of the device, e.g.:

public interface JPEGFormat extends Format, java.rm.Renote { }

with, of course, the corresponding implementation classes. Each of these format objects
should have an appropriate semantic name, say, the stags,“JPEG”, “PNG”,
“TIFF” , etc.

The client can find out which formats the device can use through the call:

Confinfo[] confs = dev.getProperty(“ConfigurationNamesK”);

The structure Confl nfo (specified on page 141) contains the available semantic
names. In other words, the stringslF” , “JPEG”, etc., are contained in the elements

of theconfs array. Thismeansthat the client can find out which image formats the de-
viceisableto handle. Based on some environmental constraints, the client may choose,

for example, GIF” to beits preferred image format. This can be expressed by setting

the so—called port configuration of the device’s port, which essentially means to set the
“GIF" format instance for the port (details of this step will be given later).

The GIFFormat object may have a number of properties which characterize GIF
images. For example, it may have a property &y Ver si onK”, with possible values
“87a”", “89a”, differentiating between the two versions of the GIF specifications which
are widely in use. It may have boolean property values for theTkeyn&par ency”,
denoting whether the device instance can handle transparency or not, properties keys

132

for normal vs. interlaced images, colour characteristics, etc. Some of these properties
have mutual dependencies because not all combinations are allowed (e.g., transparency
is only supported by GIF version 89a). The permissible combinations are described
through the Val ueSpaceNanmeK” property (see page 117). In short, the properties al-
low for a very rich characterization of the format.

If necessary, the client can also obtain the object reference for the format object:

GIFFormat gifFormat = (GIFFormat) dev.resolve(“GIF”");

and use this reference to access these property values and, if necessary, set them. How

these properties are used depends on the client. In some cases, these properties are used

for information only. In other cases, these properties are also set through the property
constraining mechanism. In our example, the client may want to connect theimage dis-

player device to another device which producesthe images. If the GIF version accepted

by the image displayer i87a” only, and this information is conveyed through the
“A f Ver si onK” property, then the client mustt this value on the GIF format object
belonging to the image producer, otherwise a discrepancy will occur. This type of con-
figuration setting must be done for all different format objects in a device network. Ob-
viously, managing and matching all the format characteristics may be very complicated
but, unfortunately, this is the reality in multimedia processing.

The core PREMO document does not define format objects for specific media, like
the JPEGFor nmat , A FFor mat formats above. Only the general mechanism is defined,
and other expert groups, standardization bodies, or simply PREMO implementations
are supposed to define the details. However, an informative annex of PREMO does con-
tain an overview for some typical format objects, which can be used as a starting point
for a more precise specification. It is not the purpose of this book to describe all possible
details. The interested reader should consult the ISO PREMO document for these.

6.2.2 Transport and Media Stream Protocol Objects

It has been emphasized before that virtual devices may be distributed over a network,
or over several processes within the same machine (in terms of Java, over several in-
stances of Java virtual machines). Connecting two devices through a network requires
some careful considerations, involving the exact communication protocol to choose,
how to connect the devices, etc. PREMO defines a distinct type of virtual resource,
whose only purpose is to connect devices through, possibly, network connections.
These objects, calledrtual connection objects, will be described in more detail later

in this chapter (see section 6.6).

The purpose of the Transport and Media Stream Protocol (MSP) configuration ob-
jects is to provide information on which protocol is used to convey media data among
processing nodes. It is not the role of MSS to give a detailed specification of the various
possible communication protocols, only references to existing protocol specifications
are made.

MSP objects are configuration objects, which means that their formal object specifi-
cation is again very simple:

public interface Miltinedi aStreanProtocol

extends preno.std. part2. PropertyConstraint, java.rm.Renote {}

133

The object specification a so includes three properties:

Key Type Read-only? Description
NameK String yes Semantic name of the object.
Ver si onNunberK I nteger yes Implementation dependent value.
Byt eOr der K String no

The purpose of the semantic name has already been explained. The version number al-
lowsfor futurerevisions of M SP objects, in case new types of communication protocols
cometo the fore. Finally, the byte order property refersto the byte order in 16 bits inte-
gers. This property has a natural capability defined, too:

Key Type Value
Byt eOr der CK String[] {“LittleEndian”,
"BigEndian”}

Although PREMO is not meant to give a detailed characterization of communication
protocols, it does go one step further than the bare M SP abjects by defining two sub-
types of MSP:

1. I ntraNodeTr ansport objects, which refers to communication among nodes tak-
ing place through shared memory (for example, two nodes processing in the same
address space of aworkstation, e.g., using DMA). In the case of Java, this refers to
virtual devices sharing the same Java virtual machine.

2. I nt er NodeTr anspor t , which refers to communication among nodes taking place
over a network, or through some inter—process communication means. The various
protocol names which can characterize these protocols include IPC, UDP, RTP,
ATM, or NETBIOS.

Formally, the two objects are defined as follows:

public interface IntraNodeTransport
extends Mul tinmedi aStreanProtocol, java.rm.Remote {}

and

public interface |nterNodeTransport
extends Ml tinmedi aStreanProtocol, java.rnm .Remote {}

Furthermore, the semantic names wfer NodeTr ansport protocol objects are fixed
through an extra capability for this object:

Key Type Value
NameCK String[] {“TCP”,"UDP",’"RTP”,
"ATM”,"BigEndian”}

134

It must be noted that, in the case of our prototypical implementation, where all inter—
process communication takes place through Java RMI, the role of the various MSP ob-
jects is minor. Indeed, the Java RMI layer hides all the discrepancies which might occur
between different machines, such as byte order. However, if a more general mechanism
were used (for example, connecting Java JVM's to other processing entities directly
through sockets), use of the MSP objects would become important.

6.2.3 Quality of Service Descriptor Objects

In order for a virtual resource to be useful, it must obtain the required physical resources
required to do its job. Resources include both system resources that are typically not
multimedia specific, such as those provided by the CPU, memory, and network subsys-
tems, as well as specialized multimedia resources such as audio and video devices. Be-
cause the quality of service that can be provided by many resources varies considerably,
the client must also specify the desired quality of service when requesting a resource.
This is done by setting the properties of a special configuration object, callgasthe
Descri pt or object. Though quality of service can take on many meanings, many of
them media and device specific, the MSS defines a core Qesbéscr i pt or prop-
erties that can be used by a client to specify the desired quality of service.

Formally, the Quality of Service descriptor object is defined through:

public interface QoSDescri ptor
extends preno.std. part2. PropertyConstraint, java.rm.Renote {}

The core set of properties are as follows:

Key Type Read-only? Description

NameK String yes Semantic name of the object.

Quar ant eedLevel K String no Indicates the required per-
formance.

Rel i abl eK bool ean no Isthe delivery of datarelia-
ble or not? Isthere a possibil-
ity of dataloss?

Del ayBoundsK I nteger[2] no Amount of timeincurred

between transmission of the
data and its receipt.

Ji tt er BoundskK I nt eger[2] no Delay variance.
Bandwi dt hBoundsK I nt eger[2] no Minimum and maximum
bandwidth.

The guaranteed level property is an indication of the performance required on the con-
nection. A“Guaranteed” connection will reserve resources to handle worst—-case
needs for the media transfer in order to make sure that the data always arrives and is on
time. A “BestEffort” connection will provide the best possible performance while

135

using optimistic amounts of resources. This may produce situations where the data oc-
casionally arriveslate. “NoGuarantee” usesthe minimum amount of resourcesfor the
connection and do as well as possible.

Delay is the amount of time between the transmission of the data and the receipt of
the data. Different applications will have different requirements. For instance, an audio
conference would be unwilling to live with a 2 second delay, whereas a non-interactive
video playback application might find it acceptable.

Jitter isthe amount of delay variance. For example, an ISDN channel that presents a
“slot” of data every 125 microseconds has a jitter of 0, since there is no variance in the
arrival time of the data. If an application requests a jitter close to 0, then the connection
will try to find an isochronous network connection between the two virtual devices.

Bandwidth is the amount of data per unit time that the connection will be required to
support of, in the case of an input port, to expect. For example, a video conference might
require 384 Kbits/second while an MPEG stream might require 1.5 Mbits/second. By
defining the range of the bandwidth required, the connection will understand the mini-
mum rate it must provide (in the case of an output port), or the minimum and maximum
burst it must expect (in the case of an input port).

QoSDescr i pt or objects or, to be more precise, their subtypes defined by specific
virtual devices, are supposed to define capabilities for all these properties, too. The ca-
pability for theGuar ant eedLevel K property is defined by the PREMO document:

Key Type Value

CGuar ant eedLevel CK String[] {*Guaranteed”,”BestEffort”,
“NoGuarantee”}

whereas, for the delay, jitter, and bandwidth properties, the standard only requires that
the range of allowed minimum and maximum values (e.qg., for jitter bounds) should be
defined through a capability.

Finally, two more capabilities are defined f@rSDescri ptor:

Key Type Value
Mut abl ePr opertylLi st CK String[] {"GuaranteedLevelK”,
"ReliableK"}
Dynami cPropertylLi st CK String[] {“DelayBoundsK”,
"JitterBoundsk,

"BandwidthBoundsK"}

The keys for these capabilities are “inherited” fromRheper t yConst r ai nt object

(see section 5.6.4 on page 115). What these capabilities mean is that the delay, jitter, and
bandwidth bounds (which are all writable properties) may be changed by the client at
any time whereas, once the media starts to flow (i.e.Qdl$®escri pt or object is
“bound”), the client cannot change the performance and reliability properties. These
two can be still changed by the “system” (e.g., by the virtual device), however. That is

136

exactly what the notion of mutable property means. By setting an event callback to be
triggered when these properties are changed (using the set Pr oper t yCal | back meth-
od, see page 71), the client can monitor the performance and reliability, though.

6.3 Stream Control

The issues and problems related to multimedia synchronization have already been ad-
dressed in section 5.5, which aso introduced the object types Synchroni zabl e,
Ti meSynchroni zabl e, and Ti meS| ave. Theses objects serve as the basic building
blocks for synchronization in MSS, too.

Synchronization concerns multimedia data, i.e., in terms of MSS, the flow of multi-
media data through streams. In line with this “media flow” view, MSS defines two sub-
types of the synchronizable objects. These extensions do not change the fundamental
nature of the synchronization mechanism described in Chapter 5, they merely add more
control over the flow of data.

Remember that in the specification of synchronizable objects “data presentation” is
only an abstract notion (see page 94). The specification and the implementation of spe-
cific presentation techniques are left to subtypes. The specialization in MSS, vis—a—vis
the “simple” synchronization objects, is to add more semantics to this data presentation
step, while still retaining its abstract nature. The added semantics are as follows.

» Ability to “switch off” real data processing without suspending the flow of the
media. This “mute” effect is well known from household devices; one switches off,
for example, the sound on the TV, while the display still goes on. In terms MSS, this
means that the media still flows through the streams, as if presentation really hap-
pened, but this has no sensible effect on the surroundings.

 Ability to temporarily “buffer” data. This means that, e.g., the incoming media data
is put into a temporary buffer, instead of processing or forwarding it to the next
device. Clients may use this facility if, for example, the quality of service degrades
on the receiving end of a stream due to a high incoming load. Of course, facilities
should also be provided to empty the buffer.

Much like configuration objects, stream control objects “belong” to virtual resources.
What this means is that clients are not supposedetite instances of stream control
objects. Instead, these objects are created by their “owner” virtual resources, and only
their references are exported.

MSS defines two objects, calle&ir eanCont rol andSyncSt reanControl , to
add these additional features to the synchronization model (see also Figure 6-4). These
objects form the next elements of the puzzle in building up a virtual resource.

6.3.1 TheStreantControl Object
Technically, the extensions, referred to above, are realized through an extension of the

Ti meSynchr oni zabl e object. TheSt r eanCont r ol object in MSS is a subtype of
Ti meSynchr oni zabl e, where the original state transition diagram (see Figure 5-12

137

Figure 6-4 — Stream Control objects

on page 94) ismodified. The new transition diagram is shown on Figure 6-5. Three new
states are added to the state machine, namely MUTED, PRI M NG, and DRAI NI NG, togeth-
er with new state transition operations.
The states MUTED and PRI M NG are refinement states of the STARTED state of Ti ne-
Synchr oni zabl e. Refinement means that all three states (i.e., STARTED, MUTED, and
PRI M NG) behave identically in terms of synchronization. The additional semanticsin
the “new” states is only related to the notion of data presentation. Although the
St reanCont r ol object does not specify what presentation means either (and leaves
the details to the subtypesSifr eantCont r ol), the specification o¥UTED andPRI M
I NG gives a somewhat finer control on the behaviour ofsthreeantCont r ol object.
This refinement is as follows:

* No presentation occurs MJTED state, i.e., the media data are disregarded. In other
words, “progression” on the stream does occur (and all synchronization actions are
performed) but ther ocessDat a operation, which represents the abstract notion of
processing media data,rist invoked.

* No presentation occurs PRI M NG state either, but the media data are buffered in
an internal buffer instead of being simply disregarded. In other words, progression
on the stream occurs (and all synchronization actions are performed) and the media
data are stored internally instead of being presented, i.e., instead of calling the
pr ocessDat a operation. If the internal buffer of the object is full (the “high mark”

138

Refinement of the
STARTED state

stop

start, mute, prime resume

resume
pause

STOPPED Stop PAUSED | reuse

stop

Figure 6-5 — State transition diagram fd&eeamControl object

is reached), then no stream data can be stored any more, and the object makes an
internal state transition to PAUSED.

The third additional state, DRAI NI NG, is the counterpart of PRI M NGin buffer control.
When set to this state, the object empties the buffer filled up by a previous PRI M NG
state. When the buffer is empty (i.e. the “low mark” is reached), the object makes and
internal state transition ®AUSED. While emptying the buffer, presentation of data also
occurs. The operatiatr ai n is defined to set thet r eanCont r ol object intoDRAI N-
I NG state.
As seen on the state transition diagram, a transiticG®Ta&RTED state from both
PRI M NG andDRAI NI NG states is possible througksune. Conceptually, the internal
buffers are to be instantaneously emptied before the normal media flow is resumed.
Note that, as a subtype 8fnchr oni zabl e, theSt r eanCont r ol object inherits
the ability to monitor state transitions (using the callback mechanism). In particular, cli-
ents can be notified if internal buffers become full or empty while priming, respectively
draining (in both cases an internal state transition to theP®{a8&D takes place, which
may be monitored).

139

—t
S S s
Ve Ve /
011011010 REEN B
“presentation”
STARTED MUTED PRIMING DRAINING

g

“low mark”

Figure 6-6 — States in a stream control object

Subtypes of St reanCont r ol may add additional semantics to buffer control. Asa
typical case, if the streams are aware of their position within a dataflow network, some
of the operations, like pri me or dr ai n, may also generate private control flow among
the stream control objects in this network. For example, pri me on a St r eanCont r ol
may al so generate control information to the St r eanCont r ol object “up—stream”, i.e.,
the stream providing the data. Whether such additional protocol is defined or not de-
pends on the subtypes of e eanCont r ol object and it is not defined by PREMO.

The Java specification of& r eanCont r ol object’s interface is very simple:

public interface StreanControl

extends preno.std. part2. Ti meSynchroni zabl e, java.rm .Renote

{
int getCurrentState();

void mute() throws WongState;
void prinme() throws WongState;
void drain() throws WongState;

}

i.e., the three new state transition operations are simply added. The opggaton-
rent St at e is inherited fromSynchr oni zabl e. In this case, it can return the integer
codes for the three new states, too.

We close discussion on raw stream control with a note on the pragmatics of imple-
menting and using this object type. Looking ahead, a key of stream control will be to
underpin the management of media streams between devices, i.e., the progression space
of a stream control object will be linked to specific media content. At this point the fact
that the concept of time for a stream control object is relative time, i.e., time measured

140

along the media content, not along the real time taken to deliver that content, becomes
important. When the throughput of amediastream isreduced below acertain limit, such

an object may choose to enter its PAUSED state, effectively suspending progression
through the media content as well astime, and go back to STARTED state when data be-

comes available again. PREMO provides mechanisms through which the divergence

that will result between this media—relative time, and any global measure of time, can
be detected, e.g, through the monitoring of state transitions, through the monitoring of
drifts in time measurements when time slaves and masters are involved, etc.

6.3.2 SyncStreantControl Objects

A SyncSt reanCont r ol object is used to permit the synchronizatiomaltiple media
streams. Although this sounds complicated, its specification is based on the various ob-
jects we already have defined. It is simply a common subtype of t&itheanCon-
trol object and ari neSl ave object (see section 5.5.3). The “multiple” aspect of
synchronization is fulfilled by the semantics of tfiereS| ave object. The Java spec-
ification is simply:
public interface SyncStreantControl
extends preno.std. part2. Ti meSl ave, StreanControl, java.rn .Renote

{}
TheSyncSt reanCont r ol adds the time slaving facilities 8 r eantCont r ol . Anoth-
er way of putting it is that it extends tiéneS| ave objects the same way as the
St r eanCont r ol object extends th& neSynchr oni zabl e object.

6.4 Virtual Resources

The “major” MSS objects are re—grouped under the virtual resource hierarchy (see
Figure 6-7). The top level of this hierarchy is the t ual Resour ce object, which is

an abstraction of a physical resource in a very general sense. The Multimedia Systems
Services defines four basic subtypes of virtual resources:

1. virtual devices, which abstract media processors.
2. virtual connections, which abstract connections among virtual devices.

3. groups, which provide a convenient way to interact with a collection of virtual
devices and connections.

4. logical devices, which make it possible to build a hierarchy of virtual devices.

These four subtypes represent very different semantics. There are, however, common-
alities which make it worthwhile to re—group them into the same subtype hierarchy. The
current section concentrates on these common features, whereas the rest of this chapter
will describe each of the resource types individually.

141

Figure 6-7 — Hierarchy of virtual resources

6.4.1 Property Control of Configurations

The Vi rt ual Resour ce object isasubtype of Pr oper t yl nqui ry. However, and this
isvery important to note, avirtual resource object isnot a subtype of the type Pr oper -
t yConst r ai nt . In other words, avirtual resource object may have associated proper-
ties, capabilities, native property values, etc., which can be inquired and used, but the
rich facilities to constrain properties are not at the client’s disposal as far as virtual re-
sources are concerned. Instead, configuring and adapting a virtual resource is done
through separater opert yConst r ai nt objects. This is where configuration objects
and their semantic names fit into the puzzle (see also page 130).
To achieve this, PREMO defines the tuple
public final class Conflnfo inplements java.io. Serializable {
public String semNane;
public Cass objectType;
}
to characterize a configuration object: it contains the semantic name of the object, as
well as its class (the Jaghass object must refer to a subtyperafr mat , Mul ti me-
di aSt r eanPr ot ocol , orQoSDescr i pt or). Each virtual resource also has a property
of the formi

142

Key Type Read-only? Description
Confi gurationNamesK Confl nf o[] yes Semantic names and types of
all associated configuration
objects.

which lists all the configuration objects which are associated with the virtual resource.
It is through these configuration objects that the virtual resource can be adapted to its
environment, that it can be configured, etc.

Very often the list of semantic names is quite enough for the client, and it does not
really need access to the object references themselves. We will see simple examplesfor
thisin later sections. Howevey, if the client intends to more precisely configure the vir-
tual resource, the real object references can also be accessed through the operation:

PropertyConstraint resolve(String semNane) throws |nvali dName;

(obviously, an exception is thrown if the name does not refer to a valid configuration
object for that virtual resource instance).

Virtual resources, as subtypes of Propertyl nquiry objects, are usualy created
through object factories (see section 5.7.1), which enables the client to choose among
available virtual resources at run—time. For examplai" refersto afactory object
instance, the following code fragment creates a device which is capable of handling im-
agesin GIF and/or PNG formats:

/1 Construct the two possible audio configurations: GF and PNG
Conf I nfo possi bl el =new Conflnfo(“GIF”,Class.forName(“GIFFormat”));
Conflnfo possible2 = new Confinfo(“PNG”,Class.forName(“PNGFormat”));

// Build a property pair for constraint. The key is

/I ConfiguratonNameskK, and the value is the array of possible devices.

Object[] types = new Conflnfo[] { possiblel, possible2 };

PropertyPair request = new PropertyPair(“ConfigurationNamesK”,types);

/I An array of constraints has to be created for the factory object;
/I currently, there is only one constraint:

PropertyPair[] constraints = new PropertyPair[1] { request };

/I The device is a fictious image displayer device:

Class devT = Class.forName(“ImageDevice”);

I Instruct the factory to create a device, which has a format for

/I GIF and PNG (at least).The third parameter is null, indicating that
/I no special initialization is required.

VirtualDevice theDeyv;

theDev = (VirtualDevice) fact.createObject(devT,constraints,null);

6.4.2 Resourceand Configuration Management

The term “virtual resource” refers to the fact that these objects manage some sort of ab-
stract resource. These resources can be very different from one another, examples in-
clude managing processing power, a shared file system, access to a display or an audio
device. From the point of view of PREMO, these resources are purely conceptual enti-

ties, and the document does not contain any detailed specification for these.

143

From a client’s point of view, however, the act of “acquiring” a resource must be
made explicit. This is related to the strongly configuration—oriented behaviour of virtual
resources in the MSS. Indeed, much like configuration objects, virtual resources must
be treated differently when they are configured, i.e., when they are to be prepared to
“acquire” a resource, then when the resource is already acquired, i.e., the virtual re-
source processes the media data. For that purposé rtheal Resour ce interface de-
fines two operations:

voi d acqui reResource() throws ResourceNot Avail abl e;

voi d rel easeResource();
which changes the state of the object.

Each configuration objects acts as a two—state finite state machine, controlled
through thébi nd and thaunbi nd operations. The effect of thequi r eResour ce op-
eration for a virtual resource is twofold:

1. it tries to acquire the resource associated with the object, e.g., get hold of the audio
device.

2. it invokes thebi nd operation forall configuration objects associated with the vir-
tual resource.

Obviously, the role of el easeResour se is to invert these actions, including the un-
bind action on all configuration objects. The state of the virtual resource can also be in-
quired at any time. The operation

Resour ceSt at e get ResourceState();
returns a PREMO enumeration instance of the type:

public final class ResourceState
extends preno.inpl.utils. PREMOEnuneration

{
public static ResourceState ACQU RED;

public static ResourceState RELEASED,
}

As we have seen in section 5.6.4 (on page 117hithe operation, defined onRx op-
ertyConstrai nt objects (i.e., for all configuration objects), also performs a depend-
ency check on the properties defined on a single object, detecting mutually
incompatible property value settings. The same incompatibility problem might occur
for a virtual resource, too, although on a higher level: are the combination of configu-
ration objects and their respective properties, as set by the client, viable? To handle this
situation, yet another operation is defined for a virtual resource interface, namely:
public class ProposedVal ues inplenments java.io.Serializable {

public String semant i cNane;
public PropertyPair[] repl acenent ;

public class ValidationResult inplements java.io.Serializable {
publ i c bool ean result;
publ i c ProposedVal ues proposedVal ues;

}

Val i dationResult validate();

144

Although the definition is a bit convoluted, the intention is straightforward. If the vali-
dation reveals no problems, ther esul t field of the output structureist r ue. Otherwise
a ‘replacement” for the property values is proposed: for each configuration object
(identified with its semantic name) a sequence of acceptable property pairs is returned.
Using these values, the client can be sure that the properties of the configuration objects
will be set to optimal values. Much like thel ect andconst r ai n operations defined
for each configuration object, the interface of théi dat e operation may hide a sig-
nificant complexity in finding optimal these values.

It is worth, at this point, to summarize all the various configuration steps the client
may want to use for a virtual resource. This illustrates the rich configuration facilities
offered by PREMO. Here are the possibilities a client may use:

1. A factory is accessed through a factory finder. The access of a factory may be con-
trolled through constraints on the type of objects the factory may create.

2. A virtual resource is generated through a factory. This generation may be con-
strained through properties, e.g., through the choice of specific configuration
objects.

3. The client may inquire the list of configuration objects available for the virtual
resource instance and, if applicable, may select among those (details of this step
will be described in later sections).

4. For each configuration object the client may

— set/retrieve individual property values.
— properties may be examined throughrthechPr operti es operation.

— properties may be constrained to some specific values throughrtber ai n
operation.

— the configuration object may be instructed to set the best—fit values, depending
on its local knowledge about its environment (througtstiiesct operation).

5. The virtual resource object can validate the property values throughltheat e
operation, and possibly suggest a replacement for some key—value pairs.

6. If the client is satisfied with all the values, the resources are “acquired”, which will
also put all configuration objects into bound state.

Clearly, the various possibilities offered by PREMO can be used for very complex con-
figuration procedures.

6.4.3 Stream Control

Typically, virtual resources are involved in the generation, consumption, or transport of
media data. As we have already seen, the flow of media data through a device or across
a connection can be thought of as a stream. The synchronization and the buffer control
of this stream can be achieved using the stream control objects introduced in sections
6.3.1 and 6.3.2. To achieve this control, a virtual resource object has a global stream
control object. This stream control object is created and contained Yiyrtheal Re-

145

sour ce object instance (i.e., this object is not created by an external client). The refer-
ence to this overall stream control of the virtual resource can be retrieved through the
operation:

StreantControl getStreanControl ();

which is defined for the Vi r t ual Resour ce interface.

The semantics of stream control is very much dependent on the exact nature of the
virtual resource, onitsbehaviour anditsrolein anetwork. Subsequent sectionswill pro-
vide more details on this. For some virtual resources the notion of global stream control
is not even meaningful, e.g. get St r eanCont r ol returnsnul | inthis case.

6.4.4 Monitoring Resource Behaviour and Quality of Service Violations

In an ideal world, once the resources are set and the media data is flowing, the client

may just “sit back and watch”. However, in a real world, resource availability may fluc-
tuate, speed or space problems may occur. The client must be notified about these to im-
plement some emergency measures.

One of the common problems which might happen is to loose the resources (e.g., the
network is down). To monitor this situation, the client may attach a callback to each
Vi r t ual Resour ce object through the operations:

voi d set Resour ceEvent Handl er (Cal | back e);

Cal | back get Resour ceEvent Handl er () ;

If such a callback object has been assigned to the virtual resource, and the resource is
lost, an event will be raised through this callback, which can be caught by the client.
The name of this event iRésour ceLost ”. If, subsequently, the resource is acquired
again, another event is raised namres‘our ceAcqui r ed”.

Unfortunately, losing and acquiring resources represent only the two extremes of the
spectrum. A finer control of resources, and the reaction to the changes in the availability
of these resources, is a more complex issue, commonly referred to as Quality of Service
(QoS) control. Procedures for maintaining specific quality of service characteristics of
media flow are still the subject of active research. Perhaps not surprisingly by now,
PREMO does not define any detailed policy for QoS management. This is left to clients
(it would not make sense to impose one approach over the other). The general callback
is used by the virtual resource to notify the client about any problem which might occur
(in fact, subtypes of virtual resources define additional callbacks for specific purposes,
but this “global” callback is always available).

As we have already seen, a specific configuration object typ@8tescri pt or,
is used to set QoS requirements for a resource. An instance of such a descriptor object
is available for a virtual resource. PREMO specifies that a virtual resource object must
raise an event through its global callback if a violation of these requirements occurs.
This event has the namm@oSViolation”.

e The event data should contain the key—value pairs (i.e., the properties) whose
requirement have been violated.

¢ If the QoS management is attached to a port of a virtual device, an identification of
the port is also attached to the event data.

146

Specific subtypes of Vi rt ual Resour ce may add additiona data to this event. Note
alsothat it is not specified by PREMO that this global callback should be used for QoS
management purposes only. Subtypes may define additional use of the very same call-
back object. However, by using the constrained registration mechanism for event han-
dlers (see section 5.4.1.2), special QoS agents can be created which react only to QoS
violation events.

6.5 Virtual Devices

Virtual devices are the “core” elements of MSS. They are the nodes in the multimedia
dataflow network, they embody the processing, capture, or display of multimedia data.
Virtual devices are roughly analogous to what other multimedia systems often call “me-
dia” objects.

Virtual devices are extensions of virtual resources and, as such, they inherit the facil-
ities described in the previous chapter. They have a global stream control, a set of con-
figuration objects, callback facilities. Specialized devices can easily add media—specific
semantics to these general concepts, and this chapter will also specify how these global
configuration objects can be set by the client. The major extension of the virtual device
interface is the existence of ports, which enable virtual devices to communicate with
other devices in a network.

The remainder of this chapter on virtual devices is divided into two parts. The con-
figuration of devices, i.e., their run—time adaptation to a complete multimedia network,
is described first. In fact, thHaterface specification of virtual devices in MSS is exclu-
sively concerned with configurability.

The more “semantic” aspect of virtual devices, i.e., their internal organization, func-
tioning, etc., is not detailed in the PREMO document, simply because the various sub-
types represent a large variety of possible devices (for example, in Part 4, PREMO
defines a range of different virtual devices adapted to modelling and rendering). How-
ever, examples of how specific devices may be realized should help in understanding
the possibilities. Such examples are presented in the second half of this chapter.

6.5.1 Configuring Devices

Device configuration follows the approach already described in the previous chapters
on configuration and virtual resource objects. The interface of virtual device make it
possible to put this into practice, in terms of explicit operations.

Devices may be configured on two levels: through the “global” (i.e., port independ-
ent) aspects of the device (these are, essentially, inheritedvfronual Resour ce)
and through the port specific details. These are described separately.

6.5.1.1 Global Configuration

The virtual device object defines the following operations for global configuration:

147

voi d set Resour ceEvent Handl er (Cal | back e);
Cal | back get Resour ceEvent Handl er () ;

voi d set Configurations(Conflnfo[]);

Conf I nfo[] get Configurations();

Thefirst two operations are inherited from Vi r t ual Resour ce, and are listed here for
completeness only. The global (i.e., port independent) configuration objects are set and
retrieved through the set Confi gur ati on and get Confi gurati on operations, re-
spectively. These configuration objects (such as QoSDescr i pt or objects) are used by
the virtual device for, e.g., monitoring quality of service violations (see section 6.4.4).
The exact semantics of their use depend on the specific subtypes.

