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Abstract

This paper describes the formal specification of object types for managing inter-media synchronisation and
control within PREMO, an emerging ISO/IEC standard for multimedia systems. Object-Z, an object-oriented
extension to the Z specification language, is used for this purpose. Someaspects of PREMO are non-trivial
to express in Object-Z, and the paper outlines the reasons for choosing this specific language, and sets out
recommendations for further research in the use of formal languages in thisarea. The work reported here has
been carried out by members of the ISO/SC24 committee involved in producing the PREMO standard, and has
been informed by a number of workshops sponsored by the ERCIM Computer Graphics Network.

1 Introduction

Maintaining the presentation of a continuous media data stream at a sufficient rate and quality for human
perception represents a significant challenge for multimedia systems, and may impose significant resource re-
quirements on the multimedia computing environment. Aside from this inherent constraint (sometimes referred
to as the problem of intra-media synchronization) a further difficultyarises from the fact that multimedia appli-
cations often wish to use several instances of continuous media data at thesame time: an animation sequence
with some accompanying sound, a video sequence with textual annotations, etc. The difficulty here is that not
only should the individual media data be presented with an acceptable quality, but well-defined portions of the
various media content should appear, at least from a perceptual point of view, simultaneously: some parts of a
sound track belong to a specific animation sequence, subtitles should appear with specified frames in a video
sequence, etc. This problem is usually referred to as inter-media synchronization. The specific problems raised
by intra-media synchronization will not be addressed in this paper; in what follows, the term synchronization
is always used to refer to inter-media synchronization.

Synchronization has received significant attention in the multimedia literature, see, for example, the recent
book by Gibbs and Tsichritzis[11] or the article of Koegel Buford[2] for further information and references on
the topic. An efficient implementation of inter-media synchronization represents a major load on a multimedia
system, and it is one of the major challenges in the field. What emerges from the experience of recent years is
that, as is very often the case, one cannot pin down one specific place among all the computing layers (from
hardware to the application) where the synchronization problem shouldbe solved. Instead, the requirements of
synchronization should be considered across all layers, i.e., in network technology, operating systems, software
architectures, programming languages, etc. and user interfaces. This paper describes and formalises a model
for inter-media synchronization which is contained in the PREMO specification [16], an ISO/IEC standard
under development for multimedia programming. Being part of an upcoming ISO/IEC standard, the model
represents a synthesis of the various synchronization techniques used inpractice.

PREMO standardization is still at a development stage, hence a short overview of the main goals of this Stan-
dard are given below. The remainder of the paper concentrates on the formal specification of these objects. The
formal notation used is Object-Z [3, 7, 8], an object-oriented extensionto the Z notation [20]. Use of Object-Z
to specify PREMO was one of the recommendations of a Special Rapporteur’s Report on Formal Description
Techniques in PREMO [19] prepared for ISO/IEC JTC1/SC24, and the specification of aspects of PREMO us-
ing the Z and Object-Z notations have appeared as [6] and [5]. One contribution of this paper is demonstrating
use of a convention for describing exceptions and error handling, and details of the approach are to be found
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in Appendix A. An overview of Z and Object-Z is beyond the scope of this paper, and the reader is directed to
[12, 20] (Z) and [3, 7, 8] (Object-Z) for details.

1.1 A short overview of PREMO

This section gives a very short overview of PREMO; for a more detailed presentation the interested reader
should consult [13] or [14].

Today’s application developers needing to realize high-level multimediaapplications which go beyond the
level of multimedia authoring do not have an easy task. There are only a few programming tools that allow an
application developer the freedom to create multimedia effects based on a moregeneral model than multimedia
document paradigms, and these tools are usually platform specific. In any case,there is currently no available
ISO/IEC standard encompassing these requirements. A standard in this areashould focus primarily on the
presentation aspects of multimedia, and much less on the coding, transfer, or hypermedia document aspects,
which are covered by a number of other ISO/IEC or de-facto standards (for example, MHEG[15]). It should
also concentrate on the programming tool side, and less on, e.g., the (multimedia) document format side. These
are exactly the main concerns of PREMO.

It is quite natural that the initiative for a standardization activity aiming at such a specification came from the
group which has traditionally concentrated on presentation aspects over the past 15 years, namely ISO/IEC
JTC1/SC24 (Computer Graphics). Indeed, this is the ISO subcommittee whose charter has been the devel-
opment of computer graphics and image processing standards in the past. The Graphical Kernel System was
the first standard for computer graphics published in this area; it was followed by a series of complementary
standards, addressing different areas of computer graphics and image processing. Perhaps the best known of
the application program interface (API) standards are PHIGS, PHIGS PLUS, andIPS (see, e.g., Arnold and
Duce[1] for an overview of all these Standards). The subcommittee has nowturned its attention to presentation
media in general as a way of augmenting traditional graphics applications with continuous media such as audio,
video, or still image facilities, in an integrated manner. The need for a new generation of standards for com-
puter graphics emerged in the past 4-5 years to answer the challenges raised by new graphics techniques and
programming environments and it is extremely fortunate that the review process to develop this new generation
of presentation environments coincided with the emergence of multimedia. In consequence, a synergistic effect
can be capitalized on.

The JTC1 SC24 subcommittee recognised the need to develop such a new line of standards. It also recognised
that any new presentation environment should include more general multimedia effects to encompass the needs
of various application areas. To this end, a project was started in SC24 for anew standard called PREMO
(Presentation Environment for Multimedia Objects) and is now a major ongoing activity in ISO/IEC JTC1
SC24 WG6. The subcommittee’s goal is to reach the stage of a Draft International Standard in 1997.

The major features of PREMO can be briefly summarised as follows.� PREMO is a Presentation Environment. PREMO, as well as the SC24 standards cited above, aims at
providing a standard ”programming” environment in a very general sense. The aim is to offer a standard-
ized, hence conceptually portable, development environment that helps to promote portable multimedia
applications. PREMO concentrates on the application program interface to ”presentation techniques”;
this is what primarily differentiates it from other multimedia standardization projects.� PREMO is aimed at a Multimedia presentation, whereas earlier SC24 standards concentrated either on
synthetic graphics or image processing systems. Multimedia is considered here in a very general sense;
high-level virtual reality environments, which mix real-time 3D rendering techniques with sound, video,
or even tactile feedback, and their effects, are, for example, within the scope of PREMO.� PREMO is Object Oriented. This means that, through standard object-oriented techniques, a PREMO
implementation becomes extensible and configurable. Object-oriented technology also provides a frame-
work to describe distribution in a consistent manner.

A precise object model constitutes a major part of PREMO. The object model isfairly traditional, and is based
on the concepts of subtyping and inheritance. It is also very pragmatic in the sense that it includes, for efficiency
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reasons, the notion of non-object (data) types, as is the case with a number of object-oriented languages, such
as C++ or Java, and in contrast to ‘pure’ object-oriented models, such as SmallTalk. The PREMO object model
originates from the object model developed by the OMG consortium for distributed objects, but some aspects
of the OMG model have been adapted to the needs of PREMO. A strong emphasis is placed in the model on
the ability of objects to be active. That is, PREMO uses objects that have, conceptually, their own thread of
control. However, if every object contains a thread of control, objects become ‘heavyweight’ and unsuitable
for use as record-like structures. Having to develop a separate (non-object) data type for structures would be
unfortunate, since treating structures as objects bring benefits in the form of inheritance, subtyping etc. The
PREMO object model reconciles the tension between the desire for active objectson the one hand, and efficient
structure objects on the other, by splitting the object type hierarchyinto separate branches for ‘simple’ objects
that can be used efficiently as structures, and ‘enhanced’ objects that have their own thread of control. The top
level of the PREMO object type hierarchy is shown in Figure 1.

PREMOObject

initialize
initializeOnCopy
destruct
inquireType
inquireTypeGraph
inquireImmediateSupertypes

SimplePREMOObject EnhancedPREMOObject

defineProperty
undefineProperty
addValue
removeValue
inquireProperties
getProperty
getPairs
matchProperties

Figure 1: The top of the PREMO Object Type Hierarchy.

