Specifying the PREMO Synchronization Objects

D.J. Duke!, D.A. Ducé’, I. Herman?, G. Faconti

!Dept of Computer Science, University of York, Heslington, York, YA UK

2Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

3Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 109883terdam, The Netherlands
4CNR - Instituto CNUCE, Via S.Maria 36, 56126 Pisa, Italy

Abstract

This paper describes the formal specification of object types for managmmgndia synchronisation and

control within PREMO, an emerging ISO/IEC standard for multimedi&teaps. Object-Z, an object-oriented
extension to the Z specification language, is used for this purpose. 8speets of PREMO are non-trivial

to express in Object-Z, and the paper outlines the reasons for chobsngpecific language, and sets out
recommendations for further research in the use of formal languages iaré@s The work reported here has
been carried out by members of the ISO/SC24 committee involved in pregitiee PREMO standard, and has
been informed by a number of workshops sponsored by the ERCIM Cem@uaphics Network.

1 Introduction

Maintaining the presentation of a continuous media data stream at aentiffrate and quality for human
perception represents a significant challenge for multimedia systems,anonpose significant resource re-
quirements on the multimedia computing environment. Aside fragittherent constraint (sometimes referred
to as the problem of intra-media synchronization) a further difficattges from the fact that multimedia appli-
cations often wish to use several instances of continuous media datasattiegime: an animation sequence
with some accompanying sound, a video sequence with textual annotationghe difficulty here is that not
only should the individual media data be presented with an acceptabléygoatiwell-defined portions of the
various media content should appear, at least from a perceptual point ofinewtaneously: some parts of a
sound track belong to a specific animation sequence, subtitles should afithespecified frames in a video
sequence, etc. This problem is usually referred to as inter-media synchiomiZéte specific problems raised
by intra-media synchronization will not be addressed in this paperhiat follows, the term synchronization
is always used to refer to inter-media synchronization.

Synchronization has received significant attention in the multimediafitex, see, for example, the recent
book by Gibbs and Tsichritzis[11] or the article of Koegel Bufoidf#t further information and references on
the topic. An efficient implementation of inter-media synchronizationespnts a major load on a multimedia
system, and it is one of the major challenges in the field. What emergeshmeaxperience of recent years is
that, as is very often the case, one cannot pin down one specific place amdrgahtputing layers (from
hardware to the application) where the synchronization problem shewdlved. Instead, the requirements of
synchronization should be considered across all layers, i.e., in netearkalogy, operating systems, software
architectures, programming languages, etc. and user interfaces. This papdredeand formalises a model
for inter-media synchronization which is contained in the PREMO speciicdfi6], an ISO/IEC standard
under development for multimedia programming. Being part of an upegni8O/IEC standard, the model
represents a synthesis of the various synchronization techniques ysadtice.

PREMO standardization is still at a development stage, hence a shortewerfthe main goals of this Stan-
dard are given below. The remainder of the paper concentrates on the formétsgieci of these objects. The
formal notation used is Object-Z [3, 7, 8], an object-oriented extertsitime Z notation [20]. Use of Object-Z

to specify PREMO was one of the recommendations of a Special Rapporteuds Reg-ormal Description

Techniques in PREMO [19] prepared for ISO/IEC JTC1/SC24, and the gainfi of aspects of PREMO us-
ing the Z and Object-Z notations have appeared as [6] and [5]. One cditnilmi this paper is demonstrating
use of a convention for describing exceptions and error handling, aadsdet the approach are to be found



in Appendix A. An overview of Z and Object-Z is beyond the scope of thaper, and the reader is directed to
[12, 20] (2) and [3, 7, 8] (Object-Z) for details.

1.1 A short overview of PREMO

This section gives a very short overview of PREMO; for a more detailedgttation the interested reader
should consult [13] or [14].

Today'’s application developers needing to realize high-level multimegpdications which go beyond the
level of multimedia authoring do not have an easy task. There are oply pribgramming tools that allow an
application developer the freedom to create multimedia effects based on gemamal model than multimedia
document paradigms, and these tools are usually platform specific. In anyteasds currently no available
ISO/IEC standard encompassing these requirements. A standard in thishardd focus primarily on the
presentation aspects of multimedia, and much less on the coding, tramdfgpeymedia document aspects,
which are covered by a number of other ISO/IEC or de-facto standards @onge, MHEG[15]). It should
also concentrate on the programming tool side, and less on, e.g., thier{etia) document format side. These
are exactly the main concerns of PREMO.