A property is also defined for each virtual device of the form:

Key Type Read-only? Description

G obal For mat TypesK Conf I nf o[] yes Types of configuration
objects which can be
assigned on aglobal level.

which informs the client which configuration objects can be used globally. A capability
is also defined:

Key Type Value
G obal For nat TypesCK G ass[] {QoSDescri ptor,
For mat }

which tells the client what configuration types are available for global settings. Sub-
types may impose further restrictions on this capability.

6.5.1.2 Port Configurations

Assaid before, ports of a virtual device are standard “openings”, through which media
data can flow in or out a device. As shown on Figure 6-2 (page 127), a virtual device,
while retaining the global control and configuration objects, has additional object in-
stances assigned to specific ports. To simplify the management of these objects, PRE-
MO defines a separate structure calfedtt Confi g, which is used as a tool to
configure individual ports.

6.5.1.2.1 Port Configuration Structures

The fundamental data structure, which is used in port configuration, is defined as fol-
lows:

148

public class PortConfig extends SinplePREMOObj ect

{
public Conflnfo qos;
public Call back event Handl er;
public Conflnfo protocol ;
public static class formatData {
public |ong time;

public Conflnfo nane;

}

public fornmatData[] formats;
public StreanControl streanControl;

}
[Note: The Conf I nf o structure has already been defined on page 141. Itisatuple of a
semantic name and ad ass instance for a configuration object]. This structure groups
all the objects which are relevant for the configuration of a port. None of these objects
arereally different from what has already been described for general virtual resources,
but it is still worth going through each of them in more detail:

» Theqgos object refers (through theonf | nf o tuple), to aQoSDescri pt or object
(see section 6.2.3). Its role is to act as a depository for Quality of Service require-
mentson a specific port.

» Theevent Handl er object is used by the virtual device if problems occur which
are specific to that port. Its primary use is to provide a handle for quality of service
monitoring on the port, much the same way as monitoring global QoS violation,
described in section 6.4.4.

» The protocol object refers to an instance ofval ti medi aSt r eanPr ot ocol
object (see section 6.2.2). Whereas the quality of service and format objects may
have a general meaning for the device at large (i.e., as global configuration objects),
MSP objects are typically useful on a port only, being intimately related to external
connections.

» formats is an array ofFor rat objects (see section 6.2.1), referred through the
respectiveConf | nf o structures, and ordered in time. This means that the client can
not only control and assign specific formats to a port, but can also set a validity
interval for a format, i.e., have the formats change over time. The value of the time
is related to the flow of time on the port's stream control object.

» ThestreanControl objectis the entry point for synchronization on the port level.
As a subtype ofi meSynchr oni zabl e, it also has its own timeline, with settable
time units, used to order tifer mat objects in thé or mat s array in time.

Just as in the case of global configuration and stream control objects, none of the objects
in the port configurations are created by the client. Instead, the virtual device instance
creates them, and the client can access their semantic names or references.

149

6.5.1.2.2 Configuring Ports

Each port of adeviceisidentified by an integer, referred to as aport identifier. The op-
eration

int[] getPorts();

may be used to retrieve al available port identifiers. Using a port identifier, the client
can retrieve the current port configuration through the operation:

public static class PortDescr

{
public PortConfig config;

public PortType type;
}

Port Descr getPortConfig(int portld) throws InvalidPort;
(Theexception | nval i dPort isthrown, obviously, if the por t I d value does not refer
to avalid port of the device.) The Por t Conf i g structure has been described in the pre-
vious section; Por t Type isasimple PREMO enumeration of the form:;
public final class PortType
extends preno.inpl.utils. PREMOEnuneration {

public static PortType | NPUT;
public static PortType OUTPUT;

}
The port configuration can also be set by the client, using the operation:

voi d set Port Config(PortConfig config)
throws InvalidPort, InvalidNane, |nvalidPosition;
Obvioudly, exceptions are raised if the content of the config object isinvalid (e.g., one
of the configuration objects cannot be assigned to the port, the time value used in the
For mat array isinvalid, etc.).l)

We have aready described, on page 144, the general configuration facilities the cli-
ent hasat itsdisposal when dealing with M SS objects. Thesefacilitiesinvolve, to alarge
extend, the property management mechanism on configuration objects. Port configura-
tions add another level of configurability to MSS, insofar asafine control over the con-
figuration objects on a port by port basis becomes possible.

Additional properties are a so defined for virtual devicesto help the client in its con-
figuration task. A separate data type is necessary for these properties, namely:

public class PConflnfo inplenments java.io.Serializable {
int portld;
Conflnfo config;
}
which issimply atuple of aport identification and configuration object description. Us-
ing this structure, the corresponding properties are:

D Thereis, actually, an awkwardness in the PREMO specification at this point: although the Port Confi g
class specification includes a reference to the port stream control object, too, the client is not supposed to
change that reference when setting the port configuration.

150

Key Type Read-only? Description

| nput Por t K i nt yes Number of input ports.

Qut put Por t K i nt yes Number of output ports.

I nput For mat K PConfInfo[] yes Types of configuration
objectswhich can beused in
conjunction with specific
input ports.

Qut put For mat K PConfInfo[] yes Types of configuration
objectswhich can beusedin
conjunction with specific
output ports.

Capabilities are a so defined:
Key Type Value

I nput Por t CK i nt Maximum number of input

ports.

Qut put Port CK i nt Maximum number of output

ports.

I nput For mat sTypesCK d ass[] Allowed configuration objects

on input ports.

Qut put For mat sTypesCK Cd ass[] Allowed configuration objects

on input ports

Notethat thereal valuesfor these capabilities are defined in the specific subtypes of vir-

tual device.

The virtual device inherits the val i dat e operation from virtual resource (see
page 143). This operation checks whether the current combination of configuration ob-

jects are “valid”, i.e, the properties on these configuration objects do not lead to con-
flicting requirements. Because the configuration of a virtual device is also done on a
port by port basis, an additional operation is necessary to restrict this kind of check for

a port. This operation, callgar t Val i dat e, checks whether a specifior mat object

is “compatible” with the quality of service and protocol requirements, as set by the con-
figuration objects in the port configuration structure. If this is not the case, the operation
returns a proposed “replacement” for the property values for these configuration ob-

jects, which might make the requirement on the port viable.

The formal specification of this operation involves the same, somewhat complicated

inner classes ofi rt ual Resour ce:

151

public class ProposedVal ues inplenments java.io.Serializable {
public String semant i cNane;
public PropertyPair[] repl acenent ;

public class ValidationResult inplenments java.io. Serializable {
publ i c bool ean result;
publ i ¢ ProposedVal ues[] proposedVal ues;

}
Using these classes, the specification of port Val i dat e is:

Val i dationResult portValidate(int portld, String fornmatNane)
throws | nvalidNanme, |nvalidPort;

6.5.2 Examplesof Virtual Devices

The PREMO document does not stipulate any specific architectural approach for the
implementation of virtual devices. As long as an object implements the interface de-

tailed in the previous chapters, i.e., the device is properly configurable, this object can

be considered PREMO compliant. The term “Processing Element” appearing, for ex-
ample, on Figure 6-2, is purely a conceptual entity, just like a port, which does not have
any interface specification.

One of the major design decisions, when planning for a new device, is the division
of control and work among the various stream control objects: the global stream control,
and the stream control objects assigned to the ports. There are cases (we will see some
examples below) when these object references refer to the very same object, i.e., when
there is, in fact, only one stream control object in the device. However, this is not always
the case.

Although MSS does not specify in detail what the relation among these control ob-
jects is, it does say that the client should be able to focus all inquiry and control methods
concerning data stream at the global stream control object. The role of the stream con-
trol objects on the ports is therefore slightly less important, and becomes significant
only when very fine grained synchronization is necessary. This “priority” of the global
stream control object is reinforced by an additional requirement formulated in MSS:
this requires that all port related stream control objects must be subtypes of the global
stream control. In the Java case this means that, for example, if the virtual device im-
plementation defines avbt r eanCont r ol interface, which extends ttse r eantCon-
trol interface, and the the global stream control implemestts eanCont r ol , then
all port related stream control objects must also implement8heeanCont r ol in-
terface.

This chapter gives some examples for virtual devices. None of these are described in
the PREMO document in detail, but they are all possible incarnations of the general vir-
tual device concept. Our prototypical implementation of PREMO implements some of
these, too.

152

| — — | —
Audio Player Audio Encoder :| [Audio Decoder

/ \

<)) =)

(b) (c)

Figure 6-8 — Simple virtual devices

6.5.21 Simple Media Devices

Although alarge portion of the previous chapters concentrated on how device ports are

set up and configured, it should be emphasized that adevice without aportisavery im-
portant concept by itself, too. As an example, consider a simple audio device which
reads an audio file directly, and plays it (see Figure 6-8/(a)). Because no media data
transfer occurs between this device and other devices, such adevice would indeed have

no ports. Nevertheless, the device can be configured for its format (through the general
configuration objects), possible quality of service violations can be monitored (through

the interplay of QoSDescr i pt or objects and the callback facilities, see section 6.4.4
above), resource allocation can be controlled (resource allocation would mean, for ex-
ample, finding and opening the audio file, for example) and, last but not least, synchro-
nization facilitiesare available through the global St r eanCont r ol object of thedevice

(the global stream control object is depicted by the white stripe on thefigure). A way of
looking at such adeviceisto say that it is a configurable wrapper around a St r eam
Control object (i.e, a Synchronizabl e object), whose progression (see
section 5.5.1 on page 92) resultsin the display of the mediadata. Control over this pro-
gression (i.e, start, stop, pause, resume, mute, etc.) gives control over the mediadisplay.

The “processing element” in this case is virtually identical to the active entity controlled
by theSynchr oni zabl e object, and which is responsible for the details of progression
and media presentation.

Figures 6-8/(b) and 6-8/(c) show two complimentary devices. The first device (the
audio encoder) receives audio data directly from a microphone, and turns the data into
an audio format suitable for the multimedia network. The audio decoder, on the other
hand, receives audio data on its input port, and plays it. The only functional difference
between this device and the audio player is that the audio data arrives at the device
through the network and not directly from a file. Both the audio encoder and decoder
have a very similar structure to the audio player. They have global control for synchro-
nization, control over progression, etc. Because there is only one input port, a sensible
choice of the device implementation is to define only one stream control object for the
device, i.e., the global stream control and the one which is part of the port configuration
would refer to the same object.

153

/ general St r eantCont r ol \

,
/Ine

(A T |
| | / \’%]

[&7 \
S/
(.
\
\
|

input port St r eanCont r ols

output port St r eantCont rol s

. J

Figure 6-9 — Inner structure of tie ansf or ner object

Obviously, the audio encoder and decoder objects could be “piped” together by using
a virtual connection to connect their ports (see section 6.6 below for the details of virtual
connections). The port configuration process, described in earlier chapters, should make
it sure that the audio format produced by the audio encoder is understood by the decod-
er. Whether this connection is done within the same machine, joining the microphone
and the speaker on the same workstation, or whether there is a network between them,
is immaterial. The functional behaviour of both devices remain unchanged (of course,
the level of service quality might become different, and the client should monitor this!).

Devices become more complex when they have both an input and an output port,
e.g., when they act as filters or format converters. The “processing entity” is then re-
sponsible to read the data from the input port, convert the data and send it to the output
port. Instead of going into the details of how such a device could be implemented, we
will present a slightly more general device type, which is a good example for a large
family of virtual devices.

6.5.2.2 Transformer Devices

Tr ansf or ner is the name of a virtual device type, developed in the course of our pro-
totype implementation. This device hag been defined as part of the PREMO docu-
ment (it is not a standard object), but it has proven to be a useful abstraction to help
implement a whole range of other devices, such as the devices defined in Part 4 of PRE-
MO (see Chapter 7). Although, throughout the book, we restricted ourselves to present-
ing only standardized PREMO objects in detail, we make an exception here. Indeed,
through theTr ansf or mer object we hope the reader will gain a better appreciation of
how virtual devices may be implemented. The goal oftleasf or ner object is to act

as a supertype for media filters and media processors for multimedia data. Format con-
verters are obvious examples. Other examples include wrappers around database facil-
ities, image filters, geometric processors, etc.

154

Figure 6-9 showstheinternal structureof aTr ansf or mer object (to simplify thefig-

ure, the configuration objects are not shown). The complexity of the implementation
comes from the exact distribution of work among the possible stream control objects
represented by the white stripes on the figure. Obviously, there are n+m+ 1 stream
control objectsin aTr ansf or mer object, where n is the number of input, and misthe
number of output ports, respectively. To be more precise, the control objects assigned
to the portsare all SyncSt r eantCont r ol objectsin this caseg, i.e., their timelines may
be daved. In aTr ansf or mer, they are all slaved to the general stream control object,
which may or may not be of SyncSt r eanCont r ol type. This means that all stream
control objectsinaTr ansf or mer refer to the same clock for synchronization purposes.
The availability of the Ti meS| ave interface (see section 5.5.3 on page 107) for the port
stream control objects allows the client to monitor any drift in time between this object
and the general stream control, thereby detecting possible starvation due to upstream
congestion or failure.

Stream control objects (as Ti meSynchr oni zabl e objects) are al active entities. In
the Javacase, they al runintheir own thread of control. It istheinterplay of the various
threads which build up the functionality of the object. The centra role is played by the
global stream control object. Another way of putting it is that the abstract processing
unit in Figure 6-2 essentially can be identified with the thread of control of the global
stream control object.

A stream control object assigned to an input port transfers the input datainto a (mul-
tiplexed) data queue. Each piece of datum is stored in this queue together with atag de-
noting its “origin”, i.e., the port it arrived from. The input port stream control does not
do any processing, its role is merely to transfer data (using the terminology for the gen-
eralSynchr oni zabl e objects, its progression space is the sequence of input data units,
and its “presentation” step is simply copying data into the internal queue). The speed of
this transfer is controlled by this object (usingsfged attribute), it can react tonat e
operation request by simply ignoring the data, and, more importantly, it can monitor the
quality of service of the data transfer itself (e.g., by monitoring its own clock, it can gen-
erate an error if the data-rate on a particular port doesn’t meet the bandwidth require-
ment). If callbacks are set for quality of service violations, the object will raise the
necessary events.

The global stream control object is the real “worker”. It sequentially reads the data
from the multiplexed input queue (which plays the role, in a sense, of the progression
space of this object), it transforms the data, and puts the results into separate queues
which connect the general stream control object to output ports. Of course, on the level
of theTr ansf or mer object, some details of this step are left abstract. The exact nature
of processing and the choice of the target output ports are left to subtype implementa-
tions. While doing the transformations, the object can react to all synchronization re-
quests. This is inherited from the behaviourSghchr oni zabl e objects (as said
before, the general stream control is the focal point of the device for multimedia syn-
chronization). Finally, the role of the output stream control objects is the counterpart of
the input stream control objects: they read the data from their queues to forward them
to the output streams.

155

Depending on the exact nature of the Tr ansf or mer subtype, the state transitions of
the global stream control, as induced by an externa client, may internally change the
states of the port stream control objects, too. For example, if the global stream control
object is stopped, all stream control objects are to be stopped, too. If it is muted, this
should “mute” the output stream control objects to avoid transferring data to the output
ports.

Of course, lots of details are not addressed here, such as how to optimize the archi-
tecture to avoithusy waiting in the various threads, how to avoid memory overflow, etc.
However, this short overview of thie ansf or ner objects will hopefully help the read-
er to have a better understanding of the issues involved in virtual déVices.

6.6 Virtual Connections

6.6.1 Overview

So far, the media stream has always been presented as a purely abstract entity. In prac-
tice, streams are realized through communication facilities which connect the active vir-
tual devices. Although, conceptually, it is the role of virtual devices to “move” media
data, an additional mechanism should be provided which transfers the data from the out-
put port of a device to the input port of another. There may be a large variety of mani-
festations of this mechanism, depending on the implementation environment PREMO
runs in. It may use network facilities, remote procedure calls, remove objects, shared
memory, etc. It is obviously not the role of PREMO to give a detailed specification for
all these various communication facilities. There are numerous standards and packages
that do this already.

However, the client needs a focal point to set up and to dismantle such a connection.
Although the details of the communication mechanisms may widely vary between
PREMO implementations, a PREMO application still needs to have a unified view and
control over communication. This is the role of tiert ual Connecti on object.
Through an instance of a virtual connection object, a client may set up a connection be-
tween two ports, and may also disconnect the ports when the streams are no longer nec-
essary. Because a virtual connection is also a virtual resource, the QoS characteristics
of the connection can also be monitored, which may be of great importance to the client.

The virtual connection also plays an important role in the proper modularization of
virtual devices. Two virtual devices, connected by a stream, might run in a variety of
settings: they may share the same virtual or physical processor, or they may run on dif-
ferent nodes of a local or wide area network. They may communicate through shared
memory, ATM, TCP/IP, etc. However, the implementation of a specific virtual device
shouldnot depend on its particular position in such a web of communication. It should
be able to write or read dategardless of the mechanism which physically delivers the
data itself. It is the role of the virtual connection to hide these specific details, and to

Ditis interesting to note that the internal structure of the Tr ansf or mer bears alot of similarities with the
basic processing blocks described in the ISO Computer Graphics Reference Model[47]. Similar functionali-
ties lead to similar architectures...

156

provide a unified interface to the virtua device. Details are of course implementation
dependent and are invisible to the client. As an example, we will show later how this
feature was achieved in our prototypical implementation.

Beyond the “physical” communication, connecting two device ports also involves an
“agreement” between the ports regarding the media data format they transfer. Finding
this “agreement” is also the task of a virtual connection. In other words, a virtual con-
nection embodies some of the configuration tasks which characterizes PREMO. Vari-
ous PREMO implementations may differ on the quality of configuration characteristics
they can provide and, of course, a PREMO application may also define its own subtypes
of theVi r t ual Connect i on objects to adapt them to their needs.

6.6.2 Detailed Specification of Virtual Connections

Formally, the interface of a virtual connection object is defined as follows:

public interface Virtual Connection
extends Virtual Resource, java.rm .Renmpte {
voi d connect(Virtual Device naster, int portMaster,
Virtual Devi ce sl ave, int portSlave)
t hr ows ConfigurationM smatch, PortM snatch,
Resour ceNot Avai | abl e, InvalidPort;

voi d di sconnect ();

public class Endpointinfo {
public Virtual Devi ce devi ce;
public int port;
publ i c bool ean i sMast er;

}
Endpoi ntI nfo[] get Endpoi ntInfoList();

}
Obviously, itis theonnect operation which requires most of the explanation. The cli-
ent calls this operation to create a connection between two ports, identified as master
and slave ports, respectively. The term “master” does not mean that it is necessarily an
output port. It means that, in the course of the configuration steps, it is the configuration
belonging to the master which prevail, if a choice must be made. For example, if both
ports can manageLl‘tt| eEndi an” and “Bi gEndi an” byte orders (as specified
through the properties with kepyt eOr der K" in the vul t i medi aSt r eanPr ot ocol
object instances assigned to the port), busthect operation of on the master’s side
yields “Li t t | eEndi an” (meaning that this is preferred format of the master), then this
value will be chosen.

Setting up the connection involves the following steps.

1. The exact format of the media flow may have to be negotiated. To achieve this, the
virtual connection object inquires the availabbe nat objects on both ports to find
appropriate matching pairs. We have already seen a more detailed example on
page 131 on how the various formats can be matched. These actions may be carried
out by the virtual connection object.

157

It is not required, however, that only virtual connections perform such configuration
steps. In some cases, the client can perform amuch finer configuration setting based
on its own application semantics. Consequently, subtypes of virtual connections can
be defined by an implementation which relies on configuration being performed by
the application.

2. A communication mechanism has to be set up between the ports in the “direction”
dictated by the output and input portsPat M snmat ch exception is thrown if, for
example, both ports are input ports). In contrast to the previous step, clients usually
have no real control over how this is done; the details are deeply rooted in the
implementation environment of PREMO. The virtual connection may consult, how-
ever, the MSP objects assigned to both ports, to decide upon the best communica-
tion channel.

3. Quality of service requirements are set for the connection. The virtual connection
object is also a virtual resource, which means that the client may set quality of serv-
ice requirements for the connection throughQtSDescr i pt or objects. Further-
more, similar configuration objects are available on both the master and the slave
ports. Based on this information, the virtual connection object may set up its own
quality of service management, which will influence, for example, when a QoS vio-
lation event will be raised. The thr&eSDescri pt or objects may also impose
restrictions which cannot be fulfilled by the connection instanc€ow i gur a-
ti onM smat ch exception is thrown in this case.

Subtypes o¥i rt ual Connect i on may add additional connection control, of course.
Formally, theconnect operation only sets up the connection, which is not necessar-
ily “alive” yet on return from theonnect operation. This distinction is important if,
for example, the connection involves some active entities, e.g., separate processes or
threads, which have to be activated separately. This activation is done throagh the
qui r eResour ce operation, inherited fromvi rt ual Resour ce. When releasing the
resources, these active entities may also be suspended.
A single Vi rt ual Resour ce instance can manage only one connection at a time.
TheResour ceNot Avai | abl e exception is raised by tlh@nnect operation if the cli-
ent attempts to connect a pair of ports without disconnecting the previous one. The
G oup object (see section 6.7) can be used to group seXieralial Connect i on ob-
ject. This may be necessary, for example, in order to “synchronizelcthe r eRe-
sour ce operation on all of them.

6.6.3 Examplesof Virtual Connections

It is worth looking at some examples of connection setups, to make the rolerof a
t ual Connecti on object clearer. We will concentrate on the details of step 2 on
page 157, i.e., on the physical connection being set up between two ports.

In the first example, shown on Figure 6-10, a separate buffer is necessary to keep up,
e.g., with the quality of service requirements of the client. The virtual connection may
then set up a separate buffer manager (invisible to the client) and, although data concep-

158

conceptual view
Device 1 |:| |:| Device 2

Virtual Connection

TN

Device 1 D D Device 2

[| Buffer Manager

implementation
Figure 6-10 — Buffered connection

tually flowsfrom Device 1 to Device 2, thereal dataflow isfrom Device 1 to the buffer
manager, and from the buffer manager to Device 2. The buffered manager itself is an
active object which has to be activated by the virtual connection explicitly when its re-
sources are acquired.

The second example, on Figure 6-11, shows what may happen if the two virtual de-
vices run on two distinct machines. Depending on the characteristics of the communi-
cation facilities, the virtual connection may have to instantiate two “gateway”
processes, whose role is to forward the media data from one system to the other. Of
course, these gateway processes are invisible to the client.

The task of implementing a virtual connection is much easier if the implementation
environment provides advanced networking facilities already. For example, our proto-
typical implementation makes use of the fact that all our objects run in a homogeneous
(i.e., purely Java) environment, and that the standawe. net package takes care of
most of the local specificities of communication (for example, byte order). Figure 6-12
shows the solution we have adopted to connect two ports in our prototypical implemen-
tation. When asked to connect two ports, the implementation df thiaial Connec-
ti on object shown in Figure 6-12 does the following:

1. TheVirtual Connecti on checks whether the two virtual devices are running
within the same Java Virtual Machine. If yes, a paiPigiedQut put St r eamand
Pi pedl nput St r eamobjects are used to connect the two ports (both these objects
are part of th¢ ava. i o package).

2. If the two virtual devices are running on different Java Virtual Machines, the con-
nection establishes a dedicated socket pair between the two JVM's (facilities are
provided by the java.net package). Theva. net. Socket object also provides
stream access to these sockets in the appropriate direction, which are used to con-
nect these sockets to the ports.

159

conceptual view

| cateway [l= == == -»l
System 1 System 2

implementation

Figure 6-11 — Networked connection

conceptual view

piped streams

sockets and streams

Figure 6-12 — Connections in Java

160

Multicast Connection

h

D Device 2

Device 1 E

D Device 3

Figure 6-13 — Multicast connection

In both cases, the streams may be combined with the buffered output and input streams
of j ava. i o, if necessary, i.e., a separate buffer manager, as shown on Figure 6-10, is
not necmryl). As aresult of this construction, virtual device objects have access to
standard Java St r eamobjects only (not to be confused with PREMO Streams!) when
moving data, regardless of the position of the communicating devices within the net-
work. This also ensures the proper modularization of device implementations. Of
course, the Java implementation of such a Vi rt ual Connect i on object requires care-
ful consideration (see section A.2.1 for further details), but the result is conceptually
simple.

6.6.4 Multicast Connections

In more precise terms, the virtual connection described in the previous sections repre-
sentsaunicast connection, i.e., dataawaysflowsfrom one output port toward oneinput
port. In practice, multicast connection is also often required, meaning that, for example,
data leaving one output port arrives to several input ports, conceptually copying the
content of the media stream (see Figure 6-13). This copying should be obliviousto the
source of the data. The behaviour of avirtual device should not depend on whether its
generated data goes to one input device or more. A typical example for such setting is
the well-known Internet Mbone service. A live video recording is done somewhere, this
data is broadcast to the Internet, and listeners can “attach” themselves to this broadcast
if they wish.

To fill this need, a subtype of thé r t ual Connect i on object is defined in MSS,
calledVi r t ual Connecti onMil ti cast:

D To be more precise: the buffer manager is automatically provided by thej ava. i o classes!

161

public interface Virtual ConnectionMilticast
extends Virtual Connection, java.rm.Renmpte {
voi d attach(Virtual Devi ce device, int portlD)
t hr ows Conf i gurationM smatch, PortM smatch,
Resour ceNot Avai | abl e;

voi d detach(Virtual Devi ce device, int portlD)
throws PortM smat ch;

}

Theinterface of the operationsis quite simple. Through the at t ach operation, the cli-
ent can attach a new slave to the master port (remember that the connect operation of
the Vi r t ual Resour ce object not only creates a connection between two ports, but
also identifies a master and a slave port, see page 156). Setting up a new connection to
the new slave involves the same steps and constraints as setting up the original connec-
tion. Obviously, one of the slaves can be detached from the master through the det ach
operation.

It should be emphasized, however, that behind this simple interface there may be a
significant complexity when it comesto the realization of the multicast connection. The
implementation of the kind of multicast connection depicted on Figure 6-13 is till rel-
atively easy; some kind of “copying” engine has to be inserted between the output port
of Device 1 and the stream. “Where” this copying should take place is not necessarily
a simple issue, because one should try to minimize network traffic, but various optimi-
zation schemes are possible.

An especially difficult problem is encountered when the connection is “fan—in” (as
opposed to a “fan—out” connection on the figure), i.e., when several sources can con-
tribute to the same input port. Indeed, the integrity of the media data must be ensured,
i.e., the media content should be “packaged” in a meaningful way, and these packages
should be, essentially, atomic. Implementations of PREMO may choose not to imple-
ment a fully general “fan—in” multicast virtual connection. Instead, subtypes may be de-
fined closer to the application domain, thereby making use of a more detailed
knowledge about the content and the structure of the media data.

6.7 Groups

A more complicated network of virtual devices, with the corresponding virtual connec-
tions, can be very complex, and may include a large number of virtual resource objects.
Controlling all these objects, such as acquiring their resources, stopping their progres-
sion, etc., may become a tedious task for the application program: it has to issue a large
number of operation invocations repetitively to control the behaviour of the full net-
work.

G oup objects have been introduced by the MSS to ease this task. These objects
(which are virtual resources themselves) offer a single entry points for the control of a
number of other virtual resources. Groups, by default, do not have any special semantics
(although subtypes of groups may, of course, introduce special behaviour). They act as
some kind of “proxies” for other virtual resources.

162

|

e

—
[l Device 2

£

oo®

1
Devicel []

 —
[l Device3

Figure 6-14 — Effect of a group’s global stream control

Resources are added to a group by the operation:

voi d addResour ce(Virtual Resource resource);
and are removed by the operation:

voi d renpveResource(Vi rtual Resource resource)

t hrows Resour ceNot Avai | abl e;

Alternatively, the operation

voi d addResour ceG aph(Vi rtual Resource resource);
recursively adds to the group ther esour ce, aswell as al virtual connections and vir-
tual deviceswhich are connected, directly or indirectly, tor esour cel). Such aresource
graph can be removed from the group through the operation:

voi d renpveResour ceG aph(Virtual Resource resource)
throws ResourceNot Avai |l abl e;

Finally, all resources, managed by the group, can be inquired by:

Virtual Resource[] get Resourcelist();
Because they are virtual resources, groups aso have global stream control objects, and
they also implement operations such as acqui r eResour ce. However, in the case of
groups, the only task these objects and operations have is to dispatch the “same” oper-
ation to the relevant methods of all virtual resources managed by the group. For exam-
ple, if thest op operation of the group’s global stream control is invoked, the effect is

D Note that the virtual device and the virtual connection types defingtth@necti on
and theget Endpoi nt I nf oLi st Operations, respectively, which help the reconstruction of
the full graph.

163

a —

[l Device 2

—
1 d Devicel1 [

 —
\ [l Device3 [] j

Figure 6-15 — Logical device

toissuethest op operation on the global stream control objects of all constituent virtual
resources (see Figure 6-14). Similarly, acquiring resources means to acquire the re-
source of all virtual resource objects managed by the group.

6.8 Logical Devices

Groups do not impose any restriction on the type of objects they manage. Also, in the
inheritance hierarchy of virtual resources (see Figure 6-7), they represent an independ-

ent type both from virtual devices and virtual connections, i.e., they cannot “replace”
any of those. Consequently, they are not usable, by themselves, to build up hierarchies
of networks.

To construct hierarchies, logical devices can be usedLddiecal Devi ce type is
a special subtype @ oup, which is also a subtype &f rt ual Devi ce. This means
that a logical device can manage a collection of devices and connections, just like
groups do, but they are also virtual devices themselves, which means that they can be
included into a full multimedia network on their own right.