Enhanced PREMO objects can communicate with one another through messages, i.e., through the operations
defined on the object types. Objects can become suspended either by waiting for anoperation invocation to
return, or by waiting on the arrival of an operation request. Consequently, operations on objects serve as a
vehicle to synchronize various activities (note that this concept of objectsynchronization is not the same as
media synchronization although, of course, the concepts are related). Whether the concurrent activity of active
objects is realized through separate hardware processors, through distribution over a network, or through some
multithreaded operating system service, is oblivious to PREMO and is considered to be an implementation
dependency.

The emphasis on the activity of objects stems primarily from the need forsynchronization in multimedia en-
vironments and forms the basis of the synchronization model described in this paper. Using concurrency to
achieve synchronization in multimedia systems is not specific to PREMO.Other models and systems have
taken a similar approach (see, for example, [4] and PREMO, whose task is to provide a synthesis for standard-
ization, has obviously been influenced by these models.

2 Synchronizable Objects

As described above, the PREMO synchronization model is based on the fact that objects in PREMO can be
active. Different continuous media (e.g., a video sequence and corresponding sound track) are modelled as
concurrent activities that may have to reach specific milestones at distinct and possibly user definable synchro-
nization points. This is the event-based synchronization approach, which forms the basic layer of synchroniza-
tion in PREMO. Although a large number of synchronization tasks are, inpractice, related to synchronization
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in time, the choice of an essentially ”timeless” synchronization scheme as a basis offers greater flexibility.
While time-related synchronization schemes can be built on top of an event-based synchronization model, it is
sometimes necessary to support purely event-based synchronization to achieve special effects required by some
application. Examples of how the various synchronization objects may be used can be found in [14].

In line with the object-oriented approach of PREMO, the synchronizationmodel defines abstract object types
that capture the essential features of synchronization. For the event-basedsynchronization scheme two major
object types are defined:� synchronizable objects, which form the supertypes of, e.g., various media object types;� synchronization points, which may be used to manage complex synchronization patterns among syn-

chronizable objects.

These objects are described in somewhat more detail below.

2.1 Supporting Synchronization in PREMO

Synchronizable objects in PREMO are autonomous objects, which have an internal progression along an inter-
nal one dimensional coordinate space. This space can be:� extended real (R1 ), or� extended integer (Z1), or� extended time (Time1);

where “extension” means the inclusion of positive and negative “infinity” to the real and integer numbers,
respectively. (The symbol “C” is used in this section to denote either an extended real, an extended integer, or
extended time.) The obvious extension of the notions “greater than”, “smaller than”, etc., on these types allows
the behaviour of synchronizable objects to be defined more succinctly.Time is used here as an abstract type,
with no commitment made either to a discrete, dense, continuous or discontinuous foundation. Subtypes of
synchronizable objects may add a semantic meaning to this coordinate space. For example, media objects may
represent time, or video frame numbers along this space. Attributes that define the extent of the progression
space can be set through operations defined on these objects.

Technical Note: The formal representation of these extended types within Object-Z is a non-trivial, though
solvable, problem. For example, Z does not define a type for the real numbers, and con-
structing a model of the reals within the type theory of Z is a complexundertaking1. Also,
the symbol ‘1’ is overloaded in the definitions given above. As it happens, we do not need
to utilise specific properties of the real numbers, and it could be argued that a specification
of PREMO would benefit from a more abstract description thanR1 etc, for example by
the introduction of a single abstract type to cover the three cases mentioned above. The
trade-off here would be the loss of direct contact between the definition ofthe standard and
its specification. The use of infinity, for example, is useful within the PREMO standard in
describing media streams originating from ‘live’ sources such as microphones, where the
temporal extent of the stream is unbounded.

Reference points are points on the internal coordinate space of synchronizable objects where synchroniza-
tion elements can be attached. Synchronization elements contain information onan event instance (which is,
essentially, a structure containing the object reference of the sender, a unique event type identity, and some
event-dependent data), a reference to a PREMO object, a reference to one of the operations of this object, and,
finally, a boolean Wait flag. When a reference point is reached, the synchronizable object makes a message
call to the object stored in the reference point, using the operation reference to identify which operation it has

1The same is true actually in many specification languages.

4



to call, and using the event instance as an argument to the call. Finally, it may suspend itself if the Wait flag is
set to TRUE. Through this mechanism, the synchronizable object can stop other objects, restart them, suspend
them, etc. Operations are defined on synchronizable objects to add and delete reference points, and to add and
delete synchronization elements associated with reference points.

A synchronizable object is a finite state machine that controls the position and progress through an ordered
collection of coordinates, some of which containsynchronization elementsthat can be used to organise the
behaviour within a system based on such objects. The intention is that object types representing different kinds
of media (video, sound etc) will inherit from this class and specialise the coordinate system and state machine
in an appropriate way. For example, a video might use frame numbers as coordinates. The synchronizable
object type defines operations for moving the machine between four different modes:SyncMode == NSTOPPED ;PLAY ;PAUSED ;WAITING : SyncModeSTOPPED = 0 ^ PLAY = 1 ^ PAUSED = 2 ^WAITING = 3
Technical Note: The data typeSyncMode might better be represented in Z as a disjoint union; the use of

explicit numerical tags is used to reflect the approach taken in the Standard. The use of
natural numbers to represent modes allows later subtypes to extend the set of modes; the
cost is that operations that accept as input a natural number representing a mode have to
check that this input describes a mode that is valid for objects of that type.

In more precise terms, a Synchronizable object type is defined in PREMO as a supertype for all objects which
may be subject to synchronization. This object is defined to be a finite state machine. The possible states,
the state transitions, and the operations resulting in state transitions, are shown in Figure 2. The initial state is
STOPPED. Note that noobservableoperation is defined for a transition into state WAITING; the only waya
Synchronizable object can go into the WAITING state is through an operation internal to its processing cycle.

STOPPED

PLAY

PAUSED

WAITING

stop

stop

stop

play

resume pause

pause

resume

play

stop
pause

resume

pause

Figure 2: The States and Transitions of theSynchronizableObject Type.

The Synchronizable object type places no particular interpretation on thesemodes, except that certain oper-
ations can only be performed in certain modes. Apart from mode, the type also makes use of a notion of
direction, which defines the meaning of progress through the coordinatespace:Direction ::= Forward j Backward
The positions within a synchronizable object at which some action needs to take place is marked by a synchro-
nization element. Synchronization is defined in terms of the PREMO event system. The basic unit of this is the
event structure, defined below.
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EventSimplePREMOObjecteventName : StringeventData : seq(Key �Value)eventSource : EnhancedPREMOObject
Technical Note: The object typeEvent inherits only fromSimplePREMOObject ; it is used as a structure

type to encapsulate information about events. It uses the following data types:� String is a given type representing character strings;� Key is a given type representing names that can be used as the first component of
key-value pairs, where theValue component is a disjoint union over the non-object
data types of PREMO;� EnhancedPREMOObject is the root of the active object hierarchy, and thus the
source of an event can be any active PREMO object.

In the ISO documents, the type ofeventSource is Ref EnhancedPREMOObject , since
the standard is explicit about the use of object references. In Object-Z, an instance of an
object type is implicitly a reference to an object of that type, i.e. references arepart of
the semantic model underlying Object-Z, and are not mentioned explicitly in the text of a
specification.

A synchronization element contains a reference to an event handler, plus the event that should be signalled to
that handler when the element is activated; theEventHandler object type is described in Section 5. The third
component of the element is a boolean flag,wait . When a synchronization object encounters an element with
this flag set to true, it enters pause mode immediately upon signalling the event to the handler. This is necessary
to enable synchronization between multiple media objects. Here it may be important to ensure that the position
within the media does not advance once the event has been signalled, and becauseof message delays, network
latency, or contention between objects, this control cannot be guaranteed through the use of normal messages.SyncElementSimplePREMOObjecteventHandler : CallbacksyncEvent : EventwaitFlag : B
Technical Note: Callback is the name of an object type that defines an operation calledcallback that accepts

an inputcallbackValue? of typeEvent . By inheriting fromCallback , the interface of an
object type will contain thecallback operation, and instances of the object type can then
be used as targets for event notification. The object type,CallbackByName, a subtype
of Callback , is similar, except that theeventName field of the event passed as input tocallback is taken to be the name of an operation, and in processing the event the receiver
invokes that operation on itself.