It is quite natural that the initiative for a standardization activityiaig at such a specification came from the
group which has traditionally concentrated on presentation aspects oveaghé9years, namely ISO/IEC
JTC1/SC24 (Computer Graphics). Indeed, this is the 1ISO subcoeanithose charter has been the devel-
opment of computer graphics and image processing standards in the pasaraphical Kernel System was
the first standard for computer graphics published in this area; it whsv®dl by a series of complementary
standards, addressing different areas of computer graphics and image prpc®&shaps the best known of
the application program interface (API) standards are PHIGS, PHIGS PLUSP&n($ee, e.g., Arnold and
Duce[1] for an overview of all these Standards). The subcommittee hatunogd its attention to presentation
media in general as a way of augmenting traditional graphics applicatioms@itinuous media such as audio,
video, or still image facilities, in an integrated manner. The need fomageneration of standards for com-
puter graphics emerged in the past 4-5 years to answer the challenges raiseddnapieics techniques and
programming environments and it is extremely fortunate that theweprocess to develop this new generation
of presentation environments coincided with the emergence of multimedtanksequence, a synergistic effect
can be capitalized on.

The JTC1 SC24 subcommittee recognised the need to develop such amefdiandards. It also recognised
that any new presentation environment should include more generahmadit effects to encompass the needs
of various application areas. To this end, a project was started in SC24nfew astandard called PREMO
(Presentation Environment for Multimedia Objects) and is now a majgpinig activity in ISO/IEC JTC1
SC24 WG6. The subcommittee’s goal is to reach the stage of a Draft InterakStandard in 1997.

The major features of PREMO can be briefly summarised as follows.

¢ PREMO is a Presentation Environment. PREMO, as well as the SC24 standarialmve, aims at
providing a standard "programming” environmentin a very general serfgzaim is to offer a standard-
ized, hence conceptually portable, development environment that helpstoterportable multimedia
applications. PREMO concentrates on the application program interface t@fpation techniques”;
this is what primarily differentiates it from other multimedia stardization projects.

¢ PREMO is aimed at a Multimedia presentation, whereas earlier SC24 standacgstrated either on
synthetic graphics or image processing systems. Multimedia is amesidhere in a very general sense;
high-level virtual reality environments, which mix real-time 3D reridgtechniques with sound, video,
or even tactile feedback, and their effects, are, for example, within the s¢&FEMO.

¢ PREMO is Object Oriented. This means that, through standard objectaditathniques, a PREMO
implementation becomes extensible and configurable. Object-oriented teghiatdo provides a frame-
work to describe distribution in a consistent manner.

A precise object model constitutes a major part of PREMO. The object moidélystraditional, and is based
on the concepts of subtyping and inheritance. Itis also very pragmatie Bense that it includes, for efficiency



reasons, the notion of non-object (data) types, as is the case with @&nafridbject-oriented languages, such
as C++ or Java, and in contrast to ‘pure’ object-oriented models, such asralkallhe PREMO object model
originates from the object model developed by the OMG consortiumiétrildlited objects, but some aspects
of the OMG model have been adapted to the needs of PREMO. A strong emphalsisad in the model on
the ability of objects to be active. That is, PREMO uses objects that haveeptally, their own thread of
control. However, if every object contains a thread of control, objectsrhecheavyweight’ and unsuitable
for use as record-like structures. Having to develop a separate (njentpdata type for structures would be
unfortunate, since treating structures as objects bring benefits in ttmeofoinheritance, subtyping etc. The
PREMO object model reconciles the tension between the desire for active abjeébtsone hand, and efficient
structure objects on the other, by splitting the object type hierartioyseparate branches for ‘simple’ objects
that can be used efficiently as structures, and ‘enhanced’ objects that havewvh#iread of control. The top
level of the PREMO object type hierarchy is shown in Figure 1.

( PREMOODbject )
initialize

initializeOnCopy

destruct

inquireType

inquireTypeGraph
inquirelmmediateSupertypes

(SimplePREMOObjea a EnhancedPREMOObJecﬁ

k J defineProperty
undefineProperty
addValue

removeValue
inquireProperties
getProperty
getPairs
matchProperties

\_ P J

Figure 1: The top of the PREMO Object Type Hierarchy.

Enhanced PREMO objects can communicate with one another through messagbsough the operations
defined on the object types. Objects can become suspended either by waitingofweration invocation to
return, or by waiting on the arrival of an operation request. Consequenerations on objects serve as a
vehicle to synchronize various activities (note that this concept of objewthronization is not the same as
media synchronization although, of course, the concepts are related). &Wttetltoncurrent activity of active
objects is realized through separate hardware processors, throughutisiriover a network, or through some
multithreaded operating system service, is oblivious to PREMO and isdarad to be an implementation
dependency.

The emphasis on the activity of objects stems primarily from the neeslyfochronization in multimedia en-
vironments and forms the basis of the synchronization model describiisi paper. Using concurrency to
achieve synchronization in multimedia systems is not specific to PREMIEr models and systems have
taken a similar approach (see, for example, [4] and PREMO, whose task mvidea synthesis for standard-
ization, has obviously been influenced by these models.