In order to communicate with other virtual devices, logical devices should also have
(input or output) ports, and, to function properly, these ports should be related to the
ports of the devices which are “managed” by the logical device. All this is done by the
(only) extra operation defined for a logical device, namely:

int definePort(Virtual Device refVirtual Device, int portld)

throws InvalidPort, InvalidDevice,;
This operation refers to an existing port of one of the devices managed by the logical
device, and instructs the logical device to create a new port which is “identified” with
the argument port (the port ID for the new port is returned by the operation). One could
also say that the internal port is “exported” beyond the boundaries of the logical device.
This means that:

e The port configuration of the new port (as accessed and managed by a client
through the virtual device interface of the logical device) is identical to the “real”
port of the device contained by the logical device.

164

» All data flowing through the logical device’s port is, conceptually, transferred
unchanged to the “real” port.

Note that “internal” ports are not automatically exported; some ports, which are used
for internal communication only, may stay hidden from the outside world. In other
words, the logical device may also play the role of “information hiding” when con-
structing multimedia devices and therefore plays an important role in building up com-
plex media networks.

Chapter 7

The M odelling, Rendering, and Interaction Component

7.1 Introduction

PREMO wasinitially envisaged as a new standard for computer graphics based on ob-
ject-oriented technology. It was soon realised, however, that an equally significant prob-

lem in the design of “next generation” graphics applications was the need to integrate
other media with graphics at a fundamental level, under the control of an API. Part 4 of
PREMO, the Modelling, Rendering, and Interaction (MRI) Component is where this in-
tegration takes place in the standard. Thus, while the Multimedia Systems Services
Component provides architectural support for viewing graphics processing in similar
terms to other media processing applications, it does not directly address the content of
the data used to describe the presentation. Instead, it defines streams and the concepts
of processing resources that are independent of media content. In the MRI component,
these facilities are used to define generic objects for modelling and rendering data, and
basic facilities for supporting interaction. To support interoperability between devices
for processing various media, the MRI component defines a hierarchy of abstract prim-
itives for structuring multimedia presentations. Finally, it defines a specialised device
for coordinating processing activities that operates on a heterogeneous multimedia pres-
entation.

The interaction between the ideas in this chapter, and the concepts of MSS, is por-
trayed in Figure 7-1 which shows how a number of devices might be used in an video
composition tod?. Each of the oval shaped objects is a particular kind of MRI device
and an MRI device is itself a subtype of the VirtualDevice object type from MSS. These
devices extend the facilities defined in MSS and can be organised into a processing net-
work, connected to each other by media streams. The main feature of an MRI device is
the type of data that its streams carry: data that describes media derived from a collec-
tion of abstract primitives defined in the MRI component.

In the system, an audio modeller and a graphics modeller are being used to construct
mono-media components of a presentation, which are stored in a database. A modeller
in MRI is simply any device that cgmoduce a stream of MRI primitives; a modeller
may be a sophisticated interactive tool for constructing and editing presentation data, or
nothing more than a device for accessing primitives stored in some external format. The

D This and other examplesin this chapter have been set up to illustrate aspects of the MRI component. They
do not necessarily represent the most appropriate architecture for implementing such a system or facility.

166

Coordinator

== audio A xg:ge b*{?gﬁ(ﬁrer
modeller'] ‘/_\ 'II 5
[sre >+

graphics Q\/ T
= modeller '] o
I

y I video I mixing graphics
engine ‘]]c engine renderer
| c
camera ‘
device

Figure 7-1 — A configuration of MRI Devices

modellers, and the database that holds their output, are organised into an MSS logical
device, aong with an engine for processing video data. This device can be thought of
as the “production” side of the composition tool, and might be implemented on a server.

The other ‘side’ of the system is concerned with mixing and rendering audio/visual
data, and could be implemented on a client machine. At the top level, it consists of a
single instance of an MRI device type called a Coordinator. A coordinator device re-
ceives a stream of presentation data, and is then responsible for allocating the compo-
nent parts of that presentation to a collection of local resources that are able to process
particular parts of the overall presentation. In the example, the local resources consist
of an MSS logical device (B) that handles audio processing and rendering, and a second
logical device (C) for video mixing and rendering. Both logical devices encapsulate a
pair of MRI devices: an engine for processing specific kinds of media primitive, and a
renderer that can take a stream of media primitives and convert it into some external
representation, for example output on a display or through a sound system. The mixing
engine in the example takes presentation data from the coordinator, and also has a video
feed that can be switched by an MRI routing device between the video engine of the
source, and some external camera device.

As the example suggests, the infrastructure provided by the MSS component is fun-
damental to the approach taken in MRI. Most of the devices used in the example can be
defined as straightforward specialisations of the MBE&t ual Devi ce object type.

The two exceptions are tiseene database andoor di nat or, each of which will be
considered in some detail in this chapter. What Figure 7-1 does not show, however, are
the primitives carried by the media streams between the devices. These primitives inter-
act with the definition of the MRI devices at a number of levels; while the devices proc-
ess primitives, some of the functionality of the device is determined or influenced by the
form that the primitives take.

167

separator (root)

® ©

camera light group (molecule)

group (H) group (H) group (O)

Q00O

translate material sphere translate sphere material sphere

Figure 7-2 — A Scene Graph for a Water Molecule

7.2 Primitives

In computer graphics, aprimitiveisabasic building block for producing a picture. What
exactly constitutes a ‘primitive’ depends of course on the graphics system, and the point
within the ‘rendering pipeline’ being considered. For example;

« an API for rendering may allow the programmer to specify arbitrary polygons as
geometric modelling primitives, but might internally convert all polygons into a
collection of triangles to simplify processing;

« geometrical solids such as cylinders and pyramids might be considered as ‘primi-
tives’ within one API, but be viewed as programmer-definable abstractions within
another.

The tension in the design of rendering primitives can be characterised as between, on
the one hand, a “minimal” set of orthogonal primitives that can be rendered efficiently
by hardware, but which require programmer effort to organise them into larger struc-
tures, and on the other hand, a “comprehensive” set of primitives that provide a range
of geometric building blocks, but for which a renderer has to do comparatively more
complex processing within software.

Orthogonal to the “minimality” discussion is the question of what the notion of
‘primitive’ includes. Standards such as GKS and PHIGS distinguish between output (or
rendering) primitives that define geometry to be displayed, and input primitives re-
turned by an input device such as a pick or locator. Attributes of a model, such as colour,
material properties (e.g. diffuse and specular reflection coefficients), line width, etc.,
are separate from primitives in GKS, PHIGS, and also OpenGL, as are geometric trans-
formations and constraints. However, with the development of object-oriented ap-
proaches to rendering, as realised in systems such as Open Inventor and VRML,
primitives, attributes and transformations have been abstracted into the concept of
nodes within a scene graph that gives a declarative representation of the model to be
rendered. For example, Figure 7-2 shows the scene graph for a simple model of a water

168

molecule (using the node conventions found in [89]). While the meaning of each type

of node clearly determines how nodes can be assembled to produce sensible results, the

fact that all kinds of data — geometric detail, attributes, and transformations — are de-
fined in similar terms means that there is great deal of flexibility in constructing and
processing such a representation.

7.21 TheRoleof Primitivesin PREMO

Whatever model is adopted, an API for computer graphics must support a set of primi-

tives that is sufficiently complete to allow the programmer to produce output on a dis-

play. So what set of primitives should PREMO support? There are a number of
possibilities:

* PREMO could define a new set of primitives. As PREMO aims to integrate syn-
thetic graphics with other media, such a combination could be tailored to simplify
the job of combining media. The problem with this approach is that it imposes a
large overhead on a PREMO implementor. A powerful and efficient renderer, for
example for PHIGS PLUS or Open Inventor, is a significant software development
problem, and in the case of PREMO, is only one part of the requirements set out in
the standard!

» PREMO could adopt an existing set of primitives. This would create two problems.
First, which set of primitives should be selected? Both GKS and PHIGS are 1ISO
Standards, and there is a case that a new standard should use established practice
where possible. However it could equally well be argued that GL or Inventor are
more widely used, or that VRML or Java3D are a new generation of graphics stand-
ards and will therefore define future practice. The second problem is that, apart
from Java3D, these systems address only synthetic graphics. PREMO is intended to
facilitate the design of multimedia presentations. Java3D does contain some provi-
sion for streaming media such as video and audio with synthetic graphics, but was
not available at the time PREMO was designed; nor is it obvious even now whether
the facilities it provides would address all of PREMO’s needs.

* PREMO could defin@bstract primitives. Rather than the PREMO standard dictat-

ing the capabilities of a graphics renderer by fixing a set of primitives, a more radi-
cal and productive approach is for PREMO to interoperate with existing renderers.
A PREMO presentation could thus be constructed from the set of primitives proc-
essed by the renderer available to a PREMO user. Indeed, a PREMO presentation
could include primitives drawn from a collection of renderers, provided that we can
ensure that a particular renderer only receives primitives it can deal with, or that
renderers can deal with unrecognised primitives in a graceful way.

The third approach is particularly appealing, since it also allows a presentation to
contain non-geometric primitives (for example, the description of an audio presenta-
tion), provided that there is a way for these primitives to be recognised by a suitable ren-
derer. It also means the standard is fundamentally extensible; for example, by not
committing to any one primitive set, new technologies such as haptic rendering could
be incorporated without ‘breaking’ a pre-defined model.

169

It might seem from this discussion that there is actually no need for PREMO to de-
fine any kind of primitive set, it just needs to define an abstract type called “primitive”
and allow primitives specific to a renderer to be identified as subtypes of this. This ap-
proach might be feasible if we consider a PREMO system as a single black box, how-
ever, the fundamental model of PREMO set out in the MSS component is that an
application consists, in general, of a network of processing devices. Devices are objects,
and therefore can be created to satisfy given requirements. Devices are connected by
data streams, and if we are to interconnect devices, we must have some way of charac-
terising the media data carried on a given stream, or produced / accepted at a given port
of a device. Finally, if a PREMO presentation consists of a collection of heterogeneous
media, it may be necessary to coordinate that presentation across multiple devices. To
describe and manage the required coordination, it is necessary that there be some level
of common organisation imposed on the underlying primitives. The PREMO primitive
hierarchy meets these needs in two ways:

1. It defines an extensible collection of abstract object types for characterising the dif-
ferentkinds of primitive that a device within a PREMO network might encounter.
These object types provide a small common ‘vocabulary’ for approximating the
capabilities of various devices and the content of media streams.

2. One branch of the hierarchy introduces a minimal set of primitives that give a
declarative model of a multimedia presentation. These are included in the standard
since such facilities are not typically available within the primitive set provided by a
particular renderer. A more detailed model of the overall organisation of multimedia
content is also needed for the definition of the coordinator device defined in this
Part (see Section 7.7).

To emphasise a point made previously, PREMO primitive hierarchy is not sufficient
in itself to build a working presentation, but provides the abstract supertypes from
which a set of concrete primitives could be derived by inheritance. The PREMO MRI
component is not itself a rendering engine, but rather a framework for integrating media
processing and rendering, performing a service for digital media somewhat like the
service that a coordination framework, such as Linda [15] or Manifold [4], provide for
concurrent processing.

7.22 TheHierarchyin Overview

Primitives are structures, that is, the object tiPpinitive inherits fromSmplePRE-
MOObject. At the top level, PREMO distinguishes between the seven kinds of primitive
shown in Figure 7-3Captured, Form, Tracer, Modifier, Reference, Sructured and
Wrapper. Each of these types of primitive is described in depth in a separate sub-sec-
tion. The specification of the abstract type Primitive is simple:

public class Prinmitive extends SinplePREMOObject {}

170

SimplePREMOObject
premo.std.part2
o premo.std.part4
Primitive
Captured Modifier Tracer Wrapper
Form Reference Structured

Figure 7-3 — PREMO Primitives: Top Level

7.2.3 Captured Primitives

Capt ur ed primitives form the primary interface between the notion of multimedia
presentation defined by the MRI component, and the various standardsfor digital media
encoding and transport that are in widespread use, for example ALAW, MIDI, MPEG,

and ULAW to name a few. Computer graphics metafiles, including formats such as

CGM or VRML, are also supported through the Capt ur ed object type. In general, a
captured primitive is one for which some or all of the perceivable aspects of the primi-

tive have been encoded in a format defined externally to PREMO. Rather than being
synthesized, the presentation will be obtained ‘ready-made’ from some other compo-
nent within a PREMO application.

As far as a PREMO application is concerned, the source of a captured primitive is
immaterial; it may come from an external feed, e.g. a network or device interface, or be
the product of some other processing device within the application itself. This flexibil-
ity is realised with the aid of the port and virtual device concepts of the MSS compo-
nent. ACapt ur ed primitive thus consists of a reference to some virtual device that will
produce the media data and a reference to a port of that device from which the data can
be obtained. An application can determine detailed information about the format of the
captured data by accessing Hue mat object attached to the port. The device and port
references form the protected state information o€t ur ed object type:

public class Captured
extends Primtive

{
protected Virtual Devi ce srcDevi ce;
protected int srcPort;

171

Form premo.std.part4

| I

Audio Geometric Tactile Text

h‘ﬁ

Music Speech

Figure 7-4 — PREMO Primitive§or mHierarchy

7.24 Form Primitives

In contrast with captured primitives, where the presentation has been encoded in some
internal format, the presentation described within aform primitive has to be somehow
synthesised. For example, a graphical model might be described in terms of the geom-
etry of polygonal surfaces. The actual appearance of the geometry asit is presented to
an end user must then be synthesised from this geometric model, possibly taking into
account other primitives such as visual modifiers (Section 7.2.6) that could alter the ap-
pearance of the geometry. The For mobject type is abstract:

public class Formextends Primtive {}

In general, subtypes of For mcan be said to describe structures in visual, audio, haptic
or temporal space using the abstractions that characterise the space. For example, geo-
metric primitives are usually described in terms of spatial coordinates or operations on
simpler spatial structures (e.g. extrusions). The hierarchy of For mprimitives is shown
in Figure 7-4. Additional kinds of form primitives could be added in future to include
other categories such as olfactory and taste (for example, olfactory rendering has poten-
tially valuable applications in perfumery). The various specialisations of For mare de-
scribed in the remainder of this section.

Audio Primitives

Audio rendering is now developing into a discipline in its own right, and involves a
range of issues that go beyond the scope of this book or indeed PREMO. Some forms
of audio presentation can be expressed as captured primitives, for example an ALAW
file which carries arecorded signal. Other forms of audio primitive however represent
an abstract encoding of audio information. Synthesized sound can be described using
some abstract representation that operates in terms of the constituents of the sound. It
can be divided into two general categories, music and speech. In the case of music, a
typical example of arepresentation used for synthesized and sampled sound is MIDI.
In PREMO, a music primitive contains information about the kind of instrument to be

172

used in realising the sound, plus the data that represents the encoding of the music.
Speech on the other hand consists of some textual representation of the words to be ut-
tered. Other characteristics of speech, for example properties of the voice that should be
used to render the text, are represented through aVocal Char act eri sti c object. This
is an example of a PREMO modifier primitive, to be discussed in Section 7.2.6. The
PREMO Audi o, Musi ¢ and Speech primitives are defined below.
public class Audio extends Form {}
public class Misic extends Audio {
public int instrunent;
public int score;

}

public class Speech extends Audio {
publ i c Vocal Characteristic voice;
public String text;

}
By using Aggr egat e and Ti neConposi t e objects to organise audio primitives into
larger structures, more sophisticated sound characteristics can be described, for exam-
ple by combining a number of audio primitives and acoustic effects into a score.

A MIDI hierarchy could be defined as an extension of the Audio primitive in order
tointegrate M1DI more directly into PREM O presentations, also allowing generation of
MIDI scoreswith the use of PREM O primitives. Thisway, MIDI could beintegrated in
aPREMO presentation either as a captured primitive or aMIDI primitive.

Geometric Primitives

Geometric primitives have already been used in this chapter to explain some of the dif-
ferences between PREMO and other standards, particularly in computer graphics. The
intention of the PREMO designersis that the geometric primitives used by a renderer
or needed by an application will be defined as subtypes of Geonret ri c:

public class Geonetric extends Form {}

For an object-oriented model of primitives, such asfor example those underlying Open
Inventor [89], the PREMO Geonret ri ¢ class would effectively become the top of the
hierarchy.

7.25 Tactile Primitives

Tact i | e primitives describe parameters of touch-based interactions, for instance, tem-
perature, thermal conductivity and hardness. They are present to support devel opments
in haptic rendering, see for example [76].

public class Tactile extends Form {}

173

premo.std.part4

Modifier
Acoustic Coordinate TimeFrame Visual
SoundCharacteristic Transformation Constraint
VocalCharacteristic | |
Light Material Shading Texture

Figure 7-5 — PREMO Primitivedodi fi er Hierarchy

Text Primitives

Text in computer graphicsistypically used to label drawings, or, in the case of logos or
other forms of advertising or labelling, as a geometric primitive in its own right. For a
multimedia presentation, text has potentially wider roles, including for example subti-
tles on avideo stream, or captions on figures or images. At an abstract level, aPREMO
Text primitive simply containsacharacter string that isto be rendered on some display.
No statement is made about properties of thetext such asfont, size, style or thedirection
inwhich it is drawn.

public class Text extends Form {

StringBuffer characters;

}
Facilities for structured and/or formatted text can be realised by PREMO applications
in at least two ways. Subtyping can be used to extend the text primitive or to indicate
that the character string contains aparticular kind of markup information. For properties
such asfont and character size that affect the presentation of the entire string, anew kind
of modifier primitive (see Section 7.2.6) could be defined.

7.26 Modifier Primitives

Modifiers in PREMO are a generalisation of attributes within computer graphics. A
Modi fi er primitive has no perceivable representation itself. Instead, modifiers affect
the presentation of other primitives that are combined with the modifier through aggre-
gation, which is described in Section 7.2.9.1. The modifier object types defined by
PREMO are abstract, and therefore could have al been defined as direct subtypes of
Mbdi fi er. The hierarchical organisation, shown in Figure 7-5, reflects the kind of ef-
fect each modifier produces, and the kind of primitivesto which it can be applied.

public class Mdifier extends Primtive {}

174

Acoustic Modifiers

Acoustic modifiers alter the presentation of captured or synthesised sounds. Two kinds
of acoustic modifier are represented by abstract subtypes of Acoustic.

» A SoundCharacteristic is a modifier that is defined in terms of the physical charac-
teristics of a sound, for example its amplitude, envelope or other properties of its
waveform. It could also represent the properties of a waveform which in turn modu-
lates another, e.g., a sawtooth wave which modifies the amplitude (another modi-
fier) of a sound.

» A \ocalCharacteristic is a modifier that applies to synthetic speech, and affects the
way in which the constituents of a given speech object are realized. Examples of
possible vocal characteristics include sex, age, intonation and dialect.

The Java class definitions are again abstract. How information about acoustic mod-
ifiers is represented in a concrete class may depend on the representation chosen for
sound within anyaudi o primitive, or within a captured audio stream.

public class SoundCharacteristic extends Acoustic {}
public class Vocal Characteristic extends Acoustic {}

Structural Modifiers

Structural modifiers affect the interpretation of coordinate values representing, for ex-
ample geometric structure or time, within some collection of primitives. Two kinds of
structural modifiers have been identified, and are represented explicitly as subtypes:

» Transformation objects, which include, but are not limited to, the common affine
and projective transformations. These include the ‘standard’ geometric operations
such as translation, scaling, rotation and shearing.

» Constraint objects that serve to constrain the appearance of other geometric primi-
tives. Constraints may be used to implement clipping, shielding, culling, level of
detail objects or the definition of stencils.

Concepts of transformation and constraint can also be applied to non-geometric co-
ordinates such as time, or colour. The structural modifier primitive and the given sub-
types are abstract object types:

public class Structural extends Mdifier {}

public class Transformation extends Structural {}

public class Constraint extends Structural {}

The structural modifications supported by a given application will depend in part on the
dimensionality of the primitives used (see Section 7.3). Applications may also differ in

whether they support an explicit representation, for example encoding a transformation
as a matrix, or an implicit approach in which the parameters for the transformation are
stored in the primitive and are then extracted by the device that processes the primitive.

175

TimeFrame Modifiers

Whilethe approach used by PREM O to represent multimedia presentations does not ex-
plicitly use any notion of atemporal primitives, the Ti meConposi t e primitive and its
subtypes that are described in Section 7.2.9.2 do refer to time units. In adistributed set-
ting different clocks may be available, offering varying degrees of accuracy, and with
different concepts of the current time. References to time within the description of a
multimedia presentation must therefore be reconciled against some clock, and indeed
different parts of a presentation may need to refer to distinct clocks. Rather than require
that every reference to atime unit be accompanied by a reference to a clock, the MRI
component provides a modifier, Ti neFr ane, that contains a reference to aclock. This
can be combined with primitives using for example the Aggr egat e object type (see
Section 7.2.9.1) to indicate that when processing the presentation, the media processor
should use the clock given by the primitive.

public class TinmeFranme extends Mdifier {}

Visual Modifiers

Visual modifiersin PREMO represent information that arenderer usesto affect the sur-
face appearance of geometric primitives. In a graphics renderer, this encompasses ma-
terial properties, settings such as colour and line width, and rendering parameters such
as the shading model employed. Like other PREMO modifiers, these need to be com-
bined with appropriate primitives through some form of aggregation. All visual modi-
fiers are abstract object types.

public class Visual extends Modifier {}

public class Light extends Visual {}
public class Shading extends Visual {}
public class Texture extends Visual {}
public class Material extends Visual {}

1. Li ght is an abstract supertype for properties related to light. PREMO makes no
commitment to any specific lighting model. It is up to an application to extend this
type in a suitable way.

2. Shadi ng isintended to represent information about the shading model or parame-
ters that should be used to render some or al of a primitive structure.

3. Text ur e supports the definition and use of information representing surface detail,
for example texture or bump maps.

4. Materi al is defined as a container for properties such as translucency and trans-
parency.

176

7.2.7 Wrapper Primitives

Although it is not stated or required in the PREMO standard, primitives derived from
many of the PREM O primitive object types can describe a multimedia presentation. An
application may also want to treat input as astream of primitives, and it istherefore use-
ful toallow for thisinthe MRI component. However, there is even less consensus about
input primitives than about output, in part because of the growing range and variety of
output devices that are available. Rather than attempt to structure the space of values
returned by input devices, PREMO provides a primitive called W apper that encapsu-
lates an arbitrary non-object value. In the standard, the value carried by aw apper ob-
ject is required to be of the non-object type Value that represents the union of the
possible non-object types. As noted in Section 5.2.1, this union type is represented in
the Java binding by the Ohj ect class:

public class Wapper extends Primtive {
Obj ect content;
}
The data carried by a wrapper primitive will typically represent the measure obtained
from some input device (e.g. the position of alocator as a Coor di nat e object, or the
position of avaluator asareal value (represented by a Java Doubl e object).

7.2.8 Tracer Primitives

The Tracer primitiveisdistinct because rather than defining it asastarting point for de-
riving application primitives, it has been defined as an object typeto help the MRI com-
ponent make use of the MSSfacilities. A Tr acer object contains asingle variable that
refersto an Event object (defined in Section 5.3.2.1):

public class Tracer extends Primtive {
public Event trace;

public Tracer(Event trace) {
this.trace = trace;

}
}
The event Nane attribute of the event is set to " Tracer Event ", and the event -
Sour ce attribute is set to reference the Tr acer primitive object in which the event is
contained. Thislinking of the event to the containing Tr acer object can be facilitated
by the constructor.

Therole of Tracer primitiveswill be explained when we describe MRI devicesin
Section 7.4. Briefly however, they allow such devicesto determinethe progress of prim-
itives through a network built from the MSS components. We note in closing that when
using Tr acer primitives to monitor progress of data through a network, one must be
aware that sending and processing aTr acer will itself require some finite time, which
have to be taken into account when using these for synchronization. However, this du-
rationislikely to be small in comparison with the time needed to process the data actu-
aly used to generate a presentation.

177

Structured premo.std.part4

| |

Aggregate TimeComposite

Sequential Alternate Parallel

Figure 7-6 — PREMO Primitive&t r uct ur ed Hierarchy

7.2.9 Structured Primitives

The object type Structured is defined in PREM O as the supertype of a group of object
types, shown in Figure 7-6, that group together a number of simpler primitives. There
are two main reasons why we want to group primitives, which are reflected in the two
branches of the hierarchy below the supertype:

1. We may wish to group form or captured primitives with modifier primitives, to
define or delimit the scope over which the modifier is applied, or simply to provide
alevel of hierarchy in the construction of the model.

2. We may wish to build an overall multimedia presentation by arranging primitives
within some framework which indicates the order in which presentation should
occur, and any temporal constraints that apply.

All structured primitives contain a collection of primitives, which in the Javamodel are
stored as an array of Prinitive objects. Each structured primitive also contains a
Name object. For the present, it suffices to say that this provides away of [abelling the
primitive. The role of Nane is explained in more detail in Section 7.2.10.
public abstract class Structured extends Primtive {
Primtive[] conponents;
Nanme | abel ;
}
Notethat any type of primitive can be amember of components, including further struc-
tured primitives. The standard does not explicitly rule out the creation of cyclic struc-
tures, so an implementation need not test for cycles when adding new primitives. The
order in which primitives are stored as a component of a structure may be significant
for some applications.

7.29.1 Aggregate Primitives
Most graphics API's provide some means of organising primitives into structures that

can be reused in multiple contexts and can be edited to reflect changes in the underlying
model (e.g. structure editing in PHIGS [29]). Aggregates also have a role in delimiting

178

Key:
Aggregate .

Modifier ®

Mod-A Mod-B p Mod-A Primitive O

Mod-B P
Figure 7-7 — Scope of modifiers

the effect of transformations or attributes. For example, as shown in Figure 7-2, a
‘group’ node in Open Inventor can be used to combine geometric primitives (e.g. a
sphere) with a property node that, for example, sets the material properties used to de-
termine the appearance of the sphere when rendered.

Aggregates in PREMO allow a number of primitives to be combined into a structure
without imposing an interpretation on the meaning of the structureghegat e ob-
ject type does not add features to$heuct ur ed object type, but is intended to act as
a marker to show that this collection of primitives has been grouped together because
the group conveys some meaning to a renderer.

public abstract class Aggregate extends Structured {}

Aggr egat e itself places no interpretation on its components. This will not be sufficient
in general because there are different ways of interpreting a given collection of primi-
tives. For example, the combination of a 3D point (a geometric primitive) and a MIDI
file (a captured primitive) could either be rendered by displaying the point on some dis-
play and playing the contents of the file, or by interpreting the point as the location of
the sound within the scene when 3D audio rendering is employed.

Although anAggr egat e contains a sequence of primitives, PREMO does not pre-
scribe the order in which modifiers are applied, and whether or not they are accumula-
tive or override previous modifications. For example, in the two hierarchies shown in
Figure 7-7, there is no requirement thiatd-A be carried out before or aftend-B, and
in the case of the second hierarchy, whether inMadtB overrides any effect aflod-

A on the primitiveP. Thus, the precise semantics of aggregation will depend on the ac-
tual renderer or device used to process the data. Different subtyjags efjat e may

be created to designate different effects. In particular, some models conflate aggregation
with modification; a VRML [54]Tr ansf or mnode for example would be considered as
both a modifier (a transformation) and an aggregate in the PREMO framework, because
the transformation specified by the node is applied to each of its children. An imple-
mentation of VRML that is built on the PREMO primitives could impleméehtans-

f or mclass by subtyping from bottygr egat e andTr ansf or mat i on.

179

7.29.2 TimeComposite

Although animation is a fundamental area of application for computer graphics, most
graphics renderers operate on primitives that make no reference to time. Instead timeis
handled by separate language or system dependent mechanisms. Thisimplicit approach
is not satisfactory when we extend the presentation model towards dealing with multi-
media data in general. Time and temporal extent are fundamental to multimedia pres-
entation and, in general, a multimedia presentation will consist of media data that need
to be synchronized. Time affects multimedia presentation at anumber of levels. For ex-
ample, thetime at which aprimitiveis presented may be adjusted dynamically to satisfy
quality of service requirements, while synchronization requirements might be realized
by placing synchronization elementsin TimeSynchronizable components of a PREMO
system. Time thus plays a specialised role within multimediawhich is not reflected, for
example, in geometric coordinate spaces. Object types that define and manipulate tem-
poral aspects of a presentation must therefore have a standard and efficient means of
representing and accessing this information.
Object types for working with time at alow level have been described in Chapter 5.
At the level of the MRI component, we are concerned with how a multimedia presen-
tation is “laid out” in time. This information is represented inTtheeConposi t e ob-
ject type and three specific subtypeB.nmeConposite is itself a subtype of
St ruct ur ed, and therefore contains component primitives that are parts of some pres-
entation. Exactly how the presentation of such components should be coordinated is de-
fined in the subtypes afi meConposi t e. PREMO recognises sequential, parallel and
alternative composition, the meaning of which are defined latefi A#Conposi t e
objects have certain characteristics, present in the superclass as shown below:
public class TinmeConposite extends Structured {

| ong mn, max;

| ong startTi me, endTine;

Cal | back nonitor;

}
All Ti meConposi t e objects contain a reference to an event handlentthiet or var-
iable) that can be used in a PREMO system to keep track of when significant points in
the structure of a presentation have been reached during rendering or other forms of
processing. Subtypes of meConposi t e define particular points in their temporal lay-
out at which the monitor will be notified of an event when they are being processed by
a suitable kind of device. The other components offtheeConposi t e class are as
follows (please refer also to Figure 7-8):

1. mi n andmax are time values (i.e. numbers of ticks) that define a duration within
which the contents of the neConposi t e object should be presented / processed.
The clock used to measure this interval is not specified by the primitive; it may be
given by aTi neFr ame modifier somewhere in the specification, or it may depend
on the context in which the primitive is processed. The standard allows for an infi-
nite interval, in which case an implementation is free to use as much time as neces-
sary to process the components. This possibility has not been included in the Java
binding described here, as it would complicate the definition of time without adding

180

noni t or 4—\

"conpStart" event "conmpEnd" event

conponent s . endTi me

[]
- -

startTi me

dock . U———

max

L

Figure 7-8 — Attributes of @& nmeConposi t e primitive

much illumination. The simplest approach would be to create a Java class which,
like the built-in j ava. | ang. Doubl e class, defines constants that may be used to
denote plus or minus infinity. In cases where the interval is finite, processing
devices will need to deploy a suitable strategy to ensure that presentation takes
place within the specified bounds. To keep activity within the allowed maximum
interval, a device may need to use the temporal flexibility allowed for within the
component primitives, or may have to degrade the quality of service that it pro-
vides. In the case that the processing cannot be performed at a required quality of
service within the time allowed, the device may take some application-dependent
action, for example raising an exception or aborting the task.