An action element, like a synchronization element, contains a reference to aCallback object, but in this case
only the name of an event is provided. The event data will be defined by the context in which the action element
is used. ActionElementSimplePREMOObject
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eventHandler : CallbackeventName : String
2.2 The ‘Synchronizable’ Object Type

A specification of the synchronizable object type appears below. The generic parameter C represents the
coordinate system restricted to be an extended integer, extended real, or extended time.Synchronizable [C :: Z1 j R1 j TIME1]EnhancedPREMOObject redef (initialize; initializeOnCopy)CallbackByName

The following declarations are read-only attributes, i.e. each comes with an implicit operation
for getting its value, but the value can only be changed by the action of specific operations in
the interface of the type.currentDirection : DirectionloopCounter : N [number of loops completed]currentState : SyncMode [playing, paused etc]currentPosition : CmaximumPosition : CminimumPosition : C [fixed bounds of the span]

Technical Note: The match between Object-Z access concepts and PREMO access concepts, for exam-
ple read-only, is not trivial. PREMO uses concepts of read-only attributes, read/write at-
tributes, and internal (protected) operations. The latter is derived in part from the access
control facilities provided by C++ and Java [10]. Although Object-Z does have a concept
of (externally visible) attribute, there is no direct counterpart to protected operations. The
PREMO standard defines a number of conventions for ‘decorating’ operation names to in-
dicate the accessibility of the operation. These are not used in the specification, although
we do utilise the Z convention of naming an operation schema�S if S is not a final oper-
ation but a ‘frame’ that captures a common pattern of processing that will beused as the
basis for defining subsequent operations.

The declarations in this fragment of the specification are readable and writable attributes,
i.e. each comes with implicit operations for setting and getting its value. The first pair of
attributes identify the user-selectable subset of the coordinate space that is to be processed or
presented.startPosition : CendPosition : C [user-definable boundary]minimumPosition � startPositionstartPosition � stopPositionstopPosition � maximumPosition

Technical Note: Within the standard, setting the values of these attribute may cause exceptions. This is
difficult to document formally in Object-Z, as the set and get methods are not an explicit
part of the text. This is a good example of one of the trade-offs involved in specification, in
this case between explicitness and readability. It could be argued that specification should
prompt and assist a designer to be explicit about the behaviour of a system, and this in turn
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requires being explicit about the components of the system that contribute to its behaviour.
The cost is that a model can quickly become cluttered with detail.

Two further read/write attributes are provided:repeatFlag : B [should the presentation cycle?]nloop : N [total number of loops required]

The remainder of the state contains variables introduced to support the specification of the intended behaviour
of this object type. They are not mentioned explicitly in the functional part of the Standard. The ability of
a client to either set the presentation into an infinite cycle, or to specify anumber of iterations, means that a
given location within the coordinate space may be visited multiple times. It is useful in the specification to
distinguish between ‘visits’ to a given coordinate. To achieve this a type is defined that combines a position in
the space with a visit number,Location == C � N1
and we define a total order over this type.prec : Location $ Location8 c1; c2 : C ; n1;n2 : N �(c1;n1) prec (c2;n2), n1 < n2 _ (n1 = n2 ^ c1 < c2)
No invariant is given at this point to link the coordinates visited during traversal with the parameters that
determine traversal behaviour. Operations defined later in this object type can update these parameters, and it
simplifies the specification if the relationship between these variables is captured as part of a ‘framing’ schema
that is then used to define the effect of such operations. Hererefpoints defines the synchronization elements
that have been associated with specific reference points;loopStart is the coordinate that progression will start
from initially. The locations that will be passed during traversal define thespan, while the relation� defines
the order in which locations will be traversed.refpoints : C 7! SyncElement [the sync. points]loopStart : C [the starting coord for loops]span : PLocation [locations to be traversed]� : Location $ Location [order of traversal]

domrefpoints � minimumPosition : : :maximumPositioncurrentDirection = forward ) loopStart = startPosition ^ (�) � preccurrentDirection = backward ) loopStart = endPosition ^ (�) � prec�1
Three further variables are used to define how progress is made during play, while moving
from processing one item of data in the coordination space to the next.stepping : B [true while moving from current to new]requiredPosition : Location [determined by progressPosition]point : Location [location in span while moving to requiredPosition]

The final state variable represents actions that may be associated with specific pairs of states,
with the semantics that the event handler component of the action will have its ‘callback’
method invoked with an event containing the name stored in action wheneverthe synchroniz-
able object makes a transition from the first state to the second.actions : SyncMode � SyncMode 7! ActionElement8 s ; t : SyncMode � (s ; t) 2 domactions ) s 6= t
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In the initialisation section below, the initial position is set to the ‘front’ of the media, and the
direction to forward. There are no refpoints, and the state of the objectis ‘STOPPED’.INITstartPosition = minimumPositionendPosition = maximumPositioncurrentPosition = loopStartloopCounter = 0repeatFlag = Falsenloop = 1refpoints = ?currentState = STOPPEDcurrentDirection = Forwardpoint = (loopStart ; loopCounter)

Technical Note: Object-Z officially does not accept parameters to the init description, since init is a state,
rather than an operation. This means that some initialisations in PREMO mayneed to
be modelled by explicit operations. More problematic from a specification viewpoint,
PREMO objects may also have aninitializeOnCopy operation. Copying is part of the
operational machinery involved in executing a program on a machine, and is not a con-
cept that can be described (easily) within a specification, without making details of the
underlying machine (for example, locations) explicit in the model.

From quite early on in the specification, we will be describing operations that can change the state of a syn-
chronizable object and therefore may cause the invocation of an action associated with the corresponding state
change. Rather than repeat the relevant fragment of specification text in every such operation, it is more con-
venient for us first to define aframing schemathat captures this common situation, and to then include this as
part of the description of those operations that might result in a change tocurrentState.�DoAction�(currentState)(currentState; currentState 0) 2 domactions)9 callbackValue? : Event �callbackValue?:eventName = actions(currentState; currentState 0):eventNamecallbackValue?:eventSource = selfactions(currentState; currentState 0):eventHandler :callback
The callback operation will be invoked with the event data given in the event structure.

The next part of the specification addresses the meaning of progression through the coordinate space. If the
object’s state is PLAY, the object carries out its internal processing in a loop of processing stages. Each stage
consists of the following steps:

1. The value of the current position is advanced using a (protected) operation progressPosition which
returns the required next position. Here ‘protected’ means that the operation is not accessible to clients
of the object via its interface, but can be modified within object types that inherit from this class.

2. This required position is compared with the current position and the end position, and the following
actions are performed:

(a) If there are reference points lying between the current position and thenewly calculated position,
then any associated synchronization actions are performed (in the order in which they are defined
on C). This means:
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� perform data presentation for any data identified by the points on the progression space be-
tween the current position or the previous reference point and the nextreference point or the
end point;� invoke the operation, whose description is stored in the reference point, on the object whose
reference is stored at the reference point, using the stored event as an argument;� if the Wait flag stored in the synchronization element belonging to the reference pointis set
to TRUE, the object’s state is changed to WAITING. This internal transition is the only means
by which the WAIT state can be entered. If the state of the object is set back, eventually, to
PLAY, the stage continues at this point.

(b) If the required position is smaller than the end position, then this becomes the local position and
the processing stage is finished.

The details of these steps will be explained through a series of operation definitions. Note however that two
aspects of this processing cycle are left unspecified in the definition ofSynchronizable:� what ‘data presentation’ means, and� the detailed semantics of theprogressPosition operation.

Both these aspects should be specified in the appropriate subtypes ofSynchronizable. The abstract specifica-
tion of a synchronizable object is such that no media specific semantics are directly attached to it. Subtypes,
realizing specific media control should, through specialization, attach semantics to the object through their
choice of the type of the internal coordinate system, through a properspecification of what data presentation
means, and through a proper specification of theprogressPosition operation. The latter defines what it re-
ally means to “advance” along the internal coordinate system. For example, this progression may mean the
generation of the next animation frame, decoding the next video frame, advance in time, etc.

The following operation calculates the next location required; it is expected that it will be
specialised by subclasses to address behaviour specific to various types of media. It is a
‘protected’ operation in the sense that clients of aSynchronizable object are not supposed
to invoke this. The point in the coordinate space that will be visited next is returned as an
output.progressPosition�(requiredPosition; stepping)newPosition! : CcurrentState = PLAY ^ : stepping9 count : N j count < nloop �(newPosition!; count) 2 spanrequiredPosition 0 = (newPosition!; count)stepping 0

Technical Note: Once a new location has been calculated, the object is placed into a ‘stepping’ mode. This is
not a mode behaviour described in the standard, but rather is an artefact of the specification
introduced to model the sequence of operations that are assumed to take place internally.
While it could be argued that such detail is better captured in a process oriented language,
a better alternative (in principle) would be to find a more declarative meansof specifying
the behaviour of the object, perhaps through invariants over behaviours.

The technical point above raises an important issue about PREMO, which has implications for other standards
and systems, for example VRML [17]. In developing a standard, particularly in an area where performance is
a non-trivial concern, there may be implicit assumptions about the execution model that will be used to realise
the system. In the case of PREMO for example, the specification ofprogressPosition given above, and the
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semantics of the internalstepping mode that will be presented shortly, involve a level of operational detail
that normally one would associate more with a design or implementation. The problem is that a more abstract
description of the intended behaviour may be rather more difficult to understand; state machines are after all a
well understood engineering concept, a fact that has been borne out by the experience of others in designing
languages to document requirements and specifications [18].

We return to the semantics of a synchronizable object instepping mode. This is captured through four con-
ceptual operations which represent the aspects of the processing cycle, and which are later composed into a
description of stepping behaviour.

The�step operation represent the selection of the next location in the span for which the
related data will be presented. Some of the locations between the current point and the new
point may be skipped. However, no location for which the underlying coordinate has a refer-
ence point can be skipped.
In the formal text, the functionsfst andsnd select the first and second components of a tuple
respectively.�step�(point ; span; loopCounter)stepping ^ point 6= requiredPositionpoint � point 0: requiredPosition � point 0

let skipped == floc : span j loc � point 0g �fst(j skipped j) \ domrefpoints = ?loopCounter 0 = loopCounter+ jsnd(point 0)� snd(point) jspan 0 = span n skipped
Technical Note: PREMO itself describes an ideal situation where the progression space may becontinuous.

The stepping mechanism introduced here has a discrete flavour. There is a correspondence
with the sampling and quantization processes that occur when continuous media are pro-
cessed by digital systems.

The�signal schema is a framing schema that describes the relationship between the loca-
tion of the current point in the coordination space and the synchronisation point, if any, that
is located at that coordinate. If a synchronisation point has been set, then an event is sig-
nalled to the appropriate event handler, and further, if the wait flag has beenset, the object
enters WAITING mode. If no synchronisation element is present, the stateof the object is
unchanged.�signal�(currentState)�DoAction

let coord == fst(point) �coord 2 domrefpoints) 0BBBB@ 9 callbackValue? : Event �callbackValue = refpoints(coord):syncEventrefpoints(coord):eventHandler :callbackrefpoints(coord):wait ) currentState 0 = WAITING: refpoints(coord):wait ) currentState 0 = currentState 1CCCCAcoord 62 domrefpoints) currentState 0 = currentState
The callback operation will be invoked with the event data given in the event structure.
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The “eventHandler ” object in the synchronization element (i.e., the object which has to be notified that the
synchronizable object has reached a reference point) can be any PREMO object that inherits from theCallback
object type. PREMO offers several different types of objects which fulfil this criterion, for example� so-called “controller” objects, which are essentially finite state machines;� event handler objects, which can dispatch events among several registered targets;� other synchronizable objects.

The next two parts of the behaviour description deal with terminationof stepping mode. This
will happen when:� the value ofpoint reachesrequiredPosition as established byprogressPosition, or� while inWAITING mode, the object undergoes aSTOP orPAUSE operation, or� the object completes playing.

The first two cases are described in�doneStepping , the latter in�donePlay .�doneStepping�(stepping ; currentPosition)point = requiredPosition ^ : stepping 0 ^ currentPosition 0 = fst(point)�donePlay�(stepping)stop [Defined on next page]span = ? ^ currentState 0 = STOPPED ^ : stepping 0
Each cycle of processing is then defined by the progression to a new position followed by
a sequence of step and signal operations. As a consequence of the moding induced by
the stepping flag, this processing is forced to continue until the required position has been
reached.�behaviour b= (�step ^ �signal)_ �doneStepping _ �donePlay

A number of operations are provided to move a synchronizable object fromone current state to another, and
to modify various attributes that define the behaviour in PLAY mode. Asa result of these operations the set
of points and the successor relation between points can change. Rather than include the relationships between
these parameters as a state invariant, a framing schema called�UpdateSpan defines the relationships as a
postcondition. By using this schema as an initial framework for operations that can affect playback parameters,
the postcondition of these operations will ensure that the state of the object is left in a state consistent with the
most recent settings.

The following framing schema defines the value of the specification variablespan that is used
to describe how progress occurs through the coordinate space of an object when the current
state of the object is ‘PLAY’. The schema captures a general invariant that will be required to
hold after certain other operations, defined below.
In general the play operation can involve making several iterations through the coordinate
space, and thus any coordinate may be visited a number of times. This is captured by the use
of theLocation type rather than the generic coordinate space parameterC to represent the
span.
An auxiliary function is defined to determine the target number of iterations based on the
value of the ‘repeatFlag’ and ‘nloop’ attributes. Note that, as the valueof the ‘loopCounter’
attribute represents the number of completed loops, its target value in the case that the repeat
flag is false is one less than the number of loops required.
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target : B � N ! N18 loops : N �target(true; loops) =1target(false; loops) = loops � 1
The span is updated to the set of all locations where the coordinate lies between the start and
end positions and the loop number is between zero and the target computed by the function
above,minus those locations that have already been visited. This restriction is necessary as
a span may need to be recomputed when a synchronizable object has been paused.�UpdateSpan�(span)span 0 = (startPosition : : endPosition) � (0::target(repeatFlag ;nloop))nfloc : Location j loc � (currentPosition; loopCounter)g

The operations that modify the main parameters of a synchronizable object are defined next. Some of these are
only applicable in certain ‘modes’, and therefore come with preconditions.

Technical Note: The notation used in this part of the specification for describing exceptions and error han-
dling is described in Appendix A.

The first pair of operations allow the object to be placed into the state ‘PLAY’ or ‘STOPPED’.
The former can only be achieved when the media object is stopped; if this condition is not
met, an error is raised. A media object can however be stopped when it is in any state.
Stopping an object causes its position and loop counter to be reset to theirinitial values, and
therefore requires ‘internal’ variables to be updated.play�(currentState)�DoAction�UpdateSpancurrentState 2 fPLAY ;STOPPEDg �! exc WrongStatecurrentState 0 = PLAY

WrongState�! currentState 0 = currentStatestop�(currentState; loopCounter ; currentPosition; stepping)�UpdateSpan�DoActioncurrentState 0 = STOPPEDloopCounter 0 = 0currentPosition 0 = loopStart: stepping 0
If the object is PAUSED or WAITING, then it can only react to a very restricted set of operation requests: the
attributes of the object may be retrieved (but not set) and the resume, pause or stop operations may be invoked,
which may result in a change in state. The difference between PAUSED and WAITING is that, in the latter
case, the object returns to the place where it had been suspended by aWait flag, whereas, in the former case,
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a complete new processing stage begins. The differentiation between these two states, i.e., the usage of the
Wait flag, is essential; this mechanism ensures an instantaneous control over the behaviour of the object at a
synchronization point. If the object could only be stopped by another object via a pause call, an unwanted race
condition could occur.pause�(currentState; stepping)�DoActioncurrentState 6= STOPPED ^ currentState 0 = PAUSED ^ : stepping 0_currentState = STOPPED ^ currentState 0 = currentStateresume�(currentState)�DoActioncurrentState 2 fPLAY ;PAUSED ;WAITINGg �! exc WrongStatecurrentState 0 = PLAY

WrongState�! currentState 0 = currentState
The remaining operations are relatively straightforward, and involve setting or retrieving the values of state
components. Again, some of these involve preconditions.

The ‘current state’ of an object can be inquired.getStatecurrentState! : SyncModecurrentState! = currentState
Both the start and end positions within an object can be set to new coordinates, provided that
the start position remains strictly less than the end position.setStartPosition�(startPosition)�UpdateSpanstartPosition? : CstartPosition? < endPosition �! exc WrongValuecurrentState = STOPPED �! exc WrongStatestartPosition 0 = startPosition?