2. start Ti ne isan offset that allows some latency between the point at which a proc-
essor receives a structured primitive and when it begins to operate on the first of its
components. An event should be generated once the st ar t Ti me offset has elapsed,
and be sent to the event handler designated by noni t or. The event name is set to
"conpStart", and the data consists of a single key—value pair that associates the
key " Ti meConposi te" with a reference to th& meConposi te object being
processed. The event source is set to the processing device.

3. endTi e is an offset between the time that the last componentTof@Conpos-
i t e is processed, and the time at which processing dfitheConposi t e itself is
deemed to be complete. It allows a processing device to carry out any finalisation or
housekeeping before the end of the period in which the composite media should be
processed has elapsed. As withgher t Ti me offset, an event is generated, in this
case on completion of the presentation of the components, befoemdhene
delay begins. The event is similar to that usedfar t Ti me, except that the event
name field takes the valueonpEnd" .

Each of the three subtypesTifreConposi t e inherit these features but process com-
ponents in a different manner.

181
O 1
—]
[—
HE mE

I:I component of a TimeComposite

- start-delta
- end-delta

Figure 7-9 — Organisation of2equent i al TimeComposite primitive

72921 Sequential

In asequential presentation, each component of the structured primitiveis presented in

turn, in the order in which they appear in the conponent array. A typical example of
thiskind of composition would beafilm, with atitle, content, and then credits, or abusi-

ness presentation consisting of a sequence of dlides or segments of other media. The

overall structure of the sequence is given by the state inherited from TimeComposite;

the PREMO Sequent i al object type adds attributes that specify temporal “padding”
between the constituents, and describes how, if at all, the contents of component prim-
itives might be allowed to intrude into this padding or indeed be truncated.

public class Sequential extends Ti meConposite {
| ong startDelta, endDelta;
Overl apType overl ap;
}
st art Del t a andendDel t a both represent intervals of timeyer | ap is an enumer-
ated type that effectively has three possible valugfst, ri ght andnever. Its imple-
mentation follows the scheme set out in Section 5.2.2, and will not be given in detail
here. The meaning of the attributes is explained below, with reference to Figure 7-9.

1. start Del t a defines aroffset between the time that a device selects the next com-
ponent of the primitive to process, and the time at which processing of that compo-
nent begins. At the end aftartDel ta an event is sent to the event handler
referenced bymoni t or (inherited fromTi meConposite). The event name is
"seqStart", the source is the processing device, and the data consists of two key—

182

value pairs: the key "sequenti al " is bound to a reference to the Sequenti al
primitive, and the key " posi ti on" isbound to the index of that component within
the sequence of components.

2. endDel t a is an offset between the time a device completes processing the data of a
component, and the time at which it selects the next component. An event is gener-
ated once the component data has been processed, before the start of the delay. The
structure of this event is similar to that used for st ar t Del t a, except that the event
name takes the value " seqEnd" .

3. The values taken by the over | ap attribute define how, if needed, the delays on
either side of a Sequenti al primitive component can be used when processing a
component.

3.1. Thevaluel ef t allows aprocessing device to reduce the endDel t a delay allo-
cated to a component to allow additional time to complete processing of the
data associated with that component. If by using al of the endDel t a buffer
thereis still insufficient time to process the data as required, some application-
specific action such as raising an exception, or an event, may be taken.

3.2. The value ri ght alows the startDelta buffer to be reduced to provide addi-
tional processing time for the component data.

3.3. An overlap value of never requires a device to respect the st art Del t a and
endDel t a offsetsfor al components.

It may seem that a processing device requires some form of oracle to determine
whether or not to intrude into start or end deltas when it is allowed. If a device is
processing a continuous data stream directly, it may not be able to use overlap infor-
mation. The main role of thisinformation, however, isto inform devices such asthe
Coor di nat or (see Section 7.7) that may schedule the components of a structured
media primitive before carrying out the processing according to that schedule.

7.29.22 Paralle

Parallel presentation of datais one of the hallmarks of multimedia, for example video
and audio, or audio and animation (synthetic graphics). Indeed, separate elements of an
animation can be seen as parallel ‘tracks’ of synthetic graphics. The presentation of all
components of ®ar al | el primitive occur concurrently. Even in a single-processor
system where presentation is by necessity realised through time slicing, the intention is
usually that the media streams be perceived as truly parallel.

public class Parallel extends TimeConposite {

bool ean startSync, endSync;

}
ThePar al | el object type introduces two boolean-valued attributes that describe how
processing of the starts and ends of the component primitives should be aligned.

1. Whenst art Sync ist r ue it indicates that the presentation of all components of the
Par al | el primitive must start at the same time. When if & se, a processing

183

start Sync endSync

fal se ﬁ fal se
E—

Figure 7-10 — Organisation ofRar al | el TimeComposite

device can impose a delay before commencing to process some of the components.
Such adelay may be helpful if st art Sync isf al se but endSync istr ue.

2. When endSync is true, it indicates that the presentation of all components of the
primitive should end at the same time. Otherwise, processing of components can
end at arbitrary times.

Theinterplay between st ar t Sync and endSync isshown in Figure 7-10. Note that

here, as with Sequent i al , devices that carry out a scheduling step before processing
media content will benefit the most from thisinformation. In the casethat both st ar t -
Sync and endSync aretrue, a device may have the freedom to realise this requirement
by altering how it processes the media content. For example, if a component isitself a
Ti meConposi t e primitive, the various delays or temporal buffers within the primitive
might allow the presentation to be stretched or compressed to fit the required interval.
For other media, sampling or interpolation of content may be possible. However, there
isno guarantee that a device will be able to satisfy such aconstraint, and in all casesthe
st art Sync and endSync flags are understood not as hard constraints, but as requests
for a device to make the “best possible” effort to align the processing.

The temporal extent ofRar al | el primitive is taken to be the maximum of the ex-
tents of its components. When a componentrdral | el primitive is presented, and
one ofst art Sync andendSync isf al se, the “gap” between the start/end of the over-
all presentation, and the start/end of that primitive’s presentation, will be filled in an ap-
plication-specific way. For example, the unused time allocated to an audio stream will

184

selector options components
stateA 1
| stateA [*—_I stateC | stateB 2
i stateC 3 L |

I stateB |—>{ stateD I
stateD n

Figure 7-11 — Organisation of &ht er nat e TimeComposite primitive

usually be filled with no sound at all. For a video stream, the video presentation might
be “switched off” to leave a blank display area, or the final frame of the video might be
continued until the remainder of tRar al | el primitive has been presented.

7.2.9.2.3 Alternate

Unlike thePar al | el andSequenti al primitives, in which each component is proc-
essed and presented, only one of the componentsAbftannat e primitive is proc-

essed by a given device. The component is selected based on the state obal er

object, referenced from within the primitive (tent r ol | er object type is described

in Section 5.4.2). The state is checked by a device when it begins to process the primi-
tive. Clearly care is needed when changing the state if the primitive is being passed
through a network of devices. There are a number of well known applications or tech-
niques that can be implemented using a facility such as that provided bynat e,
including:

* interactive media, where user input determines the presentation content

« alternative presentations, for example providing a text option to use in place of an
image if a device is incapable of displaying that image

« level-of-detail objects, where a representation of, for example, a graphical object is
selected based on the distance between the object and the viewer — this generalises
to other media such as audio.

The definition of theAl t er nat e type is as follows:

public class Alternate extends Ti mneConposite {
Controller sel ector;
Al t er nat eSequence[] options;
}
The decision over which component primitive to process is determined by the state of
aControl | er object referenced byel ect or. Because the states ofant rol | er
are identified by strings, there is a need to define a mapping from a string to an index of
a primitive within theconponent sequence inherited fromi meConposi t e. This
mapping is defined in the Java binding as an arrayl bér nat eSequence objects,
each of which contains a string, and an integer:

185

cl ass AlternateSequence {
String st at e;
int st at eVal ue;

b
AnAl t er nat eSequence object with st at e sand st at eVval ue i withintheopt i ons
array indicates that, when sel ect or is in state ‘s’, the primitive&eonponent s[i]
should be used. This arrangement is illustrated in Figure 7-11AlTte& nat eSe-
quence class is local tal t er nat e.

7.2.10 Reference Primitives

A fundamental technique in computer graphics is to define a modelling primitive in
some local coordinate system, and then re-use this primitive, subject to transformations,
in various parts of a scene. This approach is supported by mechanisms such as structure
invocation in PHIGS [29], multiple references to scene objects in Open Inventor [89],
or the DEF/USE facilities in VRML [54]. This capability is reflected in the PREMO
model througlRef er ence primitives. These define an implicit link to some node in a
structured presentation through a single variable which referemeas abject.Nane
objects can be associated with any subtyp@& ofict ur ed, and aRef er ence primi-
tive is thus interpreted as a link to $te uct ur ed node that contains a matchiKgnre.

public class Reference extends Primitive {

Nare | abel ;

}
As PREMO is intended to interoperate with different sets of modelling primitives, it
provides a generic mechanism for dealing with naming, that can be interpreted or im-
plemented in a number of different ways. The label W@ object consists of a se-
quence (i.e. array) of strings, and the object type provides a method, equal, that is
required to return boolean value indicating whether or not the receiver (in Java terms)
and the parameter should be considered to represent the same name.

public abstract class Nane extends Sinpl ePREMOObj ect {

String[] tag;
publ i ¢ bool ean equal (Nane ot her Nane) ;

}
By allowing for sequences of strings, tiare object type can be used to implement a
directory-like naming scheme (where the order of names is important), or a mechanism
like the GKS name set [48]. What PREMO does not define is how, giMemeaprim-
itive and some hierarchy of primitives built frogruct ure and its subtypes, the
search for a matching name takes place (e.g. breadth first, depth first). This will depend
on the renderer or media processor operating on the primitives.

7.3 Coordinate Spaces

PREMO primitives are abstract, so they do not contain explicit reference to values or
structures that characterise media data, for example vertices, normals or colour for ge-
ometric data, volume or frequency for audio data, etc. However, it is still necessary to

186

have some way of characterising “low level” media data within the MRl component.
The reason is that different devices that process MRI data may wish to define properties
in terms of the primitives that they can accept or produce. For example, a geometric
modeller may produce output in either 2, 3 or 4 dimensional space. If the output of this
modeller is to be passed to a renderer, it is important that the renderer be able to accept
primitives defined over the appropriate space. Similarly, it is convenient to have a
shared notion of how points in absolute coordinates are referenced (as opposed to the
relative durations or intervals used in thiereConposi t e primitives).

7.3.1 Coordinate

To support property-based negotiation between devices, and the description of proper-
ties, such as absolute time, that are defined within some coordinate framework, PRE-
MO introduces the concept ofCaor di nat e object:
public abstract class Coordi nate extends Sinpl ePREMOObj ect {

static int dinmensionality;

public int getDi nensionality();

abstract public double[] getRange(int dinension);

abstract public void setConponent(int dinension, double value);

abstract public doubl e get Conponent (int dinmension);

}
A Coor di nat e object represents a point in an n-dimensional coordinate space. The di-
mensionality of the space is given by a read-only attribute of the object type, and should
be fixed by subtyping frorgoor di nat e. In the standard;oor di nat e is defined as a
generic type; the values that appear in the various dimensions are drawn from a generic
parameter that can be instantiated to some arbitrary (ordinal) type. Rather than compli-
cate the Java binding by incorporating this level of generality, we have assumed that
each dimension of théoor di nat e object type is aloubl e value. Three operations
can be used to get / set attributes associated with each component (i.e. a given dimen-
sion) of aCoor di nat e:

1. The range of values that can be stored in a dimension can be queried. The range is
represented by a minimum and maximum value, stored as a 2-element array.

2. The value of a component can be set.
3. The value of a component can be enquired.

The standard does not define the result of attempting to access or set information about
a component outside the dimensionality of a given primitive, nor does it state what
should happen i§et Conponent is called with a value outside of the range for that
component. The reason for this is that for applications thalatseli nat e objects for
large-scale data sets, the overhead of checking that values are within a specified range
may be prohibitive. Therefore, PREMO provides an interface that allows such checking
to be carried out, but leaves it to an implementor to decide whether the cost of doing so
can be justified. Of course, an implementation could define a subtyja®odi nat e

that does in fact implement the check and takes some appropriate action if a dimension
or component value falls out of bounds.

187

7.3.2 Timel ocation

Two specific kinds of coordinate space are defined in MRI component as subtypes of
Coordinate. The first, Ti meLocat i on, is a 1-dimensional space that represents loca-
tionsin time by a number of ticks relative to some clock. The clock is not specified as
part of the Ti meLocat i on object because the storage overhead would be prohibitive
for some applications. Those that wish to keep an explicit link to the reference clock can
subtype Ti meLocat i on and include areferenceto aC ock object.
abstract public class TinelLocation extends Coordinate {
static {
dinensionality = 1,
}
}

The Ti meLocat i on class simply fixes dimensionality to be 1.
7.3.3 Colour

To provide deviceswith aminimal capability to negotiate colour models, an object type
called Col our is defined which represents a point (i.e. a colour) within a specified 3-
component colour model. The colour model is defined as aread-only attribute of a col-
our object, and can take on one of four values: RGB, Cl ELWV, HSV, and HLS. Thefact this
isaminimal framework for describing colour is reflected in the lack of support for an
alpha channel.

abstract public class Col our extends Coordinate {

static {
dinensionality = 3;

public String getCol our Mbdel ();
public void set Col our Model (String newCol our Model) ;
}
A number of constants are defined in the standard to provide symbolic names for the
components of each colour model, for example Col our RGBR, Col our RGBG, Col our -
RGBB are numerical constants that map the three dimensions of RGB colour space into
dimensions of aPREMO Col our object.

7.4 Devicesfor Modelling, Rendering and I nteraction

The MSS component defines the concept of a virtual device and provides a collection
of object types whose services support the implementation of a network of devices.
However MSS makes no commitment about the content carried on the streams that link
devices. As explained in the introduction to this chapter, the MRl component uses the
Vi rt ual Devi ce concept as a basis for specialised processing devices, as shown in
Figure 7-1. Having described the PREMO model of multimedia content, we can now
introduce the kinds of devices that can operate on that content.

188

Controller
premo.std.part2
Format VirtualDevice
premo.std.part3
premo.std.part4
MRI_Format MRI_Device
I | | [
Modeller Renderer Scene Router Coordinator
InputDevice MediaEngine

Figure 7-12 — MRI _Devi ce hierarchy and/Rl _For mat

74.1 MRI_Format

The devices defined in the MRI component for processing media dataform a hierarchy
that extends the Vi r t ual Devi ce type of MSS. As shown in Figure 7-12, all such de-
vicesinthe MRI component extend thetype MRI _Devi ce. Because all devicesdefined
in the MRI component are virtual devices, they can be integrated into the kind of
processing network supported by MSS, and where sensible, can interoperate with me-
dia-specific devices. The characteristic of an MRI device that distinguishesit from oth-
er kinds of virtual devicesisthat it hasat least one port at which it can accept or produce
a stream of primitives that are derived from the Pri i t i ve object type described ear-
lier in this chapter.
Recall from Chapter 6 that each format that can be accepted or produced by a Vi r -

t ual Devi ce at a given port is characterised by a For mat object. Although the MRI
component does not prescribe how primitives are transported across medi astreams?, it
does define an object type, MRl _For mat , that represents a specialisation of the MSS
For mat object type for representing information about the transport of MRI data. Two
properties are associated with MRI _For mat objects and can be used, as with any other
property, to negotiate the setup of an MSS network.

D one way of handling this in the case of the Java binding is to use Java serialization and to use
java. i o. Qbj ect Qut put St reamand j ava. i 0. Qbj ect | nput St r eamto write and read the primitives.

189

Key Type Read-only? Description

Di mensi onsK Di m nf o[] no The dimensionality of the
spacein which agiven kind
of primitive will be defined.

Primtivesk String[] yes The kinds of primitive that
can be accepted by the port.

The datatype Di m nf o is used to represent the combination of a primitive type (repre-
sented in Javaby ad ass object) with aninteger representing the dimensionality of that
kind of primitive. It isimplemented in Javaas asimple class. Note that an implementa-
tion should ensure that the Cl ass object stored as pri mi ti veType corresponds to
Primitive or one of its subtypes.
public final class Dimnfo inplements java.io. Serializable {
public C ass primtiveType;
public int di mensional ity;

}
Each of the properties has an associated capability:

Key Type Value
Di nensi onsCK Di m nfol] Not defined by PREMO
PrimtivesCK String[] Not defined by PREMO

For a specific device, these capabilities define the combination of dimensionality and
kinds of primitive that can be accepted by the device at a particular port.

7.4.2 Efficiency Measures

In arich multimedia environment, more than one device may be available to process a

given set of primitives. Other constraints aside, one way of selecting among devicesis

to consider the efficiency with which they can process different kinds of primitive.

Rather than attempt to prescribe some particular metric (e.g. “polygons per second”),
an MRI device is equipped with &fif i ci encyMeasur e object. This object has two
roles:

1. It provides a location where information about the efficiency of the device for some
given characteristic can be stored. PREMO does describe how the performance of a
device is to be encoded f i ci encyMeasur e objects should be associated with
particular property keys of a device.

2. It defines an operation that acceptEahi ci encyMeasur e (from another device)
and produces one of four resulisor seThan, equi val ent To, bett er Than,
not Conpar abl e. The result indicates how the receiver’s device should be ranked
relative to the argument’s device in terms of the criteria on whicEftheci en-
cyMeasur e is defined.

190

The definition of theinterfaceis given below:

public interface EfficiencyMeasure {
publ i ¢ Conpari sonRes conpare(MRl _Device alternative);

}
For completeness, here is the enumerated type:

public final class ConparisonRes
extends preno.inpl.utils. PREMOEnuneration {
public static ConparisonRes worseThan;
public static ConparisonRes equival ent To;
public static ConparisonRes betterThan;
public static ConparisonRes not Conpar abl e;

}

743 MRI Device

The main difference between the interface of Virtual Device and that of
MRl _Devi ce isthe presence of portsthat accept MRl _For mat , it should not be surpris-
ing to find that this is the focus of the main behavioural difference between the two
types. When aport of an MRl _Devi ce isconfigured to use MRl _For mat (either for in-
put or output), the device isrequired to monitor the primitives passing through the port.
When aTr acer primitiveisencountered, the event associated with the Tr acer isdis-
patched to the event handler associated with that port.

This behaviour is motivated by a need to track the progress of primitives through a
processing network. For media such asvideo that istransmitted asframes of an absolute
size, the St r eanCont r ol object type associated with adevice port can provide ameas-
ure of progress through the media. Although PREMO does not define the structure of
the format used to communicate primitives across streams, in practice we expect most
approaches to work by serializing the primitive and then using some form of object
stream. In this case, it is more difficult to measure the progress of the transfer. Further-
more, the stream facilities provided by the MSS component provide no built-in means
for acknowledging receipt, so the sender must make its own arrangements to be in-
formed when media data has successfully arrived. It can do thisby registering itself with
the event handler of the port to which it is sending MRI primitives, and then placing a
Tracer primitiveon the stream to that port immediately after mediadata. M SS streams
arerequired to preserve the order of content, so when the sender isnotified of the arrival
of the Tr acer primitive, it means that the preceding primitive has also arrived.

MRl _Devi ce placesno requirements on whether MRl _For nat issupported on input
ports, output ports, or both. The constraints on what type of port needs to be
MRl _For mat capable are encapsulated within specialised devices, which are consid-
ered next.

744 Moddler
Model | er isan MRl _Devi ce subtype for which at least one output port is capable of

supporting MRl _For mat . The PREMO concept of modeller is a generalisation of that
found in computer graphics, where a modeller is a software package or interface that

191

allowsthe creation of primitives, typically viaspecialised operations or services provid-
ed by the software. In PREM O terms, amodeller is adevice that accepts input in some
form undefined within the MRI component, but which can produce MRI primitives as
output. It thus serves as a bridge from the application world into MRI devices and
processing. Because the differences between MRI_Device and Modeller are in the re-
sources that an object of the type provides, the Javainterface for the Modeller istrivial:

public interface Mddel |l er extends MRl _Device, java.rm .Renote {};

One property is defined for this object type.

Key Type Read—only? Description

Ef fi ci encyQut K EffInfo[] yes AnEffici encyMeasure
for each kind of primitivethe
deviceis ableto produce.

Ef fi ci encyQut K gives, for each primitive that the modeller can produce, an Ef fi -
ci encyMeasur e object that can be used to compare this modeller against another. A
Javaclass, Ef f | nf o, provides adatatype for coupling a primitive type with an Ef f i -
ci encyMeasur e object.
public final class EffInfo inplements java.io. Serializable {
public C ass primtiveType;
public EffiencyMeasure efficiency;
}
Ef fi ci encyQut Kisclearly most useful when the primitives are being generated com-
putationally, rather than interactively with some sort of editor.

745 Renderer

A Render er isthe dual of aMdel | er;itisan MRI device that provides at |east one
input port that accepts MRI _For nat data.
public interface Renderer extends MR _Device, java.rm .Renote {};

The PREMO Render er object generalises the concept of renderer found in computer
graphics. A PREMO Render er is a device that takes MRI primitives, and processes
them to produce some output that is beyond the scope of the MRI component. It may,
for exampl e, generate afile containing an image stored in some externally specified for-
mat, or may present the processed media data directly to an end-user.

Key Type Read-only? Description

Ef fici encyl nK EffInfo[] yes AnEffici encyMeasure
for each kind of primitive the
deviceis able to consume.

192

746 MediaEngine

An object that can both accept and produce streams of MRI primitives is called a Me-
di aEngi ne in PREMO, and is a subtype of both Model | er and Render er. Thisisre-
flected in the Java binding by having the Medi aEngi ne interface extend both
Model | er and Render er.
public interface Medi aEngi ne
ext ends Modell er, Renderer, java.rm .Remote {}

Medi aEngi ne thusinherits both the Ef f i ci encyl nKand Ef fi ci encyQut K proper-
tiesthat characterise its ability to produce and consume primitives. However, these ac-
tivities are usually coupled: the primitives produced by a Medi aEngi ne will typically
be derived from those that it accepts. A potentially more useful way of characterising
the processing capabilities of a Medi aEngi ne isin terms of its ability to transform or
transmute one kind of primitiveinto another. Thisis specified by the Tr ansnut at i onK

property.

Key Type Read—only? Description

Transnut ati onK MapEf f[] yes A measure of the efficiency
with which one kind of prim-
itive can be mapped into
another.

The property value consists of an array of objects, each consisting of amapping defined
by the types of the input and output primitives, and a reference to an Ef fi ci en-
cyMeasur e object. Two Java classes are used to define this data type, since Part 4 of
the PREMO standard defines Pri mviap as a non-object data type (it potentially has use
beyond this particular role):
public class Primvap inplenments java.io. Serializable {
public C ass i nput ;
public Cass output;

}

public final class MapEff inplenents java.io.Serializable {
public Primvap mappi ng;
public EfficiencyMeasure efficiency;
}
Aninstance of MapEf f inthe Tr ansnut at i onK property of aMedi aEngi ne thusrep-
resents the efficiency with which that Medi aEngi ne can map primitives that are in-
stances of the input object type into instances of the output object type.

7.5 Input Devices, and Routing

A multimedia application developed using PREMO may require input at a number of
levels. The simplest case iswhen input is required by a specific device, and when that
input can be taken from an input device (e.g. keyboard, mouse) associated with the end
user’s machine. That is, as far as PREMO is concerned, the existence of input is hidden

193

within the definition of the deviceitself. This however may not always be the case. For
example, a speech recogniser operating aremote device may be best thought of asade-
viceinitsown right that produces a stream of datafor another processing device. In this
respect, an input device can be seen as a specialised form of Model | er, taking data

from the “outside” world (in this case from an end user) and transforming it into a form
that can be passed around and processed by arbitrary MRI devices.

751 InputDevice

I nput Devi ce is a subtype ofbdel | er that is specialised to reflect three of the most
widely used methods for processing input, namely request, sampled, and event-driven
modes [29]. The operation of these modes is best understood by considering each input
device to be capable of providingreasure and atrigger. The measure of a device is

its state at some point in time. The trigger is a transition, initiated by the end user, that
defines a point in time. The interplay between these two concepts is fundamental to the
different modes:

« In request mode, a client that requires input invokes a synchronous operation on a
device, and is thus suspended until the device yields a result. The device in turn may
need to prompt the end-user to indicate that a particular type of input is required.
The value returned by the input device is the measure at some point in time after the
user has been prompted for input. This point in time is usually specified by the
device trigger.

¢ Input in sampled mode takes place when the client inspects the “current” state of the
device’s measure. In a distributed context, the term “current” clearly has to be
understood with transmission delays in mind. The sample returned is by definition
the measure of the device; the trigger plays no real role in this mode.

« Event driven input takes place when a device trigger is converted into an event,
which is then used to notify interested parties that input has become available. The
measure of the device at the time the trigger occurred can be carried as part of the
event data. Event mode has become patrticularly popular for a range of input devices
through the widespread use of callback routines.

PREMO supports all three modes through the interfat@mit Devi ce:

public interface |InputDevice
extends Modeller, java.rm.Renpte {
public Primtive request();

}
Input in request mode is achieved by invoking the (synchronous) request operation.
Sampling is supported by the primitive stream, while event mode is implemented via
the event handler associated with the device. A device might generate several different
events, which a client can inspect via the following property:

Key Type Read-only? Description

Event NanesK String[] yes Event names that this device
can raise.

194

The measure of an event is returned via event Dat a using suitable object types from
the MRI component. Geometric information, e.g. a location on the display, might be
represented directly asaCoor di nat e object. More abstract formsof input, for example
avauator position, can be encoded using a W apper primitive.

75.2 Router

Workstations, and increasingly, personal computers, are capable of supporting a rich
collection of input devices, many of which can be interchanged (at least conceptualy)
for particular logical tasks. For example, picking an item on a “2D” display is usually
accomplished by mouse, but can also be done using a stylus/tablet combination, or
could be done using a more powerful device, e.g. a space-ball, where the feedback is
constrained. Switching between multiple streams of input data could be carried out by
disconnecting the port of one device from another, and then establishing a new connec-
tion. However, connection establishment is a relatively high-cost operation, and is not
intended to support this kind of switching. A better way is to establish connections to
possible input devices when a network of devices is set up, and then “switch” connec-
tions between particular devices. Such a switch, calRaliger for obvious reasons,
is defined in PREMO as a subtypeMsd _Devi ce, but also extends th@ntrol | er
object type. Like anyi r t ual Devi ce derivative, &Rout er has a nhumber of input and
output ports. The exact number of such ports is not specified in PREMO and will de-
pend on specific implementations. Internally, the device keeps track of which input
ports are connected to which output ports. Data arriving on an input port is copied to all
associated output ports. Data arriving at an input port with no associated output port are
simply discarded. By extendingpntr ol | er, different combinations of routing be-
tween input and output ports can be assigned to spesifia ol | er states. Changing
a collection of routes can then be done conveniently, by using the state-transition serv-
ices fromCont r ol | er. The top level of th&out er interface appears below. Its meth-
ods are described separately:

public interface Router

extends MRl _Device, Controller, java.rm.Remote { }

A Rout er must maintain an internal table mapping between ports and (controller)
states. Data arriving at an input port may be routed to more than one output port. How-
ever, each output port should receive data from at most one input port. No restriction is
placed on the amount of fanout that is possible. Subtypes may choose to impose a re-
striction and broadcast it as a property of such objects. Connections are established by
addConnect i on, which defines a connection from an input port to an output port for
a given state. It will throw an exception if that output port has already been connected
to some input port in that state. An association between input and output ports can be
terminated bydr opConnect i on. This only requires that the state and output are spec-
ified, since the input port is then unique. Both operations will also raise exceptions if
either the ports or state specified as parameters are undefined or inappropriate.

195

public void addConnection(String state, int inputPortld,
int outputPortld)
throws BadPort, BadState, AlreadyConnected;

public void dropConnection(String state, int outputPortld)
throws BadPort, BadState, AlreadyConnected;
The connectionsthat are defined in a given state can be queried by passing the name of
the statetoi nqui r eConnect i ons. Provided the state is valid, the connections are re-
turned as an array of Li nks objects, each specifying an input port and the output port
towhich it is connected in that state.

public Links[] inquireConnections(String state)
throws BadSt at e;

public class Links {
int portA;
int portB;
b
As expected, the definition of the Li nks classis nested within Rout er .

7.6 The Scene Database

There are anumber of situations where it makes sense to allow multiple devices access
to one or more primitives: In a CSCW (Computer Supported Cooperative Work) envi-
ronment, agroup of engineers may be viewing and modifying a shared geometric model
for an engineering design. As another example, a shared simulation environment may
consist of arelatively static model of some landscape, together with more dynamic de-
scriptions of the avatars for each participant. Furthermore, a single-user application
may also benefit from being able to store and access media data via a single interface,
rather than for example use a Model | er and a Render er to export and import data
from an external source such asalocal file system.