WrongValue �! startPosition 0 = startPositionsetEndPosition�(endPosition)�UpdateSpanendPosition? : CendPosition? > startPosition �! exc WrongValuecurrentState = STOPPED �! exc WrongStateendPosition 0 = endPosition?
WrongValue �! endPosition 0 = endPosition

The current value of both the start and end positions can be inquired.
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getStartPositionstartPosition! : CstartPosition! = startPosition getEndPositionendPosition! : CendPosition! = endPosition
In addition to the progression caused in ‘PLAY’ state, the position within the coordinate
space can also be changed explicitly, using thejump operation. The Standard requires that
the object is in ‘PLAY’ or ‘WAITING’ state, and that the new position must be within the
bounds of the object.jump�(currentPosition)�UpdateSpannewPosition? : CcurrentState 2 fPAUSED ;STOPPEDg �! exc WrongStatenewPosition? 2 startPosition : : : endPosition �! exc WrongValuecurrentPosition 0 = newPosition?

WrongState_ WrongValue�! currentPosition 0 = currentPosition
At any time, the current position can be inquired.getPositioncurrentPosition! : CcurrentPosition! = currentPosition
Therepeat flag determines what will happen when the position reaches the end of the extent
defined by the start and end locators. If true, the position will be reset and playback continues.
The value of this flag is set and queried by the pair of operations given below.setRepeatFlag�(repeatFlag)�UpdateSpanr? : BcurrentState = STOPPED�! exc WrongStaterepeatFlag 0 = r?

getRepeatFlagrepeatFlag ! : BrepeatFlag ! = repeatFlag
A bounded number of repetitions can be requested by setting the ‘number ofloops’ variable
through the operation defined below left; the value of this variable can beenquired through
the operation on the right.setNumberOfLoops�UpdateSpan�(nloop)numberOfLoops? : NcurrentState = STOPPED�! exc WrongStatenloop0 = numberOfLoops?

getNumberOfLoopsnumberOfLoops ! : NloopCounter ! : NnumberOfLoops ! = nlooploopCounter ! = loopCounter
15



While in play mode, a loop counter keeps track of the number of loops that have been com-
pleted through the media object. This count can be reset to the number of loops specified bynloop.resetLoopCounter�(loopCounter)currentState = STOPPED �! exc WrongStateloopCounter 0 = nloop
The extreme bounds of a given media object can be discovered through thegetBounds oper-
ation given below.getBoundsminimumPosition! : CmaximumPosition! : CminimumPosition! = minimumPositionmaximumPosition! = maximumPosition

The remaining operations are those that manipulate the synchronizationelements, for example setting a new
one at a reference point or deleting an existing one. The first group of these set and delete individual points,
and allow enquiry about the set of points between two given coordinates.

A synchronization element can be set at a given coordinate within the extent of a media object.
This cannot be done while the object is in ‘PLAY’ state, and the specified coordinate must be
valid for that object, i.e. between the minimum and maximum bounds.setSyncElement�(refpoints)refpoint? : CsyncData? : SyncElementcurrentState 2 fPAUSED ;STOPPEDg �! exc WrongStaterefpoint? 2 minimumPosition : : :maximumPosition �! exc WrongValuerefpoints 0 = refpoints � frefpoint? 7! syncData?g

WrongState_ WrongValue �! refpoints 0 = refpoints
A synchronization element at a given coordinate can be deleted, by passing the coordinate
to thedeleteSyncElement operation. As before, this cannot be done while the object is in
‘PLAY’ state, and the specified coordinate must be valid for that object.deleteSyncElement�(refpoints)refpoint? : CcurrentState 2 fPAUSED ;STOPPEDg �! exc WrongStaterefpoint? 62 domrefpoints �! exc WrongValuerefpoints 0 = frefpoint?g �C refpoints

WrongState_ WrongValue �! refpoints 0 = refpoints
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The synchronization elements occurring between two specified coordinates can be obtained
through the operationgetSyncElements given below. The sequence of values returned does
not necessarily preserve the order of the points; instead, each value in thesequence is a pair
consisting of the synchronization element, plus the coordinate at whichit occurs.getSyncElementsrefpoint1? : Crefpoint2? : CsyncData! : seq(SyncElement � C )minimumPosition � refpoint1? � refpoint2? � maximumPosition�! exc WrongValue

let inrange == fs : SyncElement ; c : C j refpoint1? � c � refpoint2? ^s = refpoints(c)g �
ransyncData! = inrange ^ #syncData! = #inrange
WrongValue �! syncData! = hi

It is also possible to set and deleteperiodicsynchronization elements, in terms of a base coordinate plus offsets
from that base.

Periodic events are specified by two coordinates, one giving the time of the first event, the
other giving the time that should elapse between events (the periodicity). The common syn-
chronization element that should be invoked on each occurrence of an event is alsogiven as
an argument to the operation.setPeriodicSyncElement�(refpoints)startRefPoint? : Cperiodicity? : CsyncData? : SyncElementcurrentState 2 fPAUSED ;STOPPEDg �! exc WrongStatestartRefPoint? 2 minimumPosition : : :maximumPosition �! exc WrongValue

let points == fn : N � (startRefPoint? + n � periodicity?)g �refpoints 0 = refpoints � 0@ (minimumPosition : : :maximumPosition)Cfp : points � p 7! syncData?g 1A
WrongState_ WrongValue �! refpoints 0 = refpoints
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Technical comment: To describe the operation, we first construct the (infinite) set of all
the time points that are related by the start point and periodicity. Each point in this set is
mapped to the common sychronization element, and this mapping, restricted to the bounds
of the object’s coordinates, is written into the reference points. Any existing synchronization
point that happens to occur at the same time as a periodic event is thus replaced by the new
event.deletePeriodicSyncElement�(refpoints)startRefPoint? : Cperiodicity? : CcurrentState 2 fPAUSED ;STOPPEDg �! exc WrongStatestartRefPoint? 2 minimumPosition : : :maximumPosition �! exc WrongValue

let points == fn : N � (startRefPoint? + n � periodicity?)g �refpoints 0 = points �C refpoints
WrongState_ WrongValue �! refpoints 0 = refpoints

The next two operations set and remove actions that are to be invoked on transitions between states.

Technical Note: The handling of actions invoked by state changes is orthogonal to other aspects of the
synchronizable object type, and probably would be better defined in a separatesuper type
of synchronizable, both in the specification presented here, and in the Standard.setActionOnPair�(actions)stateOld? : SyncModestateNew? : SyncModeaction? : ActionElementstateOld? 2 SyncMode ^ stateNew? 2 SyncMode �! exc WrongStateactions 0 = actions � f(stateOld?; stateNew?) 7! action?g

WrongState�! actions 0 = actionsremoveActionOnPair�(actions)stateOld? : SyncModestateNew? : SyncModestateOld? 2 SyncMode ^ stateNew? 2 SyncMode �! exc WrongStateactions 0 = f(stateOld?; stateNew?)g �C actions
WrongState�! actions 0 = actions

The final operation clears all of the synchronization elements.clearSyncElements�(refpoints)currentState 2 fPAUSED ;STOPPEDg �! exc WrongStaterefpoints 0 = ?
WrongState_ WrongValue�! currentPosition 0 = currentPosition
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Before concluding this section, it is worth mentioning one further weakness in the specification which is a con-
sequence of the use of the ‘internal’stepping mode to define the meaning of progression. From a client’s view,
the progression of an object consists of atomic steps, and in particular anoperation request to an object should
only be received and processed outside of ‘stepping’ activities. In an implementation, progression through the
coordinate space would be achieved through the internal invocation of the progressPosition operation, and
other operation requests would either be blocked or buffered until that processing was accomplished. In other
words, the existence of thestepping mode should be invisible to the environment of an object. However,
in the formal specification, operations such as changing the current mode orsetting various attributes should
have: stepping as a precondition. Including this would result in a more cluttered specification, and may
be misleading to an implementor. In a sense, the approach taken to the specification has forced us to posit
a mechanism for explaining the concept of progression. However, it is the behaviour that emerges from this
mechanism, rather than its components, that is important. Finding a way of describing such behaviour without
introducing implementation details or bias into the specification appears to be a challenge. A more abstract
model perhaps based on traces or behaviours might be suitable, but it is unclear how well such an approach
would cope with the structural complexity of theSynchronizable object type, or how directly it would map to
the text of the Standard.