Explicit shared access to mediadatais supported by the MRI component through the
Scene object type, which can be thought of as adatabase of primitives. Scene isagen-
eralisation of the Central Structure Store of PHIGS, or the Scene Database of Open In-
ventor. The header of the Scene interfaceis as expected (the methods will be introduced
in stages):

public interface Scene

extends Virtual Device, java.rm.Renote { }

Like other MRI devices, a Scene object has a number of ports through which media
streams can be received or sent. In the case of Scene, these streams are used to place
media data into the “database”, or to carry such data to a client. The problem that this
raises is how clients ofgene object should refer to the data that they wish to access.
Manipulation of objects in PREMO is done via object references. Whilst these have
been designed from the outset to be transparent regarding distribution, theaese=of
as a database conflicts with object persistence. AlthougBcttwee type defined by
MRI does not specify that objects stored in it may be saved to and retrieved from sec-
ondary storage, this is a possibility that subtypescehe may wish to address. More

196

structName

(a) Initial connection (b) Creation of base node

port to node association

scene media primitives

(c) Associating port to node (d) Transferring media data
Figure 7-13 — Writing to &cene object

immediately however, a Scene could be used as part of a server facility; relying on cli-

ents to “discover” references to stored data seems inappropriate. One way of supporting
more transparent access would be to have some sort of index or name table, mapping
string descriptors to stored primitives. However, rather than construct such a facility
from first principles, the design of tiseene object makes use of a pre-existing mech-
anism to name primitives — specifically, theme object associated with eaghr uc-

t ur ed primitive.

The MRI Scene object thus defines access to media data usimng objects as
search keys. To retrieve a primitive, a client must request a connection to an output port
of aScene object, and also specifyNanme object that is used to search for a matching
Name object within a stored primitive. Similarly, media data is stored by defining a
Name object that will be associated with that data throughraict ur ed primitive. It
is useful to step through the protocol that a client should use if it wants to store data
within a given scene object (the steps are illustrated in Figure 7-13):

1. The client must connect a media stream to an input por®, safythe scene. The
mechanisms for doing this are inherited frof/ _Devi ce. This is the situation
shown in Figure 7-13(a).

2. There are two cases to consider. In the first, the client is going to write data into the
scene database and associate that data with a named structured primitive that
already exists within the database. At this stage, no further action is needed. If how-
ever the structured primitive to which the data should be attached does not yet exist,
the client must first create it using the following operation:

public void create(Name structName, Object structureType)
throws Al readyExists, |nvalidType;

197

The first parameter to cr eat e gives the name to be associated with the structured
primitive. The second parameter, st ruct ur eType, is (the name of) the type of
object that should contain the name. The value referenced by st ruct ureType
should be the name of a non-abstract object type that is a subtype of St r uct ur ed,
for example Aggr egat e or Sequenti al . If structureType does not refer to a
valid type name, the | nval i dType exception will be thrown. The Nare specified
by st ruct Name must be unique; if a matching Nane object already exists within
the database, the Al r eadyExi st s exception is thrown.

Figure 7-13(b) shows the effect after a new primitive has been created to act as the
base for the stream of data from the client. The other circles within the scene repre-
sent primitives that have been created earlier, or by other clients.

. At this point, we assume that an object exists in the database with a given name (we
will see later how this can be checked by a client). The next step for the client isto
associate the input port of the Scene, to which it will be sending media data, with
the object in the scene database where that data will be attached, as shown in
Figure 7-13(c). It does this by using the at t achW i t e operation below, giving the
Nane object and the port P as parameters.

public void attachWite(Name structName, int portld)
throws NoStructure, MiltiplyDefined, BadPort, AccessFailure;

st ruct Nane must occur exactly once in the database. If it doesn’t occur at all, the
NoSt ruct ur e exception is thrown; if it occurs more than onbsl ti pl yDe-

fi ned is thrown. Similarly, the exceptioBadPort is thrown ifport| d does not

refer to a valid input port of the device. One further exception can atisee, like

any multi-user database, has to carry out some form of locking on data to prevent,
for example, two clients writing into the same primitive. This issue will be visited
again later, but for now we note that thiet achwWi t e operation may throw an
AccessFai | ur e exception if it is not possible for the client to access that primitive
for writing due to the activities of other entities in the PREMO application.

. Onceatt achWi t e has completed successfully, any primitive sent by the client
along the stream attached to the goxtill be stored as a component of the struc-
tured primitive to which the port is attached. Of course, a primitive transferred in
this way may itself be the root of a large collection of media data stored as primi-
tives, and consequently the transfer of data may take a substantial amount of time.
The client can discover when all of the data has arrived &ctévee by sending a
Tracer primitive (see Section 7.2.8) after the media data, and asking the event han-
dler of portP to notify it when arr acer arrives. Figure 7-13(d) shows this stage of

the process.

. When the client has finished producing media data, it should remove the association
between the port from the structured primitive usingdifteach operation:

public void detach(int portld) throws BadPort;

198

Thiswill result in aBadPor t exception if the port referred to by the parameter does
not exist. Using det ach on a port that is not associated with any structured primi-
tive has no effect.

Following det ach, the connection between the Scene port and the client can be
removed using the mechanisms provided by the MSS component. If this is done
before det ach has been invoked, the Scene object may be left in an undefined
stete.

Because the protocol for reading data from a Scene database is sufficiently similar to
that for writing that it should not require illustration, we will just outline the steps in-
volved:

1. A connection is established between the client and an output port of the Scene
object. Asusual, thisis done through MSS services.

2. The att achRead operation is invoked to associate the output port of the Scene
object with some structured primitive within the database. The primitiveis specified
by giving a Nane object that must match the Nanme object associated with that of a
structured primitive. As with attachWite, exceptions are raised if either no
occurrence of the Nane isfound, or if more than one occurrenceis found.

public void attachRead(Nanme structNane, int portld)
throws NoStructure, MiltiplyDefined, BadPort, AccessFail ure;

Exceptions are also raised if the port specified does not exist (BadPort), or if
another object is attempting to access the same primitive concurrently (Access-
Fai |l ure).

3. Once the association between port and primitives has been made, the client requests
that the primitives attached to the structured node it has referenced be transported
from the scene through the specified port. It does this by invoking the t r ansf er
operation on the Scene object. The port|d parameter identifies which port is
being used for the transfer, and thus which primitives are to be transferred.

public void transfer(int portld)
throws BadPort, NotAttached;

Following the pattern of previous operations, the BadPor t exception applies if the
designated port isinappropriate. Not At t ached isthrown if thereisno link between
the port and a primitive in the database. Thet r ansf er operation is asynchronous;
to indicate completion, the Scene will send asingle Tr acer primitive through the
output port once the designated primitive has been sent. Arrival of the Tracer at
the port at the other end of the media stream indicates that the primitive has been
transferred. The effect of invoking t r ansf er or any other operation that refersto a
port in use for reading while the primitive has not been fully read is unspecified.

4. When the reading operation has been completed, the client should invoke det ach
before the MSS services are used to terminate the connection (if that is appropriate
at this point).

199

Two further operations are defined in Scene interface. The del et e operation is given
aName object, and will try to remove that object, the structured primitive that contains
it, and any component of that structured primitive from the database. Furthermore, it
will remove all such occurrences of the name from within the database. Note that the
name need not belong to a “top level” node in the database, it maame abject
associated with some structured primitive buried within a hierarchy of primitives. Sim-
ilarly, reading and writing can take place at an arbitrary node within a structured prim-
itive. If no occurrence of the name could be foundNd& r uct ur e exception will be
thrown. TheLocked exception will result if the primitive that contains the matching
Nane object is currently attached to some port, either for reading or writing.
public void del ete(Nane struct Nane)
throws NoStructure, Locked;
The remaining operatiomnqui r eSt at us, can be used by a client to query the state
of a given name within the database. It returns one of four valwe®r esent,
Locked, Avai | abl e, andwul ti pl yDef i ned, which are defined by an enumeration:
public final class Scene(ObjectState extends PREMOEnumeration {
public static SceneObject State NotPresent;
public static SceneObject State Locked;
public static SceneObjectState Avail abl e;
public static SceneOhjectState MiltiplyDefined;
}
Note that a name that is multiply defined cannot be locked, sine thehRead and
attachWwite operations require that exactly oNeme object within the database
match that given by the parameter to the operation.

publ i c SceneObj ect State inquireStatus(Name structNane);

Any database-like system that offers concurrent access must address the question of
how to prevent multiple readers and writers from interfering with each other. A well
known solution to the problem involves systematically locking shared data, allowing
only one client to read or write that data at a time. The granularity of locking varies be-
tween system and application. A relational database, for example, might provide lock-
ing at the level of the database, a relation within the database, or a subset of the rows
and columns stored in a particular relation. How an implementation 8¢ éme object

type realises locking will depend on the underlying technology. To allow for different
strategies, all that the PREMO standard mandates is that a suitable exception will be
thrown if an operation cannot complete successfully due to the presence of concurrent
access to shared data. Particular locking regimes are free to provide further information
about the cause of the locking problem through the fields of the event structure.

7.7 Coordination

TheTi meConposi t e primitives described in Section 7.2.9.2 provide a simple, declar-
ative model of multimedia content. Any model of multimedia presentation must some-
how allow for the aggregation of individual media, so it should not be surprising that,
for example, the PREM@ar al | el primitive plays a similar role to the use of multiple

200

[
[
D —p renderer B Par al | el TimeComposite
media type B

Figure 7-14 — The problem of new media types

D = | | renderer A
media type A

tracks in HyTime or channels in MPEG. A HyTime or MPEG player must be able to
interpret the particular kind of data carried on each component of the presentation, and
render it in a suitable way. For these formats, the problem is simplified because the
standard defines the specific kinds of data that a player can be expected to handle. A
PREMO system, in contrast, has a more difficult task, since the standard is intended to
be extensible. New kinds of media data, and devices for processing such data, can be
defined by subtyping. This, however, leaves open the question of how to process acom-
posite presentation containing such data. We may have a device that can process the
datain isolation, but not necessarily one that can process this datain combination with
other formats. Figure 7-14 illustrates the general problem.

What is needed is away for a device that processes Ti meConposi t e primitives to
use devicesthat are specific to mediathat might be carried as part of the Ti neConpos-
i t e. Such adevice could then be configured dynamically to accommodate processors
specific to certain media. Upon receiving a Ti meConposi t e primitive, it would need
to find a device appropriate for each component of the Ti meConposi t e, and alocate
the components to specific devices. However, that is not all it must do. Different kinds
of Ti meConposi t e primitive contain implicit and explicit requirements on synchroni-
zation between components. If the components are allocated to separate devices, these
synchronization constraints must somehow be maintained. This therefore becomes an
additional responsibility of the device that manages the distribution of content to proc-
essors. Such adeviceis defined in the PREMO MRI component, and is called a Coor -
di nat or.

public interface Coordinator { }

The Coor di nat or addresses three sets of concerns:

1. Management. As an MRI device, aCoor di nat or provides a port through which it
can receive primitives. It also defines an interface that alows devices (which must
be subtypes of Render er) to be added and removed from the Coor di nat or . Here,
‘adding’ a device means registering it as a device thaidbedi nat or can use for
processing components of a presentation that it receivesTage@onposite
primitive through its input port.

2. Allocation. On receiving &i meConposi t e primitive, aCoor di nat or will assign
the primitive, or its components, to one or more of the devices that have been regis-
tered with theCoor di nat or.

201

3. Synchronization. A Coor di nat or is responsible for ensuring that any implicit or
explicit synchronization constraints present in any received Ti meConposi t e prim-
itive are respected as the components of the Ti neConposi t e are processed by the
devices to which they have been alocated.

Each of these concerns will be examined in more detail in the subsections that follow.
7.7.1 Management

Registration and removal of devices to and from a Coor di nat or is accomplished
through two operationsinthe Coor di nat or interface. To add adevice, theaddDevi ce
operation isinvoked with areference to adevice, and theidentity of the port on that de-
vice to which the Coor di nat or should send primitives. If the device is already regis-
tered with the Coor di nat or, the port specified by thei nPor t | d parameter overrides
the port that the Coor di nat or currently uses. If the port does not correspond to an in-
put port on the device that has an MRI _For mat object associated with it, a BadPor t
exception israised.

public void addDevi ce(Renderer renderer, int inPortld)

t hrows BadPort;

Removing adeviceis simple: the client passes a reference to the device that should be
de-registered from aCoor di nat or asthe parameter todr opDevi ce. Thereisno effect
if the device has not been registered. It is up to the client to ensure that when a device
is removed from a Coor di nat or, it is not ‘in use’ i.e. processing media data. The
standard does not define an outcome in the case that the device is ‘in use’.

public void dropDevi ce(Renderer renderer);

One further operation is defined in t@eor di nat or interface: nqui r eDevi ce re-
turns information about the devices registered withCthwe di nat or as a sequence of
pairs, where each pair contains a reference to a registered device and the identity of the
port of the device that will be used by theor di nat or. In the Java binding, the se-
quence is implemented by an array, and the device / port combinations are represented
by Devi cel nf o objects.

public class Devicelnfo {

publ i ¢ Renderer renderer;

public int i nPortld;
}

public Devicelnfo[] inquireDevice();
7.7.2 Allocation

Once &Coor di nat or has received & nmeConposi t e primitive, it must attempt to al-
locate it for processing to one or more of the devices that it has at its disposal. In order
to accomplish this, it must examine the components ofitheConposi t e to deter-

mine their constituent media, and then attempt to match this against the information car-
ried in theMRI _For mat objects of the device ports that specifies which kinds of
primitive that device can accept. The task may be impossible. If a component of the
Ti meConposi t e uses a primitive for which no suitable device is available, or if the

202

@ @ devB l—bl l—f|
@ @ deve time
i‘ 'i i‘ 'i ° >

Figure 7-15 — Laying Primitives along Tracks

componentsof aPar al | el primitive require more devices of aparticular typethan are
available, some action must be taken. The Coor di nat or could abort presentation of
the entire Ti neConposi t e, or it could attempt to present those parts for which it has
resources available. Different strategieswill be appropriate in different applications and
circumstances, and for this reason the standard does not mandate what action should be
taken if resources are insufficient.

Assuming that the Coor di nat or s resources are sufficient, the task of allocation
can be viewed as laying out media primitives along tracks, one per device that the
or di nat or has available to it. As shown in Figure 7-15, the arrangement of primitives
along tracks should reflect the organisation of primitives withirst¢lygient i al , Par -
al I el andAl t er nat e Ti meConposi t es that describe the presentation. Note that the
choice of component to be processed frondarer nat e primitive must be made ef-
fectively at the point that this allocation is carried out. Although not specifically de-
scribed in the standard, it is in principle possible ti@taa di nat or could be allowed,
by changing the state of aht er nat e primitive, to select a component that will make
the allocation feasible or particularly efficient.

7.7.3 Synchronization

Once the components ofTameConposi t e have been scheduled for processing, the
Coor di nat or should place the primitives into media streams that are linked to the des-
ignated input ports of the rendering devices. At this point, the processing of the media
data becomes a concurrent activity, employing a collection of independent devices. The
Coor di nat or is effectively acting as the client of its ‘local’ resources, and as such has
to take responsibility for ensuring that the processes realised by the devices are appro-
priately synchronized. The synchronization constraints thaCdbedi nat or must

fulfill include (see Section 7.2.9 for details of the primitives mentioned):

1. Respecting that art Sync and endSync flags of Paral | el TimeComposite
primitives

203

2. Taking into account the conpSt art and conpEnd offsets of al Ti meConposite
primitives, and the st ar t Del t a and endDel t a offsets of Sequent i al TimeCom-
posites

3. Respecting the ni n / max duration for the overall Ti meConposi t e.

The PREMO standard does not mandate any specific strategy for meeting these require-
ments but it does make three suggestions as to how synchronization might be realised,
which are described here:

1. The input port of each device used by the Coordi nator has an associated
St r eanCont r ol object. The finite-state-machine (Cont r ol | er object) embedded
within the St r eanCont r ol object can be used by the Coor di nat or to start, stop,
pause and resume the processing activity of each device. The Coor di nat or can
acquire a certain level of feedback about progress through the inquiry operations
provided through St r eanCont r ol . However, at the level of stopping and starting
processing for entire primitives, a simpler approach for the Coor di nat or is to
insert aTr acer primitive into each stream immediately following the media primi-
tive, and arrange for it to be notified when the Tr acer is processed at the input port
of each device.

2. The St reanCont r ol objects at the device input ports can also be used to give a
finer level of inter-media synchronization, by using Synchr oni zat i onEl enent s
along the progression space, coupled with an ANDSynchr oni zat i onPoi nt object,
as described in Section 5.5 on page 90. Suitable points for applying this strategy are
the time points corresponding to the start and end of segments of primitive data.
When used in conjunction with the Tr acer primitives as described above, the syn-
chronization elements may be offset to account for the presence of the Tracer,
although as mentioned in Section 7.2.8, the time taken to process a Tracer will
generally be small compared to the time taken to process a media primitive.

3. Fine control over synchronization between multiple media streams can be achieved
by the Coor di nat or by placing periodic synchronization elements along the pro-
gression space of the St r eantCont r ol objects at the device ports.

The options are clearly not mutually exclusive, nor are they in any sense ‘complete’.
Figure 7-16 illustrates how the first and second of these approaches might be combined
although fine-grained synchronization through periodic synchronization elements was
omitted for clarity. The “tracks” are intended to represent the progression space associ-
ated with the input port of each device. Note that the relative sireaofr primitives

to other media primitives is much larger in the figure than would be expected in practice.

204

o]

L H0E- I —
7'y A AA

—>

i ©
A

A

= tracer primitive

A = ANDSynchronizationPoint

renderer A

~— |

—_—

renderer B

—

renderer C

~— |

Figure 7-16 — Synchronization of Coordinated streams

205

Chapter 8

Detailed Java Specifications of the PREM O Objects

8.1 Introduction

This chapter collects all PREMO object specifications. No detailed explanation for the
interfaces, classes, or methods are provided here, the reader should refer to the main
text.

In the case of classes, only the public part of the interface islisted. In the case of in-
terfaces, some methods are repeated in interface extensions although, formally, this
would not be necessary; repeated methods refer to the fact that the interface implemen-
tation represents amajor change or extension in semantics for that specific method.

The package and import statements are not listed to avoid cluttering the text.

8.2 Foundation Objects

All the classes and interfaces are in the package pr eno. st d. part 2. All classesimport
the package pr eno. i npl . uti | s, to refer to, e.g., the PREMOEnuner at i on class.

8.2.1 Enumerations

Only the relevant constants for enumerations are listed. The specia construction mech-
anism, common to all PREM O enumerations, is omitted; see page 62 for further details.

public final class ActionType extends PREMOEnuneration {
public static ActionType Enter;
public static ActionType Leave;

public final class AndOr extends PREMOEnuneration {
public static AndOr And;
public static AndOr O;

public final class Direction extends PREMOEnuneration {
public static Direction Forward;
public static Direction Backward;

206

public final class TinmeUnit extends PREMOEnuneration {
public static TineUnit Picoseconds;

public static TimeUnit Nanoseconds;
public static TineUnit M croseconds;
public static TineUnit MIiseconds;
public static TimeUnit Second;
public static TinmeUnit M nute;
public static TinmeUnit Hour;

public static TineUnit Day;

public static TineUnit Mnth;

public static TinmeUnit Year;

public final class ConstraintOp extends PREMOEnuneration {
public static ConstraintOp Equal;

public static Constraint Op Not Equal ;
public static ConstraintOp G eaterThan;
public static ConstraintOp G eater ThanO Equal ;
public static ConstraintOp LessThan;
public static Constraint Op LessThanOr Equal ;
public static ConstraintOp Prefix;
public static ConstraintQp Suffix;
public static ConstraintQOp NotPrefix;
public static ConstraintOp Not Suffix;
public static Constraint O |ncludes;

c c

public static Constraint Op Excludes;

8.2.2 Additional Data Types

/1 Integer codes for Synchronizable and Tiner states

/'l Usage of integer codes nake the nmerge and extension of
/] states easier.

public final class State inplenments java.io. Serializable

{

public static final int TSTOPPED = O;
public static final int TSTARTED = 1,
public static final int TPAUSED = 2;
public static final int STOPPED = O;
public static final int STARTED = 1;
public static final int PAUSED = 2;
public static final int WAITING = 3;

207

8.2.3 Top Level of PREMO Hierarchy

/'l See section 5.3.1 on page 64
public interface PREMOOhj ect extends java.rm .Renote {
java.l ang. d ass i nquireType()
throws java.rm . Renpt eExcepti on;
java.lang. d ass[] inquireTypeG aph()
throws java.rn .Renpt eException;
java. |l ang. d ass[] inquirel nmedi at eSupertypes()
throws java.rm .Renpt eException;

/] See section 5.3.2 on page 65; also, section A 1.2 on page 232
public abstract class Sinpl ePREMOObj ect
i npl enents /* PREMOObj ect, */ java.io.Serializable {
java.l ang. d ass i nquireType()
throws java.rm . Renot eExcepti on;
java.l ang. d ass[] inquireTypeG aph()
throws java.rn .Renpt eException;
java. l ang. d ass[] inquirel nmedi at eSupertypes()
throws java.rm . Renpt eExcepti on;

/1 See section 5.3.3 on page 68
public interface Call back extends PREMOObject {
voi d cal | back(Event cal | backVal ue)
throws java.rm . Renot eExcepti on;

/] See section 5.3.3 on page 68
public interface Call backByNane extends PREMOObj ect {
voi d cal | back(Event cal | backVal ue)
throws OperationNotDefined, java.rm .RenpteException;

/] See section 5.3.4 on page 69
public interface EnhancedPREMOChj ect
ext ends PREMOOhj ect, java.rm .Renpte {
voi d defineProperty(String key, Qbject[] value)
throws ReadOnl yProperty, java.rm .RenoteException;
voi d undefineProperty(String key)
throws ReadOnl yProperty, NoKey, java.rm .RenpteException;
voi d addVal ue(String key, Object value)
throws ReadOnl yProperty, java.rm . RenoteException;
voi d renoveVal ue(String key, Object val ue)
t hr ows ReadOnl yProperty, NoKey, InvalidVal ue,
java. rm . Renot eExcepti on;

public static class Keylnfo inplements java.io. Serializable {
public String key;
public bool ean readOnly;

208

8.24

/1
/1
/1

Keyl nfo[] inquireProperties()

throws java.rm . Renpt eException;
Obj ect[] getProperty(String key)

throws NoKey, java.rm . RenpteException;
PropertyPair[] getPairs()

throws java.rm .Renpt eException;

public static class MatchPropertyResults
inpl ements java.io. Serializable {
public PropertyPair[] satisfied,
public PropertyPair[] unsatisfied;
}
Mat chPropertyResul ts matchProperties(Constraint[] constraintList)
throws java.rm . Renpt eException;

voi d set PropertyCal | back(String key, Callback call back,
String event Nane)
throws NoKey, java.rm .RenpteException;

Structures

This structure does not appear in the PREMO docunment directly,
but is used by several objects; it has been abstracted out
as a separate class

public final class PropertyPair inplenents java.io.Serializable {

/1

public String key;

public oject[] val ue;

public PropertyPair(String k, Object[] V);
public PropertyPair();

See page 83

public class ActionEl ement
extends Sinpl ePREMOChj ect inplenments java.io. Serializable {

/1

public Call back eventHandl er;
public String event Name;

See section 5.3.2.2 on page 67

public class Constraint
ext ends Si npl ePREMOObj ect inplenents java.io. Serializable {

public ConstraintOp constraintOp = Constraint Op. Equal ;

public static class KeyValue inplenents java.io.Serializable {
public String key = *“;
public Object value;

}
public KeyValue keyValue = new KeyValue();

209

/'l See section 5.3.2.1 on page 66
I/l “equals” overrides the corresponding methods in
/I java.lang.Object; “clone” implements the Cloneable interface

public class Event extends SimplePREMOObject
implements java.lang.Cloneable, java.io.Serializable{

public static class Event Dat a implements java.io.Serializable {
public String key ="
public java.lang.Object value;
public boolean equals(java.lang.Object otherO);

}

public String eventName =,

public EventDatal] eventData = new EventData[0];
public EnhancedPREMOObject eventSource;

public boolean equal s(java.lang.Object otherE);

public java.lang.Object cl one();

/] See section 5.5.1.3.3 on page 101

public class SyncEl enment
extends SimplePREMOODbiject implements java.io.Serializable {

public Callback eventHandler;
public Event syncEvent;
public boolean waitFlag;

}

8.25 General Utility Objects

8.25.1 Event Management

/] See section 5.4.1.2 on page 76

public interface Event Handl er
extends Callback, EnhancedPREMOObject, java.rmi.Remote {

public long regi ster(String eventType, Constraint[] constrains,
AndOr matchMode, Callback theCallback)
throws java.rmi.RemoteException;
public void unr egi st er (long id)
throws InvalidEventld, java.rmi.RemoteException;
public void di spat chEvent (Event e)
throws java.rmi.RemoteException;

210

/'l See section 5.4.1.3 on page 78
public interface Synchronizati onPoi nt
extends EventHandl er, java.rm.Remte {
public void addSyncEvent (Event e)
throws RepeatedEvent, java.rm .RenpteException;
public void del eteSyncEvent (Event e)
throws UnknownEvent, java.rm .RenoteException;

public long register(String event Type, Constraint[] constrains,
AndOr mat chMode, Cal | back thecCal | back)
throws InvalidEventld, java.rm .RenpteException;
public void di spatchEvent (Event e)
throws UnknownEvent, java.rm .RenoteException;

/1 See section 5.4.1.3 on page 78
public interface ANDSynchroni zati onPoi nt
ext ends Synchroni zati onPoi nt, java.rm.Renmpte {
public void addSyncEvent (Event e)
throws RepeatedEvent, java.rm .RenpteException;
public void del eteSyncEvent (Event e)
throws UnknownEvent, java.rm .RenpteException;

public void di spatchEvent (Event e)
throws UnknownEvent, java.rm .RenpteException;

8.25.2 Controllers

/] See section 5.4.2 on page 81
public interface Controller
extends Cal | back, EnhancedPREMOObj ect, java.rm .Renmote {
public String getCurrentState()
throws java.rm . Renpt eExcepti on;
public String[] getPossibleStates()
throws java.rm . Renot eExcepti on;

public void handl eEvent (Event e)
throws java.rm . Renot eExcepti on;

public void setAction(String state, ActionElenent action,
Acti onType aType)
throws WongState, java.rm .RenpteException;
public void renoveAction(String state, ActionType aType)
throws WongState, java.rm .RenpteException;

public void setActionOnPair(String statedd, String stateNew,
Act i onEl ement acti on)
throws WongState, java.rm .RenpteException;
public void renoveActi onOnPair(String stated d, String stateNew
throws WongState, java.rm .RenpteException;

211

8.25.3 TimeObjects

/'l See section 5.4.3.2 on page 88
public interface C ock
ext ends EnhancedPREMOObj ect, java.rm .Rempte {

TinmeUnit getTickUnit() throws java.rni . Renot eException;
void setTickUnit(TinmeUnit unit) throws java.rm .RenpteException;
TimeUnit get AccuracyUnit () throws java.rmn .RenoteException;

voi d set AccuracyUni t(TimeUnit unit)
throws java.rm .Renpt eException;

| ong get Accuracy() throws java.rn . Renot eException;
I ong inquireTick() throws java.rm . Renot eExcepti on;

public interface SysC ock extends C ock, java.rm .Renmpte {
I ong inquireTick() throws java.rn . Renot eException;

}

public interface Timer extends C ock, java.rm.Renote {
int getTimerCurrentState() throws java.rm . RenoteException;

void start() throws java.rm . Renot eException;
voi d stop() throws java.rm . Renot eExcepti on;
voi d pause() throws java.rnm.RenoteException;
voi d resune() throws java.rm . Renot eException;
void reset(); throws java.rm . Renpt eException;
I ong inquireTick() throws java.rm . Renot eException;

8.26 Sychronization Objects

/'l See section 5.5.1.3 on page 99

public interface Synchronizable

ext ends Cal | backByNane, EnhancedPREMOObj ect, java.rm .Renpte {
int getCurrentState() throws java.rni.RenoteException;
Nunmber getCurrentPosition() throws java.rm . RenoteException;
Nunmber getM ni nunPosition() throws java.rm . RenoteException;
Nunber get Maxi nunPosition() throws java.rmn .RenpteException;
int getLoopCounter() throws java.rnm . Renot eException;

void setDirection(Direction where)

throws WongState, java.rm .RenpteException;
Direction getDirection()

throws java.rn .RenpteException;

voi d set StartPosition(Nunber position)
throws WongVal ue, WongState, |11 egal Argunment Excepti on,
java. rm . Renot eExcepti on;
Nunmber get Start Position()
throws java.rm .Renpt eException;

212

voi d set EndPosi ti on(Nunmber position)
throws WongVal ue, WongState, |11 egal Argunment Excepti on,
java.rm . Renot eExcepti on;
Nunmber get EndPosition() throws java.rm . RenoteException;

voi d set Repeat FlI ag(bool ean fl ag)
throws WongState, java.rm . RenpteException;
bool ean get Repeat Fl ag() throws java.rmn . RenpteException;

voi d set NLoop(int val ue)
throws WongState, |11 egal Argunment Excepti on,
java.rm . Renot eExcepti on;
int getNLoop() throws java.rm .RenpteException;

voi d reset LoopCounter ()
throws WongState, java.rm . RenpteException;

voi d junp(Nunmber position)
throws WongState, WongVal ue, |11 egal Argunent Excepti on,
java. rm . Renpt eExcepti on;

voi d start() throws WongState, java.rm .RenpteException;
voi d stop() throws java.rm .RenoteException;

voi d pause() throws WongState, java.rm .RenoteException;
voi d resunme() throws WongState, java.rm .RenpteException;

voi d set SyncEl ement (Nunber position, SyncEl ement syncEl ement)
throws WongState, WongVal ue, |11 egal Argunent Excepti on,
java. rm . Renpt eExcepti on;
voi d del et eSyncEl ement (Nuber position)
throws WongState, WongVal ue, |11 egal Argunent Excepti on,
java.rm . Renpt eExcepti on;

public class Synclnfo {
public SyncEl ement syncEl enent;

publ i ¢ Number position;