3 The ‘Clock’, and Related Object Types

The clock object type provides PREMO with an interface to whatever notion of time is supported by its en-
vironment. Specifically, the clock object type supports an operation,inquireTick , that returns the number of
ticks elapsed. This start of era is defined for all PREMO systems in the Standard. However, the accuracy and
units with which a particular PREMO implementation can describe the elasped duration since the start of era
will vary, and for this reason the clock object type provides two inquiry functions for determining the perfor-
mance of the local object. The clock object type assumes the existence of the following two non-object types,
one to measure elapsed ticks (realised for example as a 64-bit integer), andthe other, an enumerated type, to
define the unit represented by each clock tick, for example a year or micro-second.[Time][TimeUnit ]ClocktickUnit : TimeUnitaccuracyUnit : TimeUnitaccuracy : Time [read-only]ticks : Time�Tick�(ticks)ticks 0 > ticks inquireTickticks ! : Timeticks ! = ticks
Suppose that the output ofinquireTick isT , and ofinquireAccuracy isA. Suppose the start of era isE . Then
mathematically, the actual time in the world wheninquireTick is called will be betweenE + (T � f (A)=2)
andE +(T + f (A)=2), i.eE +T � f (A)=2, wheref (A) is a function which converts the accuracy value from
its own units to the units ofT .

Technical Note: The operation�Tick is intended to represent the progression of time by requiring that the
number of ticks after the operation occurs is larger than the number of ticksbefore. How
occurrences of the operation should be related to the notion of time in the environment of
PREMO is an open problem. Note that this operation is only defined in the specification,
and does not appear in the Standard, where the semantics of time are conveyed informally.
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A system clock is a clock for which theinquireTick operation returns the number of ticks elapsed since the
start of the PREMO era, which in the Standard is defined to be 00:00am, 1st January 1995, UTC.SysClockClock redef (inquireTick)inquireTickticks ! : TIMEticks ! = ticks
PREMO also provides an object type called aTimer , which intuitively behaves like a combination of a clock
and a state machine similar to that governing the modes of a synchronizable object. There are three timer states,
identified by distinct natural numbers:TRUNNING ;TSTOPPED ;TPAUSED : N#fTRUNNING ;TSTOPPED ;TPAUSEDg = 3
The specification of the timer object type appears below; in many ways it is quite similar to the Synchronizable
object type, raising a question of whether these two types should be derived from a common supertype in the
Standard.TimerClock redef (inquireTick ;�Tick)timerCurrentState : NinquireTickticks ! : Timeticks ! = ticks
Technical Note: The standard indicates that theinquireTick operation ofTimer redefines that ofClock ,

since the implementation of the former may be substantially different.However, in terms
of the abstract model, the operations are the same, and so the use of ‘redef’ is strictly
unnecessary.run�(timerCurrentState)timerCurrentState 2 fTRUNNING ;TSTOPPEDgtimerCurrentState 0 = TRUNNINGpause�(timerCurrentState)timerCurrentState 0 = TPAUSED stop�(timerCurrentState)timerCurrentState 0 = TSTOPPED
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resume�(timerCurrentState)timerCurrentState 2 fTRUNNING ;TPAUSEDgtimerCurrentState 0 = TRUNNINGreset�(ticks)ticks 0 = 0 �Tick�(ticks)timerCurrentState = TRUNNINGticks 0 > ticks
Note that the internal�Tick operation has been redefined to indicate that ticks should only be recorded when
an instance of the object type is inTRUNNING mode. The technical comment following theClock object
type still applies, however.

4 The ‘TimeSynchronizable’, and Related Object Types

A TimeSynchronizable object type is a synchronizable object type enriched with a timer interface and an
attribute calledspeed which relates progress through the coordinate space inherited fromSynchronizable with
the progression of time as measured by theTimer . In other words, speed defines the number of coordinate
space units that an instance of the object type will progress through inone tick.TimeSynchronizable [T ]Synchronizable [T ] redef (play ; stop; resume; pause)Timer redef (play ; stop; resume; pause)speed : C

Speed represents the number coordinate space units in C that are processed in PLAY
mode per unit tick.

The operations for moving aTimeSynchronizable object instance from one mode to another redefine the like-
named operations from the two inherited classes. In the new operations, the two machines state machines
are slaved, so that a change in mode at the outer level is realised by changingthe mode of both component
machines.run b= Timer ::run o9 Synchronizable ::runplay b= Timer ::play o9 Synchronizable ::playstop b= Timer ::stop o9 Synchronizable ::stopresume b= Timer ::resume o9 Synchronizable ::resumepause b= Timer ::pause o9 Synchronizable ::pause
The reset operation inherited fromTimer is extended to place a marker on the corresponding point of the
coordinate space. Some aspects of the marker concept are unclear, and therefore this part of the specification
is tentative. Since the value of themarker is persistent, it is introduced as a component of the internal state.
From the text, it seems likely that the initial value ofmarker is startPosition.marker : C Initmarker = startPosition
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reset�(marker)marker 0 = currentPosition
Two operations are defined for converting between values of time relative to the marker, and positions within
the coordinate space.timeToSpacepositionTime? : TimepositionSpace! : CpositionSpace! = marker + positionTime? � speedspaceToTimepositionSpace? : CpositionTime! : TimepositionTime! = (positionSpace? �marker)=speed
TheTimeSynchronizable object type overloads a number of operations inherited fromSynchronizable to
allow time values to be used as alternatives to positions within the coordinate space.

Technical Note: Object-Z, like many specification languages, does not allow such overloading, so the fol-
lowing block of specification text would be rejected by a type checker.jumpb= timeToSpace o9 Synchronizable :: jump [positionSpace!=refPoint?]setSyncElementb= timeToSpace o9 Synchronizable ::setSyncElement [positionSpace!=refPoint?]deleteSyncElementb= timeToSpace o9 Synchronizable ::deleteSyncElement [positionSpace!=refPoint?]setPeriodicSyncElementb= timeToSpace o9 Synchronizable ::setPeriodicSyncElement [positionSpace!=refPoint?]deletePeriodicSyncElementb= timeToSpace o9 Synchronizable ::setPeriodicSyncElement [positionSpace!=refPoint?]

The final part of this object type is a promoted variant ofgetSyncElements which uses values of typeTime
rather thanC to define the boundaries for obtaining the synchronization points.

Technical Note: The specification of this operation uses a framing schema to convert inputsof typeTime
into values of typeC . This can then be composed with thegetSyncElements operation
from theSynchronizable class, though the previous comment concerning overloading still
applies.�convertrefPoint1? : TimerefPoint2? : Timerp1! : Crp2! : Cself :timeToSpace[rp1!=positionSpace!]self :timeToSpace[rp2!=positionSpace!]
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getSyncElements b=�convert >> Synchronizable ::getSyncElements [rp1?=refPoint1?; rp2?=refPoint2?]
TheTimeLine object type extends theTimeSynchronizable object type with a constraint that each coordinate
represents one unit of time; in other words, the speed is fixed at ‘1’.TimeLineTimeSynchronizable [Time]speed = 1
The remaining time-related object type is calledTimeSlave, and allows progression of an instance through its
coordinate space to be related to that of a ‘master’ object of typeTimeSynchronizable.TimeSlave [C ]TimeSynchronizable [C ]master : TimeSynchronizablespeed : C

The value ofmaster is either a reference to anotherTimeSynchronizable object or theNULLObject . In the latter case, no synchronization with an external master is done. In
the former case, the value ofspeed is measured in terms of themaster object’s ticks.

A master-slave relationship allows the calculation of time discrepancies between the clocks of the two objects
involved. This requires the slave to have access to a function, calledmasterToSlave in the specification, that
maps ticks of the master clock into ticks of the slave clock. In the specification, this function is defined as a
state variable. Also defined in the state are a set of alignment thresholds,consisting of a mapping fromTime
toCallback object references. The meaning of these are, that when the difference between the internal time of
the slave, and the time of the master converted viamasterToSlave exceeds a particular threshold, thecallback
operation of the corresponding object is invoked.masterToSlave : Time1 ! Time1thresholds : seq(Time � Callback)
In the Standard, thereset operation is redefined to allow data for time discrepencies to be requested from the
master. This is not needed in the specification, since the definition of discrepancy assumes the existence of a
suitable conversion function, and operations in the specification are timeless.

The current alignment between the slave and master can be inquired using an operation calledinquireAlignment .
It is not clear how this operation should behave in the event that no master has been set. Callbacks for time
discrepencies can be set viasetSyncEventHandlers , and are cleared by providing an empty sequence as input.
From this, it is assumed that it is not possible to update the set of callbacks, other than by removing all and
asserting a new set.inquireAlignmentpositionSpace! : TimepositionSpace! = j ticks �masterToSlave(master :ticks) jsetSyncEventHandlers�(thresholds)syncEventHandlers? : seq(Time � Callback)thresholds 0 = syncEventHandlers?
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The remaining part of the specification is an extension to the�Tick operation that was introduced to model the
behaviour of time-related objects. It is unclear from the Standard exactly when time discrepencies are checked;
here it is assumed that the check takes place after each tick. It is also unclear whether,once callback objects
have been notified of a discrepancy, continued deviation should result in further notifications.�Tick

let dev == j ticks �masterToSlave(master :ticks) j �8 t : Time; c : Callback j (t ; c) 2 ranthresholds ^ dev > t �: 9 u : Time j u 2 dom ranthresholds ^ dev > u > t) 9 callbackValue? : Event jcallbackValue?:eventName = ‘OutofSync’callbackValue?:eventData = h‘Discrepency’7! devicallbackValue?:eventSource = self �c:callback
5 The ‘EventHandler’ Object Type

TheEventHandler object type provides basic support for allowing objects to register interest in particular
events, and for those objects to be notified, via the handler, when such events occur. Some preliminary defini-
tions are required. When an object registers interest in an event, the registration is given a uniqueEventId that
can be used subsequently to unregister interest. Also, a sequence of constraints on the key-value properties of
events can be provided as an additional filter. A constraint matching mode (AndOr ) determines whether all
constraints, or only some, must match for success. Rather than represent all the details of such constraints, we
make use of the abstraction provided by specification languages and simply indicate that there is a satisfaction
relationship (sat) between constraints and key-value pairs such as those that appear as event data.[EventId ] - Identifiers for event registration.[Constraint ] - The constraint description language.AndOr ::= And j Or - Constraint matching modesat : seq(Key �Value)$ Constraint
The EventHandler object type is an enhanced PREMO object that also inherits fromCallback to enable
instances ofEventHandler to be themselves the targets of event notification.EventHandlerEnhancedPREMOObjectCallback redef (callback)registered : F EventIdnotify : EventId 7! Callbackconstraints : EventId 7! seqConstraintmatchMode : EventId 7! AndOreventType : EventId 7! Stringregistered = domnotify = domconstraints = dommatchMode = domeventType

The (internal) state of an event handler consists of the set of event id’srepresenting registra-
tion, together with the information associated with each registration.This consists (in order)
of the object that registered (and should therefore be notified), the constraints on the event
data required to trigger notification, whether all or any constraints mustbe met, and the type
of event on which notification is to occur.

The operations of registering and unregistering interest in an event are quite straightforward.
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register�(registered ;notify ; constraints ;matchMode; eventType)eventType? : Stringconstraints? : seqConstraintfullConstraintMatchMode? : AndOrobjectRef ? : Callbackid ! : EventIdid ! 62 registeredregistered 0 = registered [ fid !geventType 0 = eventType � fid ! 7! eventType?gconstraints 0 = constraints � fid ! 7! constraints?gmatchMode 0 = matchMode � fid ! 7! fullConstraintMatchMode?gnotify 0 = notify � fid ! 7! objectRef ?gunregister�(registered ;notify ; constraints ;matchMode; eventType)id? : EventIdid? 2 registered �! exc InvalidEventIdregistered 0 = registered n fid?geventType 0 = fid?g �C eventTypeconstraints 0 = fid?g �C constraintsmatchMode 0 = fid?g �CmatchModenotify 0 = fid?g �C notify
InvalidEventId �! registered 0 = registered ^ eventType 0 = eventTypeconstraints 0 = constraints ^ matchMode 0 = matchModenotify 0 = notify

Dispatching an event to the event handler invokes the callback operation of all objects that have registered
interest in the event and for which the associated constraint is satisfied bythe event instance.dispatchEventnewEvent? : Event8 e : registered �eventName(e) = newEvent?:eventNamematchMode(e) = AND ) 8 c : ranconstraints(e) � newEvent?:eventData sat cmatchMode(e) = OR ) 9 c : ranconstraints(e) � newEvent?:eventData sat c)notify(e):callback [newEvent?=callbackValue?]
Technical Note: The universal quantifier in the predicate part of this operation effectivelysuggests that the

notifications are performed in parallel. In practice, notification may well be sequential, and
as a result of execution time and propagation delays (particularly for remote objects), race
conditions are a possibility. For example, a callback to one object may trigger processing
that sends an ‘unregister’ request back to the event handler for an object thathas not (yet)
been notified of the current event. It should also be noted that the description of this and
other operations in which an operation is invoked on some object reference relies critically
on the semantics of object identity developed recently for Object-Z.

The callback routine of an event handler is just the dispatch event operation, with an appropriate renaming of
the input variables.callback b= dispatchEvent [callbackValue?=newEvent?]
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6 The ‘SynchronizationPoint’ Object Type

A synchronization point is an event handler, specialised so that a set of objects can be associated with each
event name. Subclasses of this type can specialise the behaviour of event dispatching so that conditions of this
set are checked before the operation associated with the event is invoked. Onesuch specialization is defined
later in this section. For brevity, we introduce a type name to represent the key-value pairs that are used as the
data component of events:EventData == seq(Key �Value)
The base type for synchronization points is introduced below.SynchronizationPoint

A Synchronization point is a kind of event handler, but we redefine the dispatchEvent opera-
tion as the default behaviour - invoking the operation associated with the event - is no longer
legitimate.EventHandler redef (dispatchEvent)
The state of an object contains a register of source objects that are synchronizing via an event.
This variable relates ‘signals’, defined as the combination of an event name and event data,
with references to the objects that have registered as sources for this event. For example, ifen : String ; ed : EventData ando : objref , then(en; ed) 7! o 2 sources means that the
objecto has registered an interest on synchronizing on thoseen events that carryed data.events : F Eventsources : (String � EventData)$ EnhancedPREMOObject

domsources = fe : events � e:eventName � e:eventData
Initially, the registries of sources and events are empty.initialiseevents = ?

A new synchronization event can be defined by passing an event containing theevent name and data of interest
to a synchronization point. The name and data components of the event areused to identify the kind of event
being registered, while theeventSource field of the event represents an object that can notify the handler that
the event has occurred; notifications from unregistered sources are ignored. In the Standard, attempting to add
an event twice results in an exception being generated.addSyncEvent�(sources ; events)syncEvent? : EventsyncEvent? 62 events �! exc RepeatedEvent

let
� signal == (syncEvent?:eventName; syncEvent?:eventData)source == syncEvent?:eventSource ��events 0 = events [ fsyncEvent?gsources 0 = sources [ fsignal 7! sourceg

RepeatedEvent�! sources 0 = sources ^ events 0 = events
An event can be removed from the set of registered events; attempting to delete a non-existent
event raises an exception.
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deleteSyncPoint�(sources ; received ; events)syncEvent? : EventsyncEvent? 2 events �! exc UnknownEvent

let
� signal == (syncEvent?:eventName; syncEvent?:eventData)source == syncEvent?:eventSource ��events 0 = events n fsyncEvent?gsources 0 = sources n fsignal 7! sourceg

UnknownEvent�! sources 0 = sources ^ received 0 = received
The dispatch operation, at this point in the object type hierarchy, extends the corresponding operation inherited
from EventHandler by checking the validity of the input event, and raising an exception if this event has not
previously been registered.dispachEventnewEvent? : EventnewEvent? 2 events �! exc UnknownEvent

UnknownEvent�! received 0 = received
7 The ‘ANDSynchronizationPoint’ Object Type

A particular form of synchronization, representing a common need in multimedia applications, is defined by a
subtype ofSynchronizationPoint calledANDSynchronizationPoint . Instances of this object type wait until
all objects that have registered as event sources have signalled the event,before the object then invokes the
callback operation on objects that have registered interest in being notifiedon the event. The description of
this behaviour in the Standard is somewhat unclear, for example on therelationship between the registration
facilities defined inEventHandler and theaddSyncEvent operation inherited fromSynchronizationPoint .
To model the behaviour of this object type, the state is extended with avariable that records event notifications.ANDSynchronizationPointSynchronizationPoint redef (dispatchEvent)

The Standard indicates all of the operations fromSynchronizationPoint are redefined
in this object type. However, from a specification viewpoint, only thebehaviour of thedispatchEvent operation need be redefined explicitly; other operations can either be ex-
tended, or in the case ofaddSyncElement , inherited without any change.received : (String � EventData)$ EnhancedPREMOObjectreceived � sources
The invariant indicates that any notification of an event must correspond toan event that has
been registered.initialisereceived = ?