}

Syncl nfo[] get SyncEl ement s(Nunmber posM n, Nunber posMax)
throws WongVal ue, |11 egal Argunent Excepti on,

java. rm . Renpt eExcepti on;

voi d set Peri odi cSyncEl ement (Nunber start Ref Point,
Nurmber endRef Poi nt,
Nurber periodicity,
SyncEl ement syncDat a)
throws WongState, WongVal ue, |11 egal Argunent Excepti on,
java.rm . Renpt eExcepti on;
voi d del et ePeri odi cSyncEl enent (Nunber startRef Point,
Nurber endRef Poi nt,
Nurber periodicity)
throws WongState, WongVal ue, |11 egal Argunent Excepti on,
java. rm . Renot eExcepti on;

213

voi d set Acti onOnPai r (int statedd, int stateNew,
Acti onEl ement acti on)
throws WongState, java.rm . RenpteException;
voi d renpveActionOnPair(int stated d, int stateNew)
throws WongState, java.rmnm .RenpteException;

voi d cl ear SyncEl enent s()
throws WongState, java.rn .RenpteException;

/1 See section 5.5.2 on page 103
public interface Ti meSynchroni zabl e
ext ends Synchroni zable, Timer, java.rm.Rempte {
voi d set Speed(doubl e speed)
throws WongState, java.rm .RenpteException;
doubl e get Speed()
throws java.rm . Renot eExcepti on;

I ong get Ti neCurrent Posi tion() throws java.rm .RenoteException;
I ong get Ti meM ni munPosi tion() throws java.rni . RenoteException;
| ong get Ti mreMaxi munPosi tion() throws java.rn . RenpteException;
voi d setTinmeStartPosition(long position)

throws WongVal ue, WongState, |11 egal Argunent Excepti on,

java.rm . Renpt eExcepti on;

I ong get Ti neStart Position()

throws java.rm . Renot eExcepti on;
voi d set Ti meEndPosi ti on(l ong position)

throws WongVal ue, WongState, |11 egal Argunent Excepti on,
java.rm . Renot eExcepti on;
| ong get Ti meEndPosi tion() throws java.rm . Renot eException;

voi d junp(long position)

throws WongState, WongVal ue, java.rn .RenpteException;
voi d set SyncEl enent (| ong position, SyncEl ement syncEl enent)

throws WongState, WongVal ue, java.rn .RenpteException;
voi d del et eSyncEl ement (1 ong position)

throws WongState, WongVal ue, java.rn .RenpteException;
public class TineSynclnfo {

public SyncEl ement syncEl enent;

public |ong posi tion;
}
Ti meSyncl nfo[] get SyncEl ements(long posMn, |ong posMax)

throws WongVal ue, java.rmn .RenpteException;
voi d set Periodi cSyncEl ement (| ong startRefPoint, |ong endRef Point,

long periodicity,
SyncEl enment syncDat a)

throws WongState, WongVal ue, java.rm . RenpteException;

voi d del et ePeri odi cSyncEl enent (| ong start Ref Poi nt,
| ong endRef Poi nt,
I ong periodicity)
throws WongState, WongVal ue, java.rn .RenpteException;

214

voi d play() throws WongState, java.rm .RenoteException;
void run() throws WongState, java.rni.RenoteException;
voi d stop() throws java.rm . Renot eException;

voi d pause() throws WongState, java.rm .RenoteException;
void resune() throws WongState, java.rn .RenoteException;

Nunmber ti meToSpace(long tine)
throws java.rm .Renpt eException;
| ong spaceToTi me(Nunber position)
throws 111 egal Argunent Exception, java.rni.RenpteException;

/'l See section 5.5.3 on page 107
public interface Ti meSl ave
extends TimeSynchronizable, java.rm.Remte {
voi d set Mast er (Ti meSynchr oni zabl e naster)
throws WongState, java.rm .RenpteException;
Ti meSynchr oni zabl e get Master ()
throws java.rn .Renpt eException;
I ong inquireAlignnent() throws java.rm . Renot eExcepti on;

public class syncHandl er {
Cal | back handl er;
| ong threshol d;

}

voi d set SyncEvent Handl ers(syncHandl er[] syncEvent Handl ers)
throws java.rm . Renpt eExcepti on;

/1 See section 5.5.4 on page 109
public interface TineLine
extends Ti meSynchroni zable, java.rm .Renpte {
voi d set Speed(doubl e speed)
throws WongState, java.rn .RenpteException;

8.2.7 Negotiation and Configuration M anagement

/] See section 5.6.2 on page 113
public interface Propertylnquiry
ext ends EnhancedPREMOCbj ect, java.rm . Renote {
java.l ang. Object[] inquireNativePropertyVal ue(String key)
throws java.rni.RenoteException, |nvalidKey;

215

/'l See section 5.6.3 on page 114
public interface PropertyConstraint
extends Propertylnquiry, java.rm.Remote {
voi d defineProperty(String key, Object[] value)
t hr ows ReadOnl yProperty, InvalidVal ue,
java.rm . Renot eExcepti on;
public void addVal ue(String key, bject val ue)
t hr ows ReadOnl yProperty, InvalidVal ue,
java.rm . Renpt eExcepti on;
public void bind()
throws InvalidValue, java.rm .RenpteException;
public void unbind()
throws java.rm . Renot eExcepti on;
public PropertyPair[] constrain(PropertyPair[] constraints)
throws InvalidKey, InvalidValue, java.rm .RenpteException;
public PropertyPair[] select(PropertyPair[] constraints)
throws InvalidKey, InvalidValue, java.rn .RenpteException;

}
8.2.8 Creation of Service Objects

/'l See section 5.7.1 on page 118
public interface GenericFactory
extends Propertylnquiry, java.rm.Renote

{
Propertylnquiry createQObject(String obj ect Type,
PropertyPair[] constraints,
oj ect i nitVal ue)
t hr ows I nval i dCapabilities, CannotMeetCapabilities,
I nval i dType, Incorrectlnit, java.rm .RenpteException;
Propertylnquiry createQbject(java.lang.C ass object Type,
PropertyPair[] constraints,
oj ect i nitVval ue)
t hr ows I nval i dCapabilities, CannotMeetCapabilities,
Inval i dType, Incorrectlnit, java.rm .RenoteException;
}

/] See section 5.7.2 on page 120

public interface FactoryFinder

ext ends EnhancedPREMOObj ect, java.rm .Rempte {
Generi cFactory[]

findFactories(String obj ect Type,
PropertyPair[] obj ect Constrai ns,
PropertyPair[] factoryConstrains)

t hr ows I nval i dCapabilities, CannotMeetCapabilities,
I nval i dType, java.rm . RenpteException;
Generi cFactory[]
findFactories(java.lang.C ass objectType,
PropertyPair[] obj ect Constrai ns,
PropertyPair[] factoryConstrains)
t hr ows I nval i dCapabilities, CannotMeetCapabilities,
I nval i dType, java.rm .RenpteException;

216
8.3 Multimedia Systems Services

All the classes and interfaces arein the package pr eno. st d. part 3. All classesimport
the packages preno. i npl . uti | s (to refer to, e.g., the PREMOEnuner at i on class),
and pr eno. st d. part 2.

8.3.1 Enumerations

Only the relevant constants for enumerations are listed. The special construction mech-
anism, common to all PREMO enumerations, isomitted; see page 62 for further details.

/] See section 6.5.1.2 on page 147

public final class PortType
ext ends PREMOEnuneration inplenments java.io. Serializable
{

public static PortType | NPUT;

public static PortType OUTPUT;

8.3.2 Structuresand Additional Data Types

/1 Integer codes for Synchronizable and Tiner states
/'l Usage of integer codes nake the merge and extension of
/] states easier.

public final class MSS State inplenments java.io. Serializable

{

public static final int MUTED = 4;
public static final int PRIM NG = 5;
public static final int DRAI NI NG = 6;

/] See section 6.4.1 on page 141

public final class Conflnfo inplements java.io. Serializable
{

public String semNane;

public Cass objectType;

public Conflnfo(String name, C ass type);

public Conflnfo();

217

/] See section 6.5.1.2 on page 147

public class PortConfig
ext ends Si npl ePREMOChj ect inplenments java.io.Serializable
{

public Conflnfo gos;

public Call back event Handl er;

public StreanControl streanControl;

public Conflnfo protocol ;

public static class formatData i nplenents java.io.Serializable {
public |ong tinme;

public Conflnfo nane;

public formatData[] fornmats;

8.3.3 Configuration Objects

/'l See section 6.2.1 on page 131
public interface Format
extends PropertyConstraint, java.rm .Remote {}

/] See section 6.2.2 on page 132
public interface Miltimedi aStreanProtocol
extends PropertyConstraint, java.rm.Remte {}

/'l See section 6.2.2 on page 132
public interface InterNodeTransport
extends Mul tinmedi aStreanProtocol, java.rn.Renmote {}

/] See section 6.2.2 on page 132
public interface |InterNodeTransport
extends Mul tinmedi aStreanProtocol, java.rm.Remte {}

/'l See section 6.2.2 on page 132
public interface IntraNodeTransport
extends Multinmedi aStreanProtocol, java.rn.Renmote {}

/'l section 6.2.3 on page 134
public interface QoSDescri ptor
extends PropertyConstraint, java.rm.Remte {}

218

8.3.4 Stream Control

/'l See section 6.3.1 on page 136
public interface StreanControl
extends Ti meSynchroni zabl e, java.rni.Renote

{
int getCurrentState() throws java.rm . RenoteException;
void nute() throws WongState, java.rm .RenpteException;
void prine() throws WongState, java.rm .RenoteException;
void drain() throws WongState, java.rm . RenpteException;
}

/] See section 6.3.2 on page 140
public interface SyncStreantControl
extends TinmeSl ave, SyncControl java.rm .Renmote {}

8.3.5 Virtual Resource

/] See section 6.4 on page 140
public interface Virtual Resource
extends Propertylnquiry, java.rm .Renmpte {
voi d set Resour ceEvent Handl er (Cal | back e)
throws java.rm .Renpt eException;
Cal | back get Resour ceEvent Handl er ()
throws java.rm . Renpt eExcepti on;

StreanControl getStreamControl () throws java.rm . RenoteException;

PropertyConstraint resolve(String senNane)
throws InvalidName, java.rm .RenpteException;

voi d acqui reResource()
throws ResourceNot Avai | abl e, java.rm . Renot eExcepti on;
voi d rel easeResource() throws java.rm . RenoteException;

public class ProposedVal ues inplements java.io. Serializable {

public String semant i cNane;
public PropertyPair][] repl acenent;
}
public class ValidationResult inplenents java.io.Serializable {
public bool ean result;
publ i c ProposedVal ues proposedVal ues;
}

Val i dationResult validate() throws java.rni.RenpteException;

219

8.3.6 Virtual Device

/'l See section 6.5 on page 146
public interface Virtual Device
extends Virtual Resource, java.rm.Rempte {
voi d acqui reResource()
t hrows ResourceNot Avai |l abl e, java.rm . Renot eExcepti on;
voi d rel easeResource() throws java.rm .RenoteException;

int[] getPorts() throws java.rm .RenoteException;

public static class PortDescr inplenents java.io.Serializable {
public PortConfig config;
public PortType type;
}
Port Descr get Port Config(int portld)
throws InvalidPort, java.rm .RenpteException;
voi d setPortConfig(int portld, PortConfig portConfig)
throws InvalidPort, java.rm .RenpteException;

Val i dati onResult portValidate(PortType port, String formatNane)
throws | nvalidName, I|nvalidPort;

Vi rtual Connecti on get Connection(int Portld)
throws InvalidPort, java.rm .RenpveException;

8.3.7 Virtual Connections

/] See section 6.6 on page 155
public interface Virtual Connection
extends Virtual Resource, java.rm.Rempte {
voi d connect(Virtual Device master, int portMaster,
Vi rtual Devi ce slave, int portSlave)
throws ConfigurationM smatch, PortM smatch,
Resour ceNot Avai | abl e, InvalidPort,
java.rm . Renot eExcepti on;

voi d di sconnect() throws java.rm . RenoteException;

public class Endpointlnfo {
public Virtual Device device;
public int port;
publ i c bool ean i sMaster;

}

Endpoi nt I nfo[] get Endpoi nt | nf oLi st ()
throws java.rm . Renpt eExcepti on;

220

/'l See section 6.6.4 on page 160
public interface Virtual ConnectionMilticast
extends Virtual Connection, java.rm.Remte {
voi d attach(Virtual Device device, int portlD)
throws ConfigurationM snmatch, PortM smatch,
Resour ceNot Avai | abl e, |nvalidPort,
java.rm . Renot eExcepti on;

voi d detach(Virtual Device device, int portlD)
throws PortM smatch, java.rm .RenoteException;
}
8.3.8 Group

/] See section 6.7 on page 161
public interface G oup
extends Virtual Resource, java.rm .Rempte {
voi d acquireResource()
throws ResourceNot Avai | abl e, java.rm . RenoteExcepti on;
voi d rel easeResource() throws java.rm . RenoteException;

voi d addResour ce(Virtual Resource resource)
throws java.rm . Renpt eExcepti on;
voi d renoveResour ce(Virtual Resource resource)
throws ResourceNot Avai | abl e, java.rm . RenoteExcepti on;

voi d addResour ceGraph(Vi rtual Resource resource)
throws java.rm . Renot eExcepti on;
voi d renpveResour ceG aph(Virtual Resource resource)
throws ResourceNot Avai |l abl e, java.rm .RenpteException;

Vi rtual Resource[] getResourcelist()
throws java.rn .Renpt eException;

8.3.9 Logical Device

/] See section 6.8 on page 163
public interface Logical Device
extends Virtual Device, Goup, java.rm.Remote {
int definePort(Virtual Device refVirtual Device, int portld)
throws InvalidPort, InvalidDevice, java.rm .RenpteException;

221
84 TheModelling, Rendering, and I nteraction Component

All the classes and interfaces are in the package pr eno. st d. part 4.
84.1 Objectsfor Coordinate Spaces

8.4.1.1 Coordinate Object

/1 See section 7.3.1 on page 186
public abstract class Coordi nate extends Si npl ePREMOObj ect
{

static int dimensionality;

abstract public int[] getRange(int dinension);

abstract public void setConponent(int dinension, int value);
abstract public int getConponent(int dinmension);

}

8.4.1.2 Colour Object

/'l See section 7.3.3 on page 187
abstract public class Col our extends Coordinate

{
}

String col our Model ;

8.4.1.3 Timel ocation Object

/1 See section 7.3.2 on page 187
abstract public class TineLocation extends Coordinate{
static {
dimensionality = 1;
}
}

8.4.2 Name Object

/] See section 7.2.10 on page 185
public abstract class Nane extends Sinpl ePREMOObj ect
{

String[] tag;

publ i ¢ bool ean equal (Nane ot her Nane) ;

222

8.4.3 Objectsfor Media Primitives

8.4.3.1 Primitive Object

/] See section 7.2 on page 167
public class Primitive extends Sinpl ePREMOOhj ect{}

8.4.3.2 Captured Object

/] See section 7.2.3 on page 170
public class Captured extends Primitive

{

protected Virtual Devi ce srcDevice;
protected int srcPort;

}

8.4.3.3 Primitiveswith Spatial and/or Temporal Form

8.4.3.3.1 Formobject

/] See section 7.2.4 on page 171
public class Formextends Primtive{}

8.4.3.4 Form Primitivesfor Audio Media Data

8.4.3.4.1 Audio Object

/1 See page 171
public class Audi o extends Form

{

int instrunent;
int[] score;

}

8.4.3.4.2 Music Object

/] See page 171
public class Misic extends Audio
{
public int instrunent;
public int score;

223
8.4.3.4.3 Speech Object

/] See page 171
public class Speech extends Audio

{

publ i c Vocal Characteristics voice
public char[] text;

}

8.4.35 Form Primitivesfor Geometric Media Data

8.4.35.1 Geometric Object

/'l See section 7.2.4 on page 171
public class Formextends Primtive{}

8.4.3.5.2 Tactile Object

/] See section 7.2.5 on page 172
abstract public class Tactile extends Forn{}

8.4.3.5.3 Text Object

/1 See page 173
public class Text extends Form}

8.4.3.6 Primitivesfor the Modification of M edia Data

8.4.3.6.1 Modifier

/] See section 7.2.6 on page 173
abstract public class Mdifier extends Prinmitive{}

8.4.3.7 Modifier Primitivesfor Audio Media Data

8.4.3.7.1 Acoustic Object

/1 See page 171
abstract public class Acoustic extends Modifier{}

8.4.3.7.2 SoundCharacteristic Object

/] See page 171
abstract public class SoundCharacteristic
ext ends Acoustic{}

224
8.4.3.7.3 VocalCharacteristic Object

/] See page 171
abstract public class Vocal Characteristic
extends Acoustic{}

8.4.3.8 Modifier Primitivesfor Structural Aspectsof Media Data

8.4.3.8.1 Structural Object

/'l See page 174
abstract public class Structura
extends Modifier{}

8.4.3.8.2 Transformation Object

/] See page 174
abstract public class Transformation extends Structural {}

8.4.3.8.3 Constraint Object

/] See page 174
abstract public class Constraint extends Structural{}

8.4.3.84 TimeFrame Object

/'l See page 175
public class TineFrane extends Mdifier{}

8.4.39 Madifier Primitivesfor Visual Aspects of Media Data

8.4.39.1 Visual Object

/'l See page 175
abstract public class Visual extends Mdifier{}

8.4.39.2 Light Object

/'l See page 175
abstract public class Light extends Visual {}

8.4.3.9.3 Material Object

/1 See page 175
abstract public class Material extends Visual{}

8.4.3.9.4 Shading Object

/] See page 175
abstract public class Shadi ng extends Visual {}

8.4.39.5 Texture Object

/] See page 175
abstract public class Texture extends Visual {}

8.4.3.9.6 Reference Object

/] See section 7.2.10 on page 185
public class Reference extends Primtive{}

8.4.3.10 Organising Primitivesinto Structures

8.4.3.10.1 Structured Object

/] See section 7.2.9 on page 177
public abstract class Structured extends Prinmtive

{
Primtive[] conponents
Name | abel

}

8.4.3.10.2 Aggregate Object

/] See section 7.2.9.1 on page 177

public abstract class Aggregate extends Structured{}

8.4.3.11 Organising Media Data within Time

8.4.3.11.1 TimeComposite Object

/] See section 7.2.9.2 on page 179

abstract public class Ti meConposite extends Structured

{
long mn, max
long startTinme, endTine;
Cal | back nonitor

225

226
8.4.3.11.2 Sequential Object

/'l See section 7.2.9.2.1 on page 181
public class Sequential extends Ti meConposite

{
long startDelta, endDelta;

Overl apType overl ap;
}

8.4.3.11.3 Parallel Object

/'l See section 7.2.9.2.2 on page 182
public class Parallel extends Ti meConposite

{
}

bool ean start Sync, endSync;

8.4.3.11.4 Alternate Object

/] See section 7.2.9.2.3 on page 184
public class Alternate extends Ti meConposite

{
Controller selector;
Al t er nat eSequence[] options;

}

8.4.3.11.5 Tracer Object

/] See section 7.2.8 on page 176
public class Tracer extends Prinitive

{
public Event trace;
public Tracer(Event trace)
{
this.trace = trace;
trace. event Source = (prenp.std. part?2. EnhancedPREMOChj ect)thi s;
}
}

8.4.3.11.6 Wrapper Object

/] See section 7.2.7 on page 176
public class Wapper extends Prinitive

{
}

bj ect content;

227

8.4.4 Objectsfor Describing Properties of Devices

8.4.41 MRI_Format Object

/] See section 7.4.1 on page 188
public class MRl _Format extends Format_| npl

{
static {
decl ar eRWKey(" Di nensi onsK") ;
decl areROKey("PrimtivesK");
}
}

8.4.4.2 EfficiencyM easure Object

/] See section 7.4.2 on page 189
abstract public class EfficiencyMeasure extends Sinpl ePREMOObj ect
{

}

abstract public ConparisonRes conpare(Ml _Device alternative);

8.4.5 Processing Devicesfor Media Data

8451 MRI_Device Object

/] See section 7.4.3 on page 190
public interface MRl _Device
extends Virtual Device, java.rm .Renote{}

8.4.52 Modeller Object

/] See section 7.4.4 on page 190
public interface Mdeller
extends MRI _Device, java.rm.Renote{}

8.4.5.3 Renderer Object

/] See section 7.4.5 on page 191
public interface Renderer
extends MRI _Device, java.rm .Renote{}

8.4.5.4 MediaEngine Object

/] See section 7.4.6 on page 192
public interface Medi aEngi ne
ext ends Renderer, Modeller, java.rm . Renote{}

228
8.4.6 SceneObject

/] See section 7.6 on page 195
public interface Scene
extends Virtual Device, java.rm . Renpte

{
public void create(Name struct Name, Object structureType)
throws AlreadyExists, I|nvalidType;
public void attachRead(Name structName, int portld)
throws NoStructure, MiltiplyDefined, BadPort, AccessFail ure;
public void attachWite(Name structName, int portld)
throws NoStructure, MiltiplyDefined, BadPort, AccessFail ure;
publ i c SceneObj ect St ate inquireStatus(Name structNane);
public void transfer(int portld)
throws BadPort, NotAttached;
public void detach(int portld)
throws BadPort;
public void del ete(Nanme struct Nanme)
throws NoStructure, Locked,;
}

8.4.7 Objectsfor Supporting Interaction

8.4.7.1 InputDevice Object

/'l See section 7.5.1 on page 193
public interface |nputDevice
extends Model ler, java.rmi.Renote

{
}

public Primtive request();

8.4.7.2 Router Object

/'l See section 7.5.2 on page 194
public interface Router

extends MRl _Device, Controller, java.rni.Renote
{

public void addConnection(String state, int inputPortld, int

out put Port | d)

throws BadPort, BadState, AlreadyConnected;
public void dropConnection(String state, int outputPortld)

throws BadPort, BadState;
public Links[] inquireConnections(String state)

throws BadSt at e;

public class Links {
int portA
int portB;

229

8.4.8 Coordinator Object

/] See section 7.7 on page 199
public interface Coordi nator
{
public interface Devicel nfof
publ i ¢ Renderer renderer;
public int inPortld;
}
public void addDevi ce(Renderer _I npl renderer, int inPortld)
throws BadPort;
public void dropDevi ce(Renderer | npl renderer);
publ i c Devicelnfo[] inquireDevice();

230

Appendix A

Selected | mplementation | ssues

This appendix provides additional insight into aspects of the prototype implementation

of PREMO which has served us throughout this book. It is not our intention to give a

fully detailed overview of the implementation; instead, a few of the non—trivial imple-
mentation issues will be highlighted. Our purpose is to help the reader in understanding
what goes on “behind the scenes” in a PREMO implementation, thereby gaining a better
understanding of the general problems involved in implementing a distributed multime-
dia environment. The problems we will describe, and the solutions that have been
adopted, reflect the chosen environment (i.e., Java and Java RMI) as well as our own
software engineering abilities. Consequently, some of the issues listed here might be-
come non-issues if other programming environments are used.

A.1 ThePREMO Environment

A.11 Activity of Objects

Java provides threads as a means to create active objects within a JVM. This feature of
Java was one of the decisive factors in choosing Java as an implementation platform be-
cause the PREMO model requires the availability of active objects. There is, however,
a subtle issue concerning Java threads which is worth mentioning here.

The Java specification doest define whether the Java threads scheduler is preemp-
tive or not?) Thread scheduling is done by the platform. Furthermore, thread priority
schemes vary from platform to platform and it can be quite difficult to map from one
priority scheme to the other. The result of these platform dependencies (which are ad-
mittedly difficult to avoid) is a set of threading environments in which it is difficult to
ensure equivalent thread behavior. Although not explicitly stated in the Standard, the
synchronization model in PREMO only works when active objects get a fair share of
the processor which results in an effective emulation of concurrency. At the time of
writing, the standard JDK environment running on Windows—NT or W’95, on MacOS8
or higher, as well as on Sun workstations running SunOS 5.6 or higher, use preemptive
threads (“native” threads, in the terminology of JDK). However, on SunOS 5.5 for ex-
ample, the only thread environment available for JDK applications is the so—called

D There is confusion in the literature about Java in this respect: what we mean by preemptive scheduling is

that each thread gets a time dlice for execution in some fair manner, regardiess of what other threads are

doing. In contrast, in a non—preemptive thread environment, a compute intensive thread which does no
explicit actions which might lead to the suspension of the thread can monopolise the processor, without giv-
ing other threads a chance to run.

232

“green” threads, which isot preemptive. In other words, the PREMO implementation

is not guaranteed to run properly on SunOS 5.5 or other systems without a preemptive
scheduler although judicious application of the yield() statement seems to prevent most
problems.

A.12 Top Leve of the PREMO Hierarchy

As was formally described in section 5.3 on page 64, a simple PREMO object, should
also be a subtype 8REMObj ect . This is shown in the specification &f npl ePRE-
MOObj ect below (see also page 65):

package preno. std. part?2;

public abstract class Sinpl ePREMOObj ect
i mpl ements PREMOCbj ect, java.io.Serializable {

}
Strict adherence to the PREMO object hierarchy in the Java implementation leads to
conflicts with RMI. The problem is that subtypesSbivpl ePREMOObj ect appear in
the argument lists and/or the return values of object services, and the ideadpitisat
of such objects are used (i.e., these objectsatresed for remote services). The current
Java RMI implementation uses object serialization to create the copies. These serialized
versions are sent through the communication network. However, if the object to be se-
rialized also implements theava. r mi . Renot e interface, this constitutes a conflict
for the current RMI runtime (“Should the object be serialized, or is this an object with
a remote stub?”) which leads to a runtime exception. On the other hand, if the interface
definition above was used to define simple PREMO objects, all simple PREMO objects
would also implemenPREMOOhj ect and, by virtue of inheritancéava. r m . Re-
nmot e. As a consequence, the referenceRBMOObj ect has to be commented-out in
the real implementation (of cours,npl ePREMOObj ect still implements, through its
own methods, all methods definedAREMOObj ect).

A.1.3 Operation Request Modes

Most of the object model, described in Part 1 (see Chapter 3), can be implemented in
Java (or indeed in any decent object—oriented environment) without significant prob-
lems. The concepts of objects, non—object data, inheritance, etc., are fairly standard.
The only problem an implementor might encounter is that PREMO objects might be ac-
tive, i.e., they may have their own thread of control. Fortunately, threads form an inte-
gral part of Java (which is one of the reasons for choosing Java in the first place!), which
made our task much easier. If this weren’t the case, a smooth integration of threads into
the environment might represent a significant amount of work.

Operations in active PREMO objects may also have different operation request
modes (see Section 3.8 on page 45). The facilities described in PREMO represent a
more “method-oriented” approach to thread synchronization than the basic facilities of
Java, which relies on critical sections and object blocking. It is therefore necessary to
provide tools to implement these various request modes. There are two main design
goals for the PREMO operation request modes which have been provided. These are:

233

N e]

commanad queue

inertace methoc

peer methoa

Figure 1-1 — Operation request implementation

1. Calls to active object operations, i.e., invocation of the object’s methods, might be
synchronous, asynchronous, or sampled. This should be implemented within the
“callee” and there should be no syntactic difference for the caller regardless of the
mode being used.

2. The active object should have the means to decide at which stage a certain operation
is really performed, and which operation is to be delayed. As an example, we saw in
Part 2 that the main processing loop of a synchronization object is “atomic”, i.e., no
external operation request should be accepted while the object is within this loop,
and all callers should be suspended.

Both aspects suggest an implementation scheme depicted on Figure 1-1. The gray area
on the figure represents an active object; the dotted curve show thread “boundaries”.
The thread on the left belongs to the caller of an operation, whereas the thread on the
right side represents the “real” working thread of the object.

The “interface method” depicted on the left side of the object is the method visible
to the caller via the official PREMO interface. What the method does, instead of imple-
menting the real operation, is as follows:

1. An instance of a special class, a “call structure”, is created; this class contains the
arguments to the call and a reference to the operation to be invoked.

2. If the call is defined to be synchronous or asynchronous, the reference to the class
instance is put into a queue, the “command queue”. A sampled method requires
more care: instead of putting the reference to the call structure instance in the queue,
the latter should be inspected first to see if an element referring to the same opera-

234

tion is aready present in the queue or not. If so, the argument values in the call
structure should be replaced, instead of putting the new instance into the queue; if
not, the reference to the new call structure is put into the queue, just like the asyn-
chronous or synchronous cases.

3. Depending on the specification of the interface method, the caller is either sus-
pended until the call is performed (synchronous case), or the interface method sim-
ply returns directly after placing a request for the call on a queue for dispatch (no
wait), thereby implementing an asynchronous or a sampled call.

The “callee” side, the real working thread of the object, runs in a loop within a special
dispatcher routine, regularly consulting the command queue to see if a new command
is available. If yes, the reference to the call structure is retrieved, the reference to the
operation is accessed, and the operation doing the real work (the “peer” method) is in-
voked using the arguments in the call structure.

Although the scheme is simple, some details in the description above merit some
more explanation:

* What is a “reference to an operation"Jva introduces a class called Met hod, as
part of itsj ava. | ang. ref | ect package. This object does exactly what we need:
one can retrieve it based on the method’s signature and #ss instance of the
containing object, and one can call thevoke method on it which invokes the
operation corresponding to thet hod in the containing object. This means that the
call structure contains simplyMet hod object, which can be used by the dispatcher
to access the peer method. Note that if this class type were not present in Java,
implementation of a general dispatch mechanism would be very troublesome
indeed!

e How does synchronization and suspension work in the synchronous case? This is
done by issuing a Jav@j ect’s wai t call on the call structure instance which is
being transmitted in the queue. When the peer method has completed its work, the
dispatcher issuesrmt i f y on the same object, which releases the caller. Using the
wai t —noti fy pair (which is standard in Java) also allows the dispatcher to fill in
return data into the call structure before issuingi f y; this return value can be
retrieved and, ultimately, returned to the caller.