ThedeleteSyncEvent operation can remove an event from the set of registered events, and in thiscase any par-
tial notifications (i.e. cases where some, but not all, of the sources have notified the object of this event) must be
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cleared. Note that this operation extends the description ofdeleteSyncEvent from theSynchronizationPoint
object type.deleteSyncEvent�(received)syncEvent? : Event

let signal == (syncEvent?:eventName; syncEvent?:eventData) �received 0 = fsignalg �C received
The ‘dispatch event’ operation in this type checks whether the object that signalled the latest event completes
the set of objects that have registered interest in that event. If so, thereceived register is reset so that the objects
can again synchronize on the event, and thecallback action is invoked on objects that have registered interest
in this event, subject to the same filtering mechanism as described in the version of this operation defined inEventHandler . Note again that this aspect of the behaviour of this object type is not clear from the Standard.
If all required objects have not yet signalled the event, the latest event notification is added to thereceived
register. dispatchEvent�(received)newEvent? : EventnewEvent? 2 events �! exc UnknownEvent

let
� signal == (newEvent?:eventName;newEvent?:eventData)source == newEvent?:eventSource ��received(j fsignalg j) [ fsourceg = sources(j fsignalg j))received 0 = fsignalg �C receivedEventHandler ::dispatchEvent8 e : registered �eventName(e) = newEvent?:eventNamematchMode(e) = AND )8 c : ranconstraints(e) � newEvent?:eventData sat cmatchMode(e) = OR )9 c : ranconstraints(e) � newEvent?:eventData sat c)notify(e):callback [newEvent?=callbackValue?]received(j fsignalg j) [ source 6= sources(j fsignalg j))received 0 = received [ fsignal 7! sourceg

UnknownEvent�! received 0 = received
8 Conclusion

A substantial part of this document was written at the same time as the material that was entered into the Work-
ing Draft of the PREMO document. The result was that a number of issues, both minor and non-trivial, were
detected before they became embedded into a Standards document and therefore thesubject of formal com-
menting. In this way, the use of formal specification has been of significanthelp in supporting the development
of the PREMO Standard. It was fortunate in that at the time the WorkingDraft was produced, both the editor of
the relevant part of the PREMO document (PREMO Part 2) and the first authorof this paper were at the same
institution, and it was possible to develop both documents in parallel, with the two authors sitting in a room
and exchange comments directly. Following further meetings of the PREMORapporteur Group, the Time and
Synchronization aspects of PREMO underwent several changes, and the originalspecification became incon-
sistent with the base document. In preparing this paper, the two have been realigned, though in the process we
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have discovered a significant number of issues and questions concerning the technical content of PREMO that
will need to be resolved within the Rapporteur Group. In summary, thevalue of a document such as this is
twofold. First, it contains a precise statement of the expected behaviour of a portion of the PREMO standard.
Second, the process of writing the document has, we believe, contributedto improving the overall quality of
that Standard.

With respect to technical content of the specification, we have found that Object-Z provides a good starting
point for building a description of PREMO in a way that mirrors the structure of the ISO document. This is
important, since not all members of the Rapporteur Group are experts informal specification or Object-Z, and
the close mapping simplifies the task of explaining consequences and issues identified from the formal model
in terms of the material as presented in the normative document. The processof mapping the PREMO object
types into Object-Z classes is not however straightforward. In an earlier paper [5] we reported on issues related
to differences in the object models of PREMO and Object-Z. The concerns identified here are wide ranging,
but a general theme has been that the state-operation style of Object-Z can necessitate encoding aspects of
PREMO object type behaviour in a rather operational style. This is perhapsbest illustrated by the model of
internal progression within theSynchronizable object type.

The concerns raised in this paper are not criticisms of Object-Z. There is a tension in specification language
design between providing an expressive language while maintaining a simple underlying semantic model. Lan-
guages that attempt to handle all aspects of systems, for example concurrency, synchronisation, real time, and
error handling are likely to become difficult to understand and to use. We believe that progress in taming the
intellectual complexity of systems like PREMO is likely to come, not from new and more complex specifica-
tion logics, but from developing approaches that support the integration of partial specifications that capture
particular aspects of a system in an appropriate representation. A basis for relating these representations may
then be found by examining the underlying mathematical structures. Theidea of formal specification, is after
all, to utilise the simplicity, elegance and richness of mathematics to understand the behaviour of systems such
as PREMO. Specification languages are simply one means to this end.
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A Exception Handling in a Specification

The formal specifications of PREMO Object types published to date have notincluded explicit descriptions of
exceptions. The PREMO Standard does define an explicit model of exceptions, and indicates the circumstances
in which particular exceptions should be raised. A preliminary approach tomodelling exceptions within Object-
Z specifications appeared in an internal report by members of the PREMO Rapporteur Group [9]. The approach
taken in this paper is a development of that first attempt.

We introduce the following type to define the exception values that arediscussed in the formal specification.
The list given below is not complete, but it should be clear that it could be enumerated if required.Exception ::= Okay – Used in the specification to indicate no exceptionj WrongStatej WrongValuej EndPositionj : : : – to be completed
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A common problem with dealing with exceptions in any representation is that the details of exceptional cases,
and the corresponding actions, can easily obscure the normative behaviour of an operation. However, one of the
values of a formal specification is that it helps to identify possible causesfor failure, so it is highly desirable to
document both normal behaviour and the behaviour that results when an operation is invoked inappropriately.
To overcome the problem of detail, we introduce notation to hide someof the detail. For example, the full
specification ofsetSyncElement operation from the classSynchronizable appears below. What is of concern
here is the amount of material needed to describe the two exceptions.setSyncElement�(refpoints)refpoint? : CsyncData? : SyncElementexceptions ! : ExceptioncurrentState 2 fPAUSED ;STOPPEDgrefpoint? 2 minimumPosition : : :maximumPositionrefpoints 0 = refpoints � frefpoint? 7! syncData?gexceptions ! = Okay_currentState 62 fPAUSED ;STOPPEDg ^ exceptions ! = WrongState^ refpoints 0 = refpoints_refpoint? 62 minimumPosition : : :maximumPositionexceptions ! = WrongValue ^ refpoints 0 = refpoints
Another specification of the same operation is given below, this time using some conventions to structure the
description of exceptions and related behaviour.setSyncElement�(refpoints)refpoint? : CsyncData? : SyncElementcurrentState 2 fPAUSED ;STOPPEDg �! exc WrongStaterefpoint? 2 minimumPosition : : :maximumPosition �! exc WrongValuerefpoints 0 = refpoints � frefpoint? 7! syncData?g

WrongState_ WrongValue �! refpoints 0 = refpoints
The points to note are that:

1. Preconditions whose failure should raise an exception are gathered into a special section of the operation,
and each such condition is tagged by the name of the exception (e.g. ‘WrongState’) that should be raised if
that precondition is not satisfied when the operation is invoked.

2. We assume that all exceptions are returned through a variableexceptions ! of typeException, which is
implicitly declared in any operation that defines exceptions.

3. The ‘normal processing’ of an operation is written as usual, with thereturn of an ‘okay’ value throughexceptions ! being implicit.

4. A gap is used to separate the ‘normal’ behaviour of an operation from predicates that describe required
behaviour in exceptional cases. In this section of the operation, exception names are related to the
predicate that should hold in the operation if that exception is raised.
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