» What happens to exceptions? Synchronous operations might also throw exceptions,
which should be returned to the caller. Fortunately, the Java mechanism is well pre-
pared for this. Indeed, if an operation is invoked througthod. i nvoke, and the
operation throws an exceptiokkt hod. i nvoke itself throws a special exception
called 1 nvocat i onTar get Excepti on whose attribute refers to the original
exception. This means that the dispatcher can retrieve this information and send it
back via the call structure, instead of providing return values.

* What is the command queue? This is a simple wrapper aroundvact or object
which provides synchronized access to its operations, such as putting a new element
into the queue, retrieving the head of the queue, and allowing the caller to examine
the contents of the queue (for example, to implement the sampled operation). The
only reason a wrapper is necessary is to ensure mutually exclusive access to the

235

contents of the queue. This can be achieved with standard Java synchr oni zed
Statements.

All these facilities are embodied in a separate object called Oper ati onRequest ,
which is part of the preno. i npl . part 1 package. This class offers the following op-
erations for the “caller” side:

protected Object callSync(String nethodNane, Cbject[] args)

protected void cal | Async(String nethodNanme, Object[] args)
protected void cal | Sanpl ed(String nmet hodNane, Object[] args)

and for the “callee” side:

protected Call nextCall ()

protected Call nextCall (final Method[] nethods)

protected Call nextCal | NoWai t ()

protected Call nextCall NoWait(final Method[] methods)
The inner classzal |, is the call structure referred to in the description.éhe Cal |
andnext Cal | Novai t methods without arguments result in an unconditional call using
the head of the command queue. If a list of methods is also given as an argument, the
first queue element referring to one of those methods is used.

The implementation of EnhancedPREMOObj ect , or
EnhancedPREMOObj ect _I npl is a subtype ofper at i onRequest ; this means that
all PREMO objects have access to these operations to implement their interface meth-
ods or their own dispatcr'i'érln a specific case, the interface methods are very simple;
for example, th¢ unp operation of the synchronizable object (see page 101) can simply
be:

public void junmp(Nunber position)

{

}
Of course, the real work must be doneinthej unpPeer operation, which isinvoked by
the internal dispatcher.

Depending on the semantics of the object, the dispatcher may be very simple, too:

while(true) {

nextCall();

But, most of thetime, the dispatcher is more complex because it hasto take into account
the internal state of the object. Finally, some PREMO objects may not use these facili-
ties at all because a simpler implementation scheme is possible.

callSync(“jumpPeer”, new Object[] { position });

A.1.4 Distribution and the Creation of PREMO Objects

Each PREMO application is supposed to start by calling
PREMORuntime.init()

D Note that this inheritance relati onship was omitted on page 69 to avoid unnecessary confusion at that
point.

236

GenericFactory GenericFactory D
c n

Network *

- -

IRCD, :

Figure 1-2 — Factories and factory finders

This static method will initialize a number of system—wide variables which are used by
various PREMO implementation objects such as, for example, the internet address of
the local host and the name of the machine. More importantly, it will initialize the RMI
environment for the local JVM (for example, by setting the correct security manager for
RMI). Furthermore, a single local instance of both a generic factory and of a generic
factory finder object are created; the naming services of Java RMI are used to “export”
the name of the local factory instance (using an agreed upon name, which is simply
“GenericFactory”) . The PREMOUil object also has static variables which refer to
these local factory finder and factory instances.

This setting enables the implementation structure shown on Figure 1-2, (see aso
section 5.7.3). A client can retrieve the reference for the local factory finder (using the
static variable defined for PREMOULil); this factory finder can be used to locate a ref-
erence (an RMI stub) to the remote factory object. Finaly, the client caninstruct the re-
mote factory object to create a new PREMO object instance and return its stub. The
internal implementation of afactory object is a standard sequence of Java RMI calls.

Our current implementation has two restrictions, however:

» The whole structure relies on the fact that amg JVM is running on one machine.
The reason is that the implementation needs an unequivocal identification of a
JVM, for example to set up connections among virtual devices (see section 6.6.3).
However, whereas identification of a machine (through the standard
j ava. net. | net Addr ess class) is relatively straightforward in Java, it is much
less simple to identify two JVM's running on the same machine, hence sharing an
IP address. Furthermore, Java sockets, which are used in our implementation, are
bound to IP addresses, too.

» The current factory implementation is limited to creating PREMO object instances
on its own JVM, although this restriction does not appear in PREMO.

Although a more professional implementation of PREMO would have to deal with

these restrictions, too, neither of them is a terrible setback. Although, for efficiency rea-
sons, one might think of starting up several JVM’s on the same machine, a proper im-
plementation of Java with native threads should make such optimization unnecessary.

237

An unexpected problem did occur, however, when using RMI: If an object instance
is “exported” through RMI, which means, to be very precise, that the

Uni cast Renot eObj ect . export Obj ect (newdhj) ;

is used to turn the object into a remote service object, it is difficult to get a handle for
the “real” object reference of the object antla reference to its stub. Whereas this ref-
erence is useless if the object is indeed remote, it is sometimes necessary to have access
to the real object if both the caller and the callee are on the same JVM. The reason is
that the implementation might need some “hidden” methods which aren’t meant for ex-
port as remote methods.

The following example illustrates the problem. Tet ual Devi ce_| npl object
needs a method of the form:

setQutput Strean(int portld, QutputStream strean);

to record, within its data structures,r eamas the output channel for the specific port.
Obviously, there is no reason why this method would be defined as an RMI call. On the
other hand, the objects which set up connections receive references to the device from
the PREMO application. What the objects receive is therefsitd dor the real imple-
mentation object. This stub cannot be used to ase@saut put St r eany consequent-

ly, the “real” object reference should be accessed. However, there is no standard way in
the current Java RMI mechanism to access to the real object reference, even if the ap-
plication is sure that both the callee and the caller are on the same JVM!

Because this problem occurs for a number of implementation dependent methods for
the various virtual resource objects of Part 3, each JVM maintains (through some static
methods and variables of thier t ual Resour ce_I npl object) a hashtable containing
the references of virtual resource objects. A simple naming mechanism is used to
uniquely identify a virtual resource. This is currently done with integers. Each virtual
resource carries its own name with it, and this name can be inquired by other objects.
Finally, this name can be used to get the object reference from the hashtable.

Of course, there is a bootstrap effect: the caller should be able to retrieve the name
and the IP location of the object in order to retrieve the real object reference. We have
chosen therefore to add a very small set of remote methods to the specification of a vir-
tual resource, which return the data used for a unique identification (essentially, the IP
address and the unique name of the resource). No other remote methods are necessary
for the implementatior)

A.2 Specific Part 3 Objects

A.2.1 Virtual Connection Objects

The difficulties of implementing virtual connection objects are due to the several com-
munication paradigms which have to be combined within the same application. There-
fore, the first question to answer is obviously: is it really necessary to combine several

D Note that the standard PREMO property mechanism might have been used to solve the problem. The use
of arestricted set of remote methods is only amatter of convenience.

238

paradigms? It is indeed possible to exclusively use RMI calls to transfer data from

among JVM’s. Some sort ®REMOMVedi aSt r eamservice object which actively trans-

fers data from one port to another could conceivably be used. Because RMI objects and
stubs are smoothly integrated with the rest of the Java environment, the use of such ob-
jects could make all communication details transparent to the device implementations,
too.

This approach was rejected in favor of speed: transferring data through RMI calls is
much slower than transferring the same data through sockets. While the difference is
not noticeable for the transfer of one or two average sized objects (used in a typical
method invocation), it is prohibitive where media data is concerned. Hence, the more
complex approach, described in section 6.6.3, was required.

This scheme differentiates between two cases: when both devices are on the same
JVM, and when they run on different JVM's. Tkier t ual Connecti on_I npl class
has the task of differentiating between the two cases and, possibly, performing some ad-
ditional checks such as checking the media formats on the ports which are to be con-
nected. To ensure a better modularization of the code, the communication—specific code
has been placed in a separate implementation class Catledct or _I npl . There is
a single instance of this class running per JVM, which is also “exported” through the
RMI. It is the task of th®REMOUt i | class to start up this one instance. It is through
methods of this class that the connections are actually made. These methods are invoked
by theVi rt ual Connecti on_I npl class.

A.2.1.1 Deviceson the Same JVM: Piped Streams

The “easy” half of th&€onnect or _I npl object is to set up piped streams between two
virtual devices sharing the same JVM. The definition of these pipes is a standard tech-
nigue in Java for setting up a communication channel between two threads. The only
difficulty is the problem already mentioned in section A.1.4Ctenect or _I npl ob-

ject needs to have direct access to the virtual device instance, and not just its stub. How-
ever, the general naming mechanism of virtual resources and the corresponding extra
remote methods solve this problem as well.

A.2.1.2 Devices on Different JVM’s: Sockets

If the devices are on different JVM'’s, the task of setting up communication between the
two ports involves two steps:

1. Set up a dedicated socket pair for this communication channel.
2. Connect the ports to the Java streams associated with the socket.

Obviously, the second step can only be done on the JVM where the target port resides,
which suggests that setting up the connection is done “in cooperation” by the two
Connect or _I npl object instances residing on their respective JVM'’s.

We will not dive into the details of the Java socket mechanism here. There are excel-
lent overviews of this subject and we expect the reader to be familiar with sockets. What
is important to emphasize is that each JVM has to run a separate thread whose only pur-

239

pose is to “accept” socket creation requests. This is how new socket pairs are created.
EachConnect or _I npl instance spawns such a thread which we will refer to as the
Wat cher.

Setting up a new connection involves a little communication protocol between the
two Connect or _I npl instances residing on the two JVM’s. As an agreement, the pro-
tocol is always initiated by theonnect or _I npl object residing at the “source” of the
stream. When initiating a connection, the object on the source side tries to get a socket,
by attempting to createjava. net . Socket object, using the sink’s internet address
and a fixed socket port number. If this succeeds, a kind of “handshake” takes place be-
tween theConnect or _I npl of the source and théat cher on the sink side. The
source can then take the output part of the socket and use this stream to set the output
port of the relevant device port.

The problem is identifying the corresponding socket on the sink side. One should not
forget that, theoretically, two connection requests can simultaneously arrive at the same
sink JVM, so there is a potential race condition in uniquely identifying the newly cre-
ated socket. It is necessary to uniquely identify the socket pair on the sink side even if
several socket creation requests interfere with one another.

The way of uniquely identifying the socket is based on the IP number and the socket
port (not the virtual device port!) number. If the sink sige cher defines a server
socket through:

Server Socket naster;
master = new Server Socket (Agr eedPort Nunmber, Si nkl net Addr ess);

and contains a routine including:

Socket s = nmster.accept();

/1 got a request froma source

String IP1 = (s.getlnetAddress()).get Host Address();
int ID1 = s.getPort();

while, at the same time, the source sidenect or _I npl does:

Socket s = new Socket (Agr eedPort Nurber, Si nkl net Addr ess) ;

/'l accepted request

String I P2 = (s.getlLocal Address()). get Host Address();

int I D2 = s.getLocal Port();
then the values of the tuplesP1, | D1> and<l P2, | D2> will be identical.

Based on this observation, the following happens (see also Figure 1-3): When the
Wat cher gets a request, it stores the socket reference in a hashtable, using the
<I P1, | D1> tuple as a key. It then continues processing, possibly getting new requests.
The source sid€onnect or _I npl retrieves its owrl P2, | D2> tuple; this will be sent
through a remote method call, to theConnect or _I npl on the sink side.The latter can
retrieve the socket reference from the hashtable (it may have to try several times, be-
cause th&at cher might not have been scheduled to put the reference into the hashta-
ble yet). Once the socket reference is found, the corresponding St r eam is
retrieved and attached to the virtual device, thus establishing a connection.

The choice of “source” and “sink” is dependent on the choice of the output and input
ports connected to the media stream. Obviously, each Java VM can play the role of both
a “source” side and a “sink” side, depending on the PREMO application.

240

4 N (o@g\

o ®

0o [o]

Device 1 I:l_) 8 Device 2
Connector_Impl - Connector_Impl
(source) @ @ (sink)
/ \ VM ZJ

1. Source creates a Socket instance
connecting to a server socket. Watcher extracts <IP1,ID1>.
<IP2,ID2> is extracted. Watcher stores the socket refer-
<IP2,ID2> is transferred to sink. ence in a hashtable.

Socket and port is connected with

a Java stream.

VM 1

Watcher accepts a socket request.

AwN
com

Sink receives <IP2,ID2>.

Sink retrieves socket reference
from the hashtable.

Socket and port is connected with a
Java stream.

W >

o

Figure 1-3 — Setting up a socket pair for media streams

A.2.1.3 Multicast Connections

Using Java streams for connection makes it relatively straightforward to implement a
“fan—out” type multicast connectiofanQut St r eamis defined in Part3 as a subtype

of the standardut put St r eamof Java. This fan—out stream offers the capability of at-
taching to and detaching from other output streams. The class overrides the standard
wri t e operations to copy each byte to all attached streams.

In the simplest case, suclFranQut St r eamobject instance can be plugged into the
output port of the master device and, from that point on, attaching a new connection to
the device means, eventually, to attach one more output stream to the fan out stream (of
course, the “real” output stream has to be created following the same procedures as for
a single connection). A more optimal use ¢faaQut St r eamis conceivable: by ana-
lysing the network requirements (through the internet number of each virtual device in
a network),FanQut St r eaminstances could be put “closer” to the consumer, to avoid
transferring multiple copies of the same data on the same route. An easy case is if two

241

slave devices share the same JVM; aFanQut St r eamcould be put onto thistarget VM
instead of the one running the master. We have not implemented such optimizationsin
our prototype, but it could be added without too much work.

The difficulty lies in implementing a “fan—in” multicast connection. Unfortunately,
all standard Java IO operations boil down to reading one single byte through the stand-
ardr ead operation ofl nput St r eamso it seems impossible to provide some sort of
Fanl nSt r eamin full generality which would also ensure the consistency of larger data
packl)ets. Consequently, our prototype implementation does not provide a fan—in connec-
tion.

D Note that if the RMI mechanism was used for the virtual connection, implementation of a fan—in type con-
nection would not represent a real problem. Data would be transferred through method arguments, i.e., the
consistency of data would be automatically preserved. Unfortunately, the speed of the current RMI imple-
mentation makes this approach impractical.

242

References

(1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

P. Ackermann. Devel oping Object-Oriented Multimedia Software - Based on the
MET++ Application Framework, dpunkt Verlag, Heidelberg, 1996.

W. Appelt and A. Scheller. HyperODA: Going Beyond Traditional Document
Structures. Computer Standards & Interfaces, 17(1):13-21, 1995.

F. Arbab, I. Herman, and G.J. Reynolds. An Object Model for Multimedia Pro-
gramming.Computer Graphics Forum, 12(3):C101-C113, 1993.

F. Arbab: "The IWIM model for coordination of concurrent activities". In: Coor-
dination Languages and Models, Springer Verlag, Lecture Notes in Computer
Science, vol. 1061 series, Berlin - Heidelberg - New York, pp. 34-56, 1996.

D.B. Arnold and D.A. DucelSO Sandards for Computer Graphics. The First
Generation. Butterworth, 1990.

M. Awad and J. Ziegler. A Practical Approach to the Design of Concurrency in
Object—Oriented System$oftware — Practice and Experiencgr(9):1013-
1034, 1997.

J. BarnesProgramming in Ada’95Addison—Wesley, 1996.

D.R. Begault.3D Sound for Virtual Reality and Multimedia. Academic Press,
1994.

G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug, K. Nygaarffimula Begin. AUER-
BACH Publishers Inc., 1973

G. Blakowski and R. Steinmetz. A Media Synchronization Survey: Reference
Model, Specification, and Case Studiés£E Journal on Selected Areasin Com-
munications, 14(1):5-35, 1996.

D.G. Bobrow, L.G. Demichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, D.A.
Moon. Common Lisp Object System Specificatibisp and Symbolic Computa-
tion, 1(3/4), 1989.

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and | SDN Systems, 14:25-59, 1986.

G. Booch.Object—Oriented Analysis and Design with Applications (Second edi-
tion). Prentice—Hall, 1997.

D. Brookshire Conner and A. van Dam. Sharing Between Graphical Objects Us-
ing Delegation. In C. Laffra, E.H. Blake, V. de Mey, and X. Pintado, ediDirs,
ject—Oriented Programming for GraphicSpringer—Verlag, Focus on Computer
Graphics Series, 1995.

244

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

N. Carriero and D. Gelernter: "Linda in Context". In;: Communication of the
ACM, 32, pp. 444-458, 1989.

L. Chamberland. FORTRAN 90: A Reference Guide. Prentice Hall, 1996.

F. Colaitis and F. Bertrand. The MHEG Standard: Principles and Examples of Ap-
plications. In W. Herzner and F. Kappe, editdis|timedia/Hypermediain Open
Distributed Environments, Springer—Verlag, 1994.

R.B. Dannenberg, T. Neuendorffer, J. Newcomer, D. Rubine, and D. Anderson.
Tactus: Toolkit-level Support for Synchronized Interactive Multimedialtime-
dia Systems Journal, 1(2):77-86, 1993.

D.A. Duce, D.J. Duke, P.J.W. ten Hagen, |. Herman, and G.J. Reynolds. Formal
Methods in the Development of PREMQGomputer Standards & Interfaces,
17:491-509, 1995.

D.J. Duke, D.A. Duce, I. Herman and G. Facdggécifying the PREMO synchro-
nization objects. Technical report 02/97-R048, European Research Consortium
for Informatics and Mathematics (ERCIM), 1997.

URL ftp://ftp.inria.fr/associations/ERCIM/research_reports/pdf/0297R048.pdf

D.J. Duke and I. Herman. Programming Paradigms in an Object-Oriented Multi-
media Standard. In P. Slusallek and F. Arbab, ediRyrs;. of the Eurographics
Workshop on Programming Paradigms in Computer Graphics, Eurographics
Publications Series, 1997.

D.J. Duke, I. Herman, T. Rist, and M. Wilson. Relating the primitive hierarchy of
the PREMO standard to the Standard Reference Model for Intelligent Multimedia
Presentation SystemSomputer Standards & Interfaces, 20, 1998.

D.A. Duce, D.J. Duke, I. Herman and G. Faconti. The Changing Face of Stand-
ardization: A Place for Formal Methods@rmal Aspects of Computing, 11, 1999,
in press.

R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language,
Version 1. Technical Report, The University of Queensland, No. 91-1, 1991.

R. Duke, G. Rose, and G. Smith. Object—Z: A Specification Language Advocated
for the Description of StandardSomputer Standards & Interfaces, 17(5-6):511—
534, 1995.

G. Faconti and M. Massink. Investigating the Behaviour of PREMO Sychroniza-
tion Objects. IrProceedings of the 4th Eurographics Workshop on Design, Spec-
ification and Verification of Interactive Systems, Springer—Verlag, 1997.

B.N. Freeman—-Benson and A. Borning. Integrating constraints with an object—
oriented language. In |. Lehrmann Madsen, edRooceedings of the ECOOP’92
European Conference on Object—Oriented Programnfipgnger Verlag, Lec-

ture Notes in Computer Science 615, 1992.

D. Flanagan. Java in a Nutshell (Second editio)'Reilly, 1997.

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]
[44]

[45]

245

J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Prin-
ciples and Practice. Addison—-Wesley, 1990

M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modeling
Language. Addison Wesley, 1997.

E. Gamma, R. Helm, R. Johnson, J. VlissidEsign patterns. elements of reus-
able object-oriented software, Addison Wesley, 1995.

A. Goldberg and D. Robsorgmalltalk—80: The Languagéddison—Wesley,
1989.

S.J. Gibbs, L. Dami, and D.C. Tsichritz&n Object Oriented Framework for
Multimedia Composition and Synchronisation. In L. Kjelldahl, editor,Multime-
dia (Systems, Interaction and Applications), Springer—Verlag, 1992.

S.J. Gibbs and D.C. Tsichritzidultimedia Programming. Addison—Wesley,
1995.

A. Goldberg, D. Robsorgmalltalk-80: The Language. Addison Wesley, 1989.

J. Gosling, B. Joy, and G. Steele Java Language Specification. Addison—
Wesley, 1996.

S. GreenParallel Processing for Computer Graphics. Pitman, 1991.
J. Hartman and J. WernecKehe VRML 2.0 Handbook. Addison—Wesley, 1996.

P. Heller, S. Roberts, P. Seymour and T. McGilava 1.1 Developer's Hand-
book Sybex, 1997.

I. Herman, G.J. Reynolds, and J. Van Loo. PREMO: An emerging standard for
multimedia. Part |: Overview and Framework. In: IEEE MultiMedig 3(3):83-89,
1996.

I. Herman, N. Correia, D.A. Duce, D.J. Duke, G.J. Reynolds, and J. Van Loo. A
Standard Model for Multimedia Synchronization: PREMO Synchronization Ob-
jects.Multimedia Systems, 6, 1997.

I. Herman, G.J. Reynolds, and J. Davy. MADE: A Multimedia Application devel-
opment environment. In L.A. Belady, editd?roc. of the IEEE International
Conference on Multimedia Computing and Systems, Boston, IEEE CS Press,
1994.

C.A.R. HoareCommunicating Sequential Processes. Addison—Wesley, 1985.

T.L.J. Howard, W.T. Hewitt, R.J. Hubbold, and K.M. WyrwA®ractical Intro-
duction to PHIGS and PHIGS PLUS. Addison Wesley, 1991.

IMA, Multimedia System Services, Interactive Multimedia Association, Septem-
ber 1994, ftp://ima.org/pub/mss/.

246

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Information Processing Systems — Open Systems Interconnections — LOTOS
(Formal Description Technique based on the temporal ordering of observational
behaviour). International Standardization Organization, ISO/IS 8807, 1989.

Information Processing Systems — Computer Graphics — Computer Graphics
Reference Model (CGRM), International Organisation for Standardization, ISO/
IEC IS 11072, 1992.

Information technology — Computer graphics and image processing — Graphi-
cal Kernel System (GKS), Part 1: Functional description. International Organiza-
tion for Standardization, ISO/IEC 7942-1, 1994

Information Technology — Computer Graphics — Programmer’s Hierarchical
Interactive Graphics System (PHIGS). International Organisation for Standardi-
zation, ISO/IEC IS 9592 1997.

Information Technology — Computer Graphics and Image Processing — Presen-
tation Environments for Multimedia Objects (PREMO), Part 1: Fundamentals of
PREMO. International Organization for Standardization, ISO/IEC 14478-1,
1998.

Information Technology — Computer Graphics and Image Processing — Presen-
tation Environments for Multimedia Objects (PREMO), Part 2: Foundation Com-
ponent. International Organization for Standardization, ISO/IEC 14478-2, 1998.

Information Technology— Computer Graphics and Image Processing — Presen-
tation Environments for Multimedia Objects (PREMO), Part 3: Multimedia Sys-
tems Services. International Organization for Standardization, ISO/IEC 14478-3,
1998.

Information Technology — Computer Graphics and Image Processing — Presen-
tation Environments for Multimedia Objects (PREMO), Part 4:Modelling, Ren-
dering, and Interaction Component. International Organization for
Standardization, ISO/IEC 14478—4, 1998.

Information Technology — Computer Graphics and Image Processing — The
Virtual Reality Modeling Language (VRML), Part 1: Functional specification and
UTF-8 encoding. International Organization for Standardization, ISO/IEC
14772-1, 1998.

Information Technology — Coding of Moving Pictures and Associated Audio for
Digital Storage up to about 1.5 Mbit/s (MPEG). International Organisation for
Standardization, ISO/IEC 10744, 1992.

ISO/IEC directives: Procedures for the technical work of ISO/IEC JTC 1 on In-
formation Technology, 1995. See http://www.iso.ch/dire/jtc1/directives.htm

R.S. KalawskyThe Science of Virtual Reality and Virtual Environments. Addi-
son—-Wesley, 1994,

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

247

B. Kernighan and D. Ritchie. The C Programming Language, second edition.
Prentice Hall, 1989.

J. F. Koegel Buford, editor. Multimedia Systems. Addison-Wesley, 1994.

J. F. Koegel Buford. Architecture and Issues for Distributed Multimedia Systems.
In J. F. Koegel Buford, editoMultimedia Systems. Addison—-Wesley, 1994.

C. Laffra, E.H. Blake, V. de Mey, and X. Pintado, edit@bject—Oriented Pro-
gramming for GraphicsSpringer—Verlag, Focus on Computer Graphics Series,
1995.

H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Ob-
ject Oriented Systems. Proc. OOPSLA'86ACM Press,1986.

A.Lieand N. Correia. Cineloop Synchronization in the MADE Environment., in:
Proceedings of the IS&T/SPIE Symposium on Electronic Imaging, Conference on
Multimedia Computing and Networkin8an Jose, 1995.

B. MacIntyre and S. Feiner. Future Multimedia User Interfaces. Multimedia Sys-
tems 4(5):250-268, 1996.

V. de Mey and S. Gibbs. A Multimedia Component Kit. In P.V.Rangan, editor,
Proceedings of the First ACM International Conference on Multimedia (MM93),
ACM Press, 1993.

B. Meyer.Eiffel: The Language. Prentice—Hall, 1990.

B. Meyer.Reusable Software: The Base Object-Oriented Component Libraries.
Prentice Hall, 1994.

R. Newcomb, N.A. Kipp, and V.T. Newcomb. The “HyTime” — Hypermedia/
Time—based Document Structuring Langua@emmunication of the ACM,
34(11):67-83, 1991.

Object Management Group. See http://www.omg.org/

R. Orfali and D. HarkeyClient/Server Programming with JAVA and CORBA.
Wiley Computer Publishing, 1997.

R. Otte, P. Patrick, and M. Raynderstanding CORBA, The Common Object Re-
quest Broker Architecture. Prentice—Hall, 1996.

G.J. Reynolds, D.A. Duce, and D.J. Duke. Report of the ISO/IEC JTC1/SC24
Special Rapporteur Group on Formal Description Techniques. Doc. No. ISO/IEC
JTC1/SC24 N1152, 1994.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Loregact—Ori-
ented Modeling and DesigRrentice—Hall, 1991.

W. Schroeder, K. Martin, B. LorenséeFhe Visualization Toolkit, second edition.
Prentice Hall, 1998.

248

[75]

[76]

[77]
[78]
[79]
[80]
[81]

[82]
[83]

[84]

[85]

[86]
[87]

[88]

[89]
[90]

[91]

[92]
[93]

P. Slusallek and H.—P. Seidel. Vision: An Architecture for Global Illumination
Calculations.|IEEE Transactions on Visualization and Computer Graphics,
1(1):77-96, 1995.

M.A. Srinivasan and C. Basdogan, Hapics in virtual environments: taxonomy, re-
search status, and challeng@ésinputers & Graphics, 21(4), Pergamon, 1997.

J. Smith.X: A Guide for Users. Prentice Hall, 1994.

J.M. Spivey.The Z Notation: A Reference Manual. Prentice—Hall, 1992.
B. StroustrupThe C++ Programming Language. Addison—-Wesley, 1990.
A.S. TanenbaumModern Operating Systems. Prentice—Hall, 1992.

H. Tokuda. Operating System Support for Continuous Media Applications. In
J.F. Koegel Buford, editoMultimedia Systems. Addison—Wesley, 1994.

B.J. Torby.FORTRAN'77 for Engineer®rentice Hall, 1990.

D. Ungar, R.B. Smith. SELF: The Power of Simplicity. LISP and Symbolic Com-
putation 4(3), Kluwer, 1991.

C. Upson, T. Faulhaber Jr., D. Kamins, et a. The Application Visualization Sys-
tem: A Computational Environment for Scientific Visualization. |EEE Computer
Graphics and Applications, 9(4), 1989.

M. Vazirgiannisand T. Sellis. Event and Action Representation and Composition

for Multimedia Application Scenario Modelling. In E.Méller, and H. Pusch, edi-
tors,Interactive Distributed Multimedia Systems and Services, Proceedings of the
European Workshop IDMS’9&pringer—Verlag, 1996.

A. Vogel and K. DuddyJava Programming with CORBA. IEEE Press, 1997.

A. Watters, G. van Rossum, J.C. Ahlistrdmternet Programming with Python.
M&T Books, 1996.

P. Wegner, S.B. Zdonik. Inheritance as an Incremental Modification Mechanism
or What Like Is and Isn't Like. In S. Gjessing and K. Nygaard, editors,
ECOOP’88: European Conference on Object-Oriented Programmiiotume

322 of Lecture Notes in Computer Science, Springer, 1988.

J. Wernecke, The Inventor MentqrAddison Wesley, 1994.

R. Wirfs—Brock and R. Johnson. Surveying Current Research in Object—Oriented
Design.Communications of the ACM, 33(9):104-123, 1990.

A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Computift
Micro, 17(3):44-53.

P. WiRkirchenObject—Oriented GraphicsSpringer—Verlag, 1990.

M. Woo, J. Neider, T. Davi©OpenGL Programming Guide, second edition. Ad-
dison Wesley, 1997.

249

[94] W3C PNG (Portable Network Graphics) Specification. Public document, availa-
ble at http://www.w3.0org/TR/REC-png

[95] W3C SMIL Draft Specification. Public document, available at http:/
www.w3.0rg/ TR/WD-smil, 1998.

250

I ndex

Java Definitions

Acousti c structure 223

Acti onEl ement object 208

ActionType structure 205

Aggr egat e structure 225

Al ternate structure 226

AndOr structure 205

ANDSynchr oni zat i onPoi nt
object 210

Audi o structure 222

Cal | back object 207

Cal | backByNane object 207

Capt ured structure 222

Cl ock object 211

Col our structure 221

Conf I nfo structure 216

Constrai nt object 208

Constrai nt structure 224

Constrai nt Op structure 206

Control | er object 210

Coor di nat e structure 221

Coor di nat or object 229

Di rection structure 205

Ef fi ci encyMeasure structure 227

EnhancedPREMOOhj ect object 207

Event object 209

Event Handl er object 209

Fact or yFi nder object 215

For m structure 222

For mat object 217

Generi cFactory object 215

Geonetric structure 223

G oup object 220

I nput Devi ce object 228

I nt er NodeTr ansport object 217

I ntraNodeTr ansport object 217

Li ght structure 224

Logi cal Devi ce object 220

Mat eri al structure 224

Medi aEngi ne object 227

Model | er object 227

Modi fi er structure 223

MRl _Devi ce object 227

MRl _For mat structure 227

MSS_St at e structure 216

Mul ti medi aSt r eanPr ot ocol
object 217

Musi ¢ structure 222

Name structure 221

Paral | el structure 226

Port Confi g structure 217

Port Type structure 216
PREMOChj ect object 207
Primtive structure 222
PropertyConstraint object 215
Propertyl nquiry object 214
PropertyPair structure 208
QoSDescri ptor object 217

Ref er ence structure 225
Render er object 227

Rout er object 228

Scene object 228

Sequenti al structure 226

Shadi ng structure 225

Si npl ePREMOObj ect object 207

SoundChar acteri stic structure 223

Speech structure 223

St at e structure 206
StreanmControl object 218
Structural structure 224
Structured structure 225
SyncEl enent object 209
Synchroni zabl e object 211

Synchroni zat i onPoi nt object 210

SyncStreanmControl object 218

SysC ock object 211

Tactil e structure 223

Text structure 223

Text ure structure 225

Ti meConposi te structure 225

Ti meFrame structure 224

Ti meLi ne object 214

Ti meLocati on structure 221

Ti mer object 211

Ti meSl ave object 214

Ti meSynchroni zabl e object 213

Ti meUni t structure structure 206

Tracer structure 226

Transformati on structure 224

Vi rtual Connecti on object 219

Vi rtual Connecti onMul ti cast
object 220

Vi rtual Devi ce object 219

Vi rtual Resource object 218

Vi sual structure 224

Vocal Char acteristic structure 224

W apper structure 226

A

Acquiring aresource 143

Acti onEl enent structure 83, 102
ActionType 83

252

Aggr egat e structure 178

Al ternate structure 184

AndOr 76

ANDSynchr oni zat i onPoi nt
object 80, 203

Audi o structure 172

C

Callback by name 68

Cal | back object 68

Cal | backByNane object 68

Callbacks 68, 76, 96, 179

Capability 111, 113

Capt ured structure 170

Casting 43

Cl ock object 89, 175, 187

Colour 187

Col our structure 187

Components 9

Configurability 127, 128, 129, 146

Configuration objects 128
Semantic names 130

Conf | nf o object 141

Constraint structure 67, 77

Constrai nt structure 174

Constrai nt Op 77

Constrai nt Op structure 67

Control | er object 82,184, 203

Coordinate spaces 185

Coor di nat e structure 186

Coordinator 199

Coor di nat or object 200

CORBA 53,54

D

Dataflow network 125
Delay bounds 135
Direct instance 41

E
Ef fi ci encyMeasure object 190, 191,
192
Enhanced PREMO Object 69
EnhancedPREMOOhj ect object 69
Enumeration 62
Event
Event data 75
Event name 176
Event registration 76
Event source 66, 75, 176
Synchronization points 78
Event
Event data 66, 75
Event name 66, 75
Event management 74

Event object 66

Event structure 75

Event-based synchronization 92, 97
Event Handl er object 76
Exceptions 46, 63

F

Factory finder objects 120
Factory objects 118, 144

Fact or yFi nder object 121
For m structure 171

For mat object 131, 188

G

Generi cFact or object 119
Ceonetric structure 172
Group 161

Group object 161

|
Immediate subtype 41
Inheritance 42, 51
Multiple 42
Input devices 193
I nput Devi ce object 193
I nt er NodeTr ansport object 133
I ntraNodeTr ansport object 133

J
Jitter 135

L

Li ght structure 175

Logical device 163

Logi cal Devi ce object 163

M

Master 107, 154

Mat eri al structure 175

Media streams 125

MediaEngine 192

Medi aEngi ne object 192

Middleware 128

Modeller 190

Model | er object 191, 193

Modi fi er structure 173

MRI 165

VRl _For mat object 188

MSS 125, 165

Multicast 160

Multimedia Systems Services 125

Mul ti medi aSt r eanPr ot ocol
object 132

Musi ¢ structure 172

N

Nane structure 185, 196

Native property values 111, 113

Negotiations 110, 117, 127, 144

Non-object types 38, 59, 176
Basic data types 60
Constructed types 38, 61
Enumerations 62
Exceptions 63
Extended integers 93
Nested top—level classes 61

(0]

Object 36
Activity 36, 86, 91
Attributes 37
Creation 118, 144
Factory 118
Identity 38
Implementation 37
Instance 37
Reference 39
Specification 37
State 36
Types 36

Object creation 118

Object lifecycle 47

Object model 36, 51

Operation 37
Asynchronous 45, 68
Input parameter 40, 43
Invocation 37
Output parameter 40, 44
Protected 43
Request 40
Request modes 45
Sampled 45
Selection 43
Signature 40
Synchronous 45

P
Par al | el structure 182, 202
Port Confi g structure 147
Ports 125, 147, 157
Port Type 149
PREMOExcept i on 63
PREMOOhj ect
Initialization 64, 119, 122
PREMOOhj ect object 64
Primitive 167, 222
Acoustic modifier 174
Aggregate 177
Alternate time composite 184
Audio 171

253

Captured 170
Form 171
Geometric 172
Modifier 173
Music 172
Parallel time composite 182
Reference 185
Sequential time composite 181
Speech 172
Structural modifier 174
Structured 177
Tactile 172
Text 173
Time composite 179
Time frame modifier 175
TimeComposite 200
Tracer 176, 190, 197, 203
Visual modifier 175
Wrapper 176
Primtive structure 169
Private properties 111
Processing element 151
Profiles 9
Progress position 96
Progression space 92, 94, 105, 154
Property management 69
Capability 111
Constraining properties 110
Native property values 111, 119
Property definition 70, 114
Property inquiry 71
Property matching 72
Property removal 71
Property selection 115
PropertyConstrai nt object 114
Bound state 115
Propertyl nqui ry object 113
PropertyPair structure 72

&SDescri pt or object 134
Quality of service 134, 145, 157
Bandwidth 135
Delay 135
Guaranteed level 134
Jitter 135

R
Reference point 93, 101, 106
Ref er ence structure 185
Renderer 191
Render er object 191, 201
ResourceState 143
RMI 53, 122

Remote interface 54

254

Remote server class 54, 69, 122
Server object registration 56, 118, 119,
122
Router 194
Rout er object 194

S
Scene 195
Scene object 195
Semantic name 141
Semantic names 130
Sequenti al structure 181, 203
Shadi ng structure 175
Simple PREMO Objects 65
Si npl ePREMOOhj ect object 65
Slave 107, 140, 154
SoundChar act eri sti c structure 174
Speech structure 172
Stream control 136, 144, 157

Drain 138

Mute 137, 155

Prime 137, 139
StreanmControl object 139, 203
Structural structure 174
Structure 61, 65, 66
Structured structure 177
Subtype 40
Synchroni zabl e object 94
Synchronization 90
Synchronization event 79
Synchronization point 78
Synchroni zat i onPoi nt object 79
SyncStreanControl object 140
SysC ock object 89

T
Tactil e structure 172
Text structure 173
Text ure structure 175
Time 87
Accuracy 87
Location 187
Time units 87
Time-based synchronization 103
Ti meConposi t e structure 179, 200
Ti meFrane structure 175
Timeline 109
Ti meLi ne object 109
Ti neLocat i on structure 187
Ti mer object 89, 104
Ti meSl ave object 108, 140
Ti meSynchr oni zabl e object 104, 139
TimeUnit 89
Tracer structure 176, 197, 203
Transformati on structure 174

Transf orner object 153

U
Unicast 160

\%

Val i dati onResul t object 143, 151

Virtual connection 155

Virtual device 126, 146, 166, 170
Hierarchy 163

Virtual resource 140

Vi rtual Connecti on object 156

Vi rtual Connecti onMul ti cast

object 161

Vi rt ual Devi ce object 146

Vi rt ual Resour ce object 140

Vocal Char acteri stic structure 174

w
Wait flag 93, 95
W apper structure 176

	PREMO: A Standard for Distributed Multimedia
	1.1 Introduction
	1.1.1 What PREMO Is
	PREMO as middleware
	PREMO as a reference model

	1.1.2 What PREMO Isn’t
	PREMO is not a Media Format
	PREMO is not a Media Engine
	PREMO is not a user-oriented Specification

	1.2 Formal Description Techniques and PREMO
	1.3 Structure of the Book
	1.4 Typographical Conventions
	1.5 Graphical Conventions

	An Overview of PREMO
	2.1 Introduction
	2.2 The Structure of PREMO
	2.3 The PREMO Object Model
	2.3.1 Overview
	2.3.2 From Language Bindings to Environment Bindings
	2.3.3 Object References
	2.3.4 Active Objects
	2.3.5 Operation Dispatching
	2.3.6 Attributes
	2.3.7 Non-object Data Types

	2.4 The Foundation Component
	2.4.1 Structures, Services, and Types
	2.4.2 Inter-Object Communication
	2.4.3 Synchronization
	2.4.4 Time
	2.4.5 Property Management
	2.4.6 Object Factories

	2.5 The Multimedia Systems Services Component
	2.5.1 The Paradigm of Media Networks
	2.5.2 Virtual Resources
	2.5.3 Stream Control
	2.5.4 Virtual Devices
	2.5.5 Virtual Connections
	2.5.6 Higher-Levels of Organization: Groups and Logical Devices
	2.5.7 Working in Unison

	2.6 The Modelling, Rendering, and Interaction Component
	2.6.1 Object-Oriented Rendering
	2.6.2 Primitives
	2.6.3 Modelling and Rendering Devices
	2.6.4 Coordination

	2.7 Closing Remarks

	The Fundamentals of PREMO
	3.1 Introduction
	3.2 Basic Concepts
	3.2.1 PREMO Objects and Object Types
	3.2.2 Attributes
	3.2.3 Non-object Types
	3.2.4 Object Identity and Object References

	3.3 Operations
	3.4 Subtyping
	3.5 Inheritance
	3.6 Protected Operations
	3.7 Operation Selection, and Casting
	3.8 Operation Request Modes
	3.9 Exceptions
	3.10 The Object and Object Reference Lifecycle
	3.11 The Environment Binding

	General Implementation Issues
	4.1 Implementation Choices
	4.1.1 Implementation Language
	4.1.2 Implementation Environment

	4.2 PREMO Specifications in Java and Java RMI
	4.2.1 Constraints on the Specification Details
	4.2.2 Registering Server Objects

	The Foundation Component
	5.1 Introduction
	5.2 PREMO Non–object Types
	5.2.1 Basic Data Types
	5.2.2 Constructed Data Types
	5.2.3 Exceptions

	5.3 Top Layer of the PREMO Object Hierarchy
	5.3.1 The PREMOObject Interface
	5.3.2 Simple PREMO Objects
	5.3.2.1 Event Structures
	5.3.2.2 Constraint Structures
	5.3.3 Callbacks
	5.3.4 Enhanced PREMO Objects
	5.3.4.1 Enhanced PREMO Objects as Service Objects
	5.3.4.2 Property Management
	5.3.4.2.1 Property Definition
	5.3.4.2.2 Removal of Properties
	5.3.4.2.3 Property Inquiry Operations
	5.3.4.2.4 Property Matching
	5.3.5 Top Layer of PREMO

	5.4 General Utility Objects
	5.4.1 Event Management
	5.4.1.1 The PREMO Event Model
	5.4.1.2 The Event Handler Object
	5.4.1.3 Synchronization Points
	5.4.2 Finite State Machines: Controller Objects
	5.4.2.1 Detailed Specification of a Controller
	5.4.2.2 Activity of Controllers
	5.4.3 Time Objects
	5.4.3.1 General Notions
	5.4.3.2 Specification of the PREMO Time Objects

	5.5 Synchronization Facilities
	5.5.1 Synchronizable Objects
	5.5.1.1 Overview: Event–Based Synchronization
	5.5.1.2 State Transition Monitoring
	5.5.1.3 Detailed Specification of the Synchronizable Object
	5.5.1.3.1 Retrieve Only Attributes
	5.5.1.3.2 Settable Attributes
	5.5.1.3.3 Management of Reference Points
	5.5.1.3.4 Management of Action Elements
	5.5.1.3.5 General Reset
	5.5.1.4 Synchronizable Objects as Callbacks
	5.5.2 Time and Synchronizable Objects
	5.5.2.1 Stop–Watch and Progression
	5.5.2.2 Time and Progression Space
	5.5.2.3 Reference Point Specifications in Time
	5.5.3 Combining TimeSynchronizable Oobjects: Time Slaves
	5.5.4 Time–Lines

	5.6 Negotiation and Configuration Management
	5.6.1 General Notions
	5.6.2 Property Inquiry Objects
	5.6.3 Constraining Properties
	5.6.4 Dynamic Change of Properties
	5.6.5 Interaction among Properties
	5.6.6 Some Conclusions on the Negotiation Facilities

	5.7 Creation of Service Objects
	5.7.1 Generic Factory Objects
	5.7.2 Factory Finders
	5.7.3 Use of Factories and Factory Finders

	Multimedia Systems Services Component
	6.1 Introduction
	6.2 Configuration Objects
	6.2.1 Format Objects
	6.2.2 Transport and Media Stream Protocol Objects
	6.2.3 Quality of Service Descriptor Objects

	6.3 Stream Control
	6.3.1 The StreamControl Object
	6.3.2 SyncStreamControl Objects

	6.4 Virtual Resources
	6.4.1 Property Control of Configurations
	6.4.2 Resource and Configuration Management
	6.4.3 Stream Control
	6.4.4 Monitoring Resource Behaviour and Quality of Service Violations

	6.5 Virtual Devices
	6.5.1 Configuring Devices
	6.5.1.1 Global Configuration
	6.5.1.2 Port Configurations
	6.5.1.2.1 Port Configuration Structures
	6.5.1.2.2 Configuring Ports
	6.5.2 Examples of Virtual Devices
	6.5.2.1 Simple Media Devices
	6.5.2.2 Transformer Devices

	6.6 Virtual Connections
	6.6.1 Overview
	6.6.2 Detailed Specification of Virtual Connections
	6.6.3 Examples of Virtual Connections
	6.6.4 Multicast Connections

	6.7 Groups
	6.8 Logical Devices

	The Modelling, Rendering, and Interaction Component
	7.1 Introduction
	7.2 Primitives
	7.2.1 The Role of Primitives in PREMO
	7.2.2 The Hierarchy in Overview
	7.2.3 Captured Primitives
	7.2.4 Form Primitives
	Audio Primitives
	Geometric Primitives

	7.2.5 Tactile Primitives
	Text Primitives

	7.2.6 Modifier Primitives
	Acoustic Modifiers
	Structural Modifiers
	TimeFrame Modifiers
	Visual Modifiers

	7.2.7 Wrapper Primitives
	7.2.8 Tracer Primitives
	7.2.9 Structured Primitives
	7.2.9.1 Aggregate Primitives
	7.2.9.2 TimeComposite
	7.2.9.2.1 Sequential
	7.2.9.2.2 Parallel
	7.2.9.2.3 Alternate
	7.2.10 Reference Primitives

	7.3 Coordinate Spaces
	7.3.1 Coordinate
	7.3.2 TimeLocation
	7.3.3 Colour

	7.4 Devices for Modelling, Rendering and Interaction
	7.4.1 MRI_Format
	7.4.2 Efficiency Measures
	7.4.3 MRI Device
	7.4.4 Modeller
	7.4.5 Renderer
	7.4.6 MediaEngine

	7.5 Input Devices, and Routing
	7.5.1 InputDevice
	7.5.2 Router

	7.6 The Scene Database
	7.7 Coordination
	7.7.1 Management
	7.7.2 Allocation
	7.7.3 Synchronization

	Detailed Java Specifications of the PREMO Objects
	8.1 Introduction
	8.2 Foundation Objects
	8.2.1 Enumerations
	8.2.2 Additional Data Types
	8.2.3 Top Level of PREMO Hierarchy
	8.2.4 Structures
	8.2.5 General Utility Objects
	8.2.5.1 Event Management
	8.2.5.2 Controllers
	8.2.5.3 Time Objects
	8.2.6 Sychronization Objects
	8.2.7 Negotiation and Configuration Management
	8.2.8 Creation of Service Objects

	8.3 Multimedia Systems Services
	8.3.1 Enumerations
	8.3.2 Structures and Additional Data Types
	8.3.3 Configuration Objects
	8.3.4 Stream Control
	8.3.5 Virtual Resource
	8.3.6 Virtual Device
	8.3.7 Virtual Connections
	8.3.8 Group
	8.3.9 Logical Device

	8.4 The Modelling, Rendering, and Interaction Component
	8.4.1 Objects for Coordinate Spaces
	8.4.1.1 Coordinate Object
	8.4.1.2 Colour Object
	8.4.1.3 TimeLocation Object
	8.4.2 Name Object
	8.4.3 Objects for Media Primitives
	8.4.3.1 Primitive Object
	8.4.3.2 Captured Object
	8.4.3.3 Primitives with Spatial and/or Temporal Form
	8.4.3.3.1 Form object
	8.4.3.4 Form Primitives for Audio Media Data
	8.4.3.4.1 Audio Object
	8.4.3.4.2 Music Object
	8.4.3.4.3 Speech Object
	8.4.3.5 Form Primitives for Geometric Media Data
	8.4.3.5.1 Geometric Object
	8.4.3.5.2 Tactile Object
	8.4.3.5.3 Text Object
	8.4.3.6 Primitives for the Modification of Media Data
	8.4.3.6.1 Modifier
	8.4.3.7 Modifier Primitives for Audio Media Data
	8.4.3.7.1 Acoustic Object
	8.4.3.7.2 SoundCharacteristic Object
	8.4.3.7.3 VocalCharacteristic Object
	8.4.3.8 Modifier Primitives for Structural Aspects of Media Data
	8.4.3.8.1 Structural Object
	8.4.3.8.2 Transformation Object
	8.4.3.8.3 Constraint Object
	8.4.3.8.4 TimeFrame Object
	8.4.3.9 Modifier Primitives for Visual Aspects of Media Data
	8.4.3.9.1 Visual Object
	8.4.3.9.2 Light Object
	8.4.3.9.3 Material Object
	8.4.3.9.4 Shading Object
	8.4.3.9.5 Texture Object
	8.4.3.9.6 Reference Object
	8.4.3.10 Organising Primitives into Structures
	8.4.3.10.1 Structured Object
	8.4.3.10.2 Aggregate Object
	8.4.3.11 Organising Media Data within Time
	8.4.3.11.1 TimeComposite Object
	8.4.3.11.2 Sequential Object
	8.4.3.11.3 Parallel Object
	8.4.3.11.4 Alternate Object
	8.4.3.11.5 Tracer Object
	8.4.3.11.6 Wrapper Object
	8.4.4 Objects for Describing Properties of Devices
	8.4.4.1 MRI_Format Object
	8.4.4.2 EfficiencyMeasure Object
	8.4.5 Processing Devices for Media Data
	8.4.5.1 MRI_Device Object
	8.4.5.2 Modeller Object
	8.4.5.3 Renderer Object
	8.4.5.4 MediaEngine Object
	8.4.6 Scene Object
	8.4.7 Objects for Supporting Interaction
	8.4.7.1 InputDevice Object
	8.4.7.2 Router Object
	8.4.8 Coordinator Object

	Selected Implementation Issues
	A.1 The PREMO Environment
	A.1.1 Activity of Objects
	A.1.2 Top Level of the PREMO Hierarchy
	A.1.3 Operation Request Modes
	A.1.4 Distribution and the Creation of PREMO Objects
	A.2 Specific Part 3 Objects

	A.2.1 Virtual Connection Objects
	A.2.1.1 Devices on the Same JVM: Piped Streams
	A.2.1.2 Devices on Different JVM’s: Sockets
	A.2.1.3 Multicast Connections

	References
	[1] P. Ackermann. Developing Object-Oriented Multimedia Software - Based on the MET++ Application...
	[2] W. Appelt and A. Scheller. HyperODA: Going Beyond Traditional Document Structures. Computer S...
	[3] F. Arbab, I. Herman, and G.J. Reynolds. An Object Model for Multimedia Programming. Computer ...
	[4] F. Arbab: "The IWIM model for coordination of concurrent activities". In: Coordination Langua...
	[5] D.B. Arnold and D.A. Duce. ISO Standards for Computer Graphics: The First Generation. Butterw...
	[6] M. Awad and J. Ziegler. A Practical Approach to the Design of Concurrency in Object–Oriented ...
	[7] J. Barnes. Programming in Ada’95. Addison–Wesley, 1996.
	[8] D.R. Begault. 3D Sound for Virtual Reality and Multimedia. Academic Press, 1994.
	[9] G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug, K. Nygaard. Simula Begin. AUERBACH Publishers Inc.,...
	[10] G. Blakowski and R. Steinmetz. A Media Synchronization Survey: Reference Model, Specificatio...
	[11] D.G. Bobrow, L.G. Demichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, D.A. Moon. Common Lisp O...
	[12] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Computer...
	[13] G. Booch. Object–Oriented Analysis and Design with Applications (Second edition). Prentice–H...
	[14] D. Brookshire Conner and A. van Dam. Sharing Between Graphical Objects Using Delegation. In ...
	[15] N. Carriero and D. Gelernter: "Linda in Context". In: Communication of the ACM, 32, pp. 444-...
	[16] L. Chamberland. FORTRAN 90: A Reference Guide. Prentice Hall, 1996.
	[17] F. Colaïtis and F. Bertrand. The MHEG Standard: Principles and Examples of Applications. In ...
	[18] R.B. Dannenberg, T. Neuendorffer, J. Newcomer, D. Rubine, and D. Anderson. Tactus: Toolkit-l...
	[19] D.A. Duce, D.J. Duke, P.J.W. ten Hagen, I. Herman, and G.J. Reynolds. Formal Methods in the ...
	[20] D.J. Duke, D.A. Duce, I. Herman and G. Faconti. Specifying the PREMO synchronization objects...
	[21] D.J. Duke and I. Herman. Programming Paradigms in an Object-Oriented Multimedia Standard. In...
	[22] D.J. Duke, I. Herman, T. Rist, and M. Wilson. Relating the primitive hierarchy of the PREMO ...
	[23] D.A. Duce, D.J. Duke, I. Herman and G. Faconti. The Changing Face of Standardization: A Plac...
	[24] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language, Version 1. Tec...
	[25] R. Duke, G. Rose, and G. Smith. Object–Z: A Specification Language Advocated for the Descrip...
	[26] G. Faconti and M. Massink. Investigating the Behaviour of PREMO Sychronization Objects. In P...
	[27] B.N. Freeman–Benson and A. Borning. Integrating constraints with an object– oriented languag...
	[28] D. Flanagan. Java in a Nutshell (Second edition). O’Reilly, 1997.
	[29] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and Prac...
	[30] M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modeling Language. Addison ...
	[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns: elements of reusable object-or...
	[32] A. Goldberg and D. Robson. Smalltalk–80: The Language. Addison–Wesley, 1989.
	[33] S.J. Gibbs, L. Dami, and D.C. Tsichritzis. An Object Oriented Framework for Multimedia Compo...
	[34] S.J. Gibbs and D.C. Tsichritzis. Multimedia Programming. Addison–Wesley, 1995.
	[35] A. Goldberg, D. Robson. Smalltalk-80: The Language. Addison Wesley, 1989.
	[36] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison– Wesley, 1996.
	[37] S. Green. Parallel Processing for Computer Graphics. Pitman, 1991.
	[38] J. Hartman and J. Wernecke. The VRML 2.0 Handbook. Addison–Wesley, 1996.
	[39] P. Heller, S. Roberts, P. Seymour and T. McGinn. Java 1.1 Developer’s Handbook. Sybex, 1997.
	[40] I. Herman, G.J. Reynolds, and J. Van Loo. PREMO: An emerging standard for multimedia. Part�I...
	[41] I. Herman, N. Correia, D.A. Duce, D.J. Duke, G.J. Reynolds, and J. Van Loo. A Standard Model...
	[42] I. Herman, G.J. Reynolds, and J. Davy. MADE: A Multimedia Application development environmen...
	[43] C.A.R. Hoare. Communicating Sequential Processes. Addison–Wesley, 1985.
	[44] T.L.J. Howard, W.T. Hewitt, R.J. Hubbold, and K.M. Wyrwas. A Practical Introduction to PHIGS...
	[45] IMA, Multimedia System Services, Interactive Multimedia Association, September 1994, ftp://i...
	[46] Information Processing Systems — Open Systems Interconnections — LOTOS (Formal Description T...
	[47] Information Processing Systems — Computer Graphics — Computer Graphics Reference Model (CGRM...
	[48] Information technology — Computer graphics and image processing — Graphical Kernel System (G...
	[49] Information Technology — Computer Graphics — Programmer’s Hierarchical Interactive Graphics ...
	[50] Information Technology — Computer Graphics and Image Processing — Presentation Environments ...
	[51] Information Technology — Computer Graphics and Image Processing — Presentation Environments ...
	[52] Information Technology— Computer Graphics and Image Processing — Presentation Environments f...
	[53] Information Technology — Computer Graphics and Image Processing — Presentation Environments ...
	[54] Information Technology — Computer Graphics and Image Processing — The Virtual Reality Modeli...
	[55] Information Technology — Coding of Moving Pictures and Associated Audio for Digital Storage ...
	[56] ISO/IEC directives: Procedures for the technical work of ISO/IEC JTC�1 on Information Techno...
	[57] R.S. Kalawsky. The Science of Virtual Reality and Virtual Environments. Addison–Wesley, 1994.
	[58] B. Kernighan and D. Ritchie. The C Programming Language, second edition. Prentice Hall, 1989.
	[59] J. F. Koegel Buford, editor. Multimedia Systems. Addison–Wesley, 1994.
	[60] J. F. Koegel Buford. Architecture and Issues for Distributed Multimedia Systems. In J. F. Ko...
	[61] C. Laffra, E.H. Blake, V. de Mey, and X. Pintado, editors. Object–Oriented Programming for G...
	[62] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented Sys...
	[63] A. Lie and N. Correia. Cineloop Synchronization in the MADE Environment., in: Proceedings of...
	[64] B. MacIntyre and S. Feiner. Future Multimedia User Interfaces. Multimedia Systems, 4(5):250–...
	[65] V. de Mey and S. Gibbs. A Multimedia Component Kit. In P.V.Rangan, editor, Proceedings of th...
	[66] B. Meyer. Eiffel: The Language. Prentice–Hall, 1990.
	[67] B. Meyer. Reusable Software: The Base Object-Oriented Component Libraries. Prentice Hall, 1994.
	[68] R. Newcomb, N.A. Kipp, and V.T. Newcomb. The “HyTime” — Hypermedia/ Time–based Document Stru...
	[69] Object Management Group. See http://www.omg.org/
	[70] R. Orfali and D. Harkey. Client/Server Programming with JAVA and CORBA. Wiley Computer Publi...
	[71] R. Otte, P. Patrick, and M. Roy. Understanding CORBA, The Common Object Request Broker Archi...
	[72] G.J. Reynolds, D.A. Duce, and D.J. Duke. Report of the ISO/IEC JTC1/SC24 Special Rapporteur ...
	[73] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object–Oriented Modeling and...
	[74] W. Schroeder, K. Martin, B. Lorensen. The Visualization Toolkit, second edition. Prentice Ha...
	[75] P. Slusallek and H.–P. Seidel. Vision: An Architecture for Global Illumination Calculations....
	[76] M.A. Srinivasan and C. Basdogan, Hapics in virtual environments: taxonomy, research status, ...
	[77] J. Smith. X: A Guide for Users. Prentice Hall, 1994.
	[78] J.M. Spivey. The Z Notation: A Reference Manual. Prentice–Hall, 1992.
	[79] B. Stroustrup. The C++ Programming Language. Addison–Wesley, 1990.
	[80] A.S. Tanenbaum. Modern Operating Systems. Prentice–Hall, 1992.
	[81] H. Tokuda. Operating System Support for Continuous Media Applications. In J.F.�Koegel Buford...
	[82] B.J. Torby. FORTRAN’77 for Engineers. Prentice Hall, 1990.
	[83] D. Ungar, R.B. Smith. SELF: The Power of Simplicity. LISP and Symbolic Computation, 4(3), Kl...
	[84] C. Upson, T. Faulhaber Jr., D. Kamins, et al. The Application Visualization System: A Comput...
	[85] M. Vazirgiannis and T. Sellis. Event and Action Representation and Composition for Multimedi...
	[86] A. Vogel and K. Duddy. Java Programming with CORBA. IEEE Press, 1997.
	[87] A. Watters, G. van Rossum, J.C. Ahlstrom. Internet Programming with Python. M&T Books, 1996.
	[88] P. Wegner, S.B. Zdonik. Inheritance as an Incremental Modification Mechanism or What Like Is...
	[89] J. Wernecke, The Inventor Mentor, Addison Wesley, 1994.
	[90] R. Wirfs–Brock and R. Johnson. Surveying Current Research in Object–Oriented Design. Communi...
	[91] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Computing. IEEE Micro, 17(3):4...
	[92] P. Wißkirchen. Object–Oriented Graphics. Springer–Verlag, 1990.
	[93] M. Woo, J. Neider, T. Davis. OpenGL Programming Guide, second edition. Addison Wesley, 1997.
	[94] W3C PNG (Portable Network Graphics) Specification. Public document, available at http://www....
	[95] W3C SMIL Draft Specification. Public document, available at http:// www.w3.org/TR/WD-smil, 1...

	Index