2 Synchronizable Objects

As described above, the PREMO synchronization model is based on the facbjghatsan PREMO can be

active. Different continuous media (e.g., a video sequence and corresgaudind track) are modelled as
concurrent activities that may have to reach specific milestones at distincbasithly user definable synchro-
nization points. This is the event-based synchronization approacthyidrims the basic layer of synchroniza-
tion in PREMO. Although a large number of synchronization tasks anerdatice, related to synchronization



in time, the choice of an essentially "timeless” synchronization scheme assadifess greater flexibility.
While time-related synchronization schemes can be built on top of an emsatilsynchronization model, it is
sometimes necessary to support purely event-based synchronization teageeial effects required by some
application. Examples of how the various synchronization objects magdxean be found in [14].

In line with the object-oriented approach of PREMO, the synchronizatiodel defines abstract object types
that capture the essential features of synchronization. For the eventdyamduionization scheme two major
object types are defined:

e synchronizable objects, which form the supertypes of, e.g., variougrobgct types;

e synchronization points, which may be used to manage complex synchionipatterns among syn-
chronizable objects.

These objects are described in somewhat more detail below.

2.1 Supporting Synchronization in PREMO

Synchronizable objects in PREMO are autonomous objects, which havesamaiijirogression along an inter-
nal one dimensional coordinate space. This space can be:

e extended realR ), or
e extended intege?/.), or

e extended time (Timg);

where “extension” means the inclusion of positive and negative “igfinio the real and integer numbers,

respectively. (The symbol “C” is used in this section to denote either tamdgd real, an extended integer, or
extended time.) The obvious extension of the notions “greater thanglfsnthan”, etc., on these types allows
the behaviour of synchronizable objects to be defined more succirfétiye is used here as an abstract type,
with no commitment made either to a discrete, dense, continuous or disooms foundation. Subtypes of

synchronizable objects may add a semantic meaning to this coordinate spagrarple, media objects may

represent time, or video frame numbers along this space. Attributes that dieé extent of the progression

space can be set through operations defined on these objects.

| Technical Note:| The formal representation of these extended types within Object-Z is-drivaal, though
solvable, problem. For example, Z does not define a type for the realensidnd con-
structing a model of the reals within the type theory of Z is a compledertaking. Also,
the symbol &¢’ is overloaded in the definitions given above. As it happens, we do not need
to utilise specific properties of the real numbers, and it could be ardna¢é tspecification
of PREMO would benefit from a more abstract description tRanetc, for example by
the introduction of a single abstract type to cover the three cases medtabove. The
trade-off here would be the loss of direct contact between the definititreattandard and
its specification. The use of infinity, for example, is useful wittie PREMO standard in
describing media streams originating from ‘live’ sources such as miomogd where the
temporal extent of the stream is unbounded.

Reference points are points on the internal coordinate space of syrcdisnbbjects where synchroniza-
tion elements can be attached. Synchronization elements contain informatonewent instance (which is,
essentially, a structure containing the object reference of the sendeigu@eLevent type identity, and some
event-dependent data), a reference to a PREMO object, a reference to one @rtteop of this object, and,
finally, a boolean Wait flag. When a reference point is reached, the synchraniajelct makes a message
call to the object stored in the reference point, using the operation refeterdentify which operation it has

1The same is true actually in many specification languages.



to call, and using the event instance as an argument to the call. Finallgyisaspend itself if the Wait flag is
set to TRUE. Through this mechanism, the synchronizable object cantstepabjects, restart them, suspend
them, etc. Operations are defined on synchronizable objects to add and deleteceefavints, and to add and
delete synchronization elements associated with reference points.

A synchronizable object is a finite state machine that controls theigosihd progress through an ordered
collection of coordinates, some of which contaiynchronization elementbat can be used to organise the
behaviour within a system based on such objects. The intention islijeat dypes representing different kinds
of media (video, sound etc) will inherit from this class and specialiseetordinate system and state machine
in an appropriate way. For example, a video might use frame numbers afiraies. The synchronizable
object type defines operations for moving the machine between four difiei@ates:

SyncMode == N

| STOPPED, PLAY, PAUSED, WAITING : SyncMode
| STOPPED = 0 A PLAY =1 A PAUSED =2 A WAITING =3

|Technica| Note:| The data typeSyncMode might better be represented in Z as a disjoint union; the use of
explicit numerical tags is used to reflect the approach taken in the Standaedus€hof
natural numbers to represent modes allows later subtypes to extend tHergalas; the
cost is that operations that accept as input a natural number representinge dhavecto
check that this input describes a mode that is valid for objects of that type.

In more precise terms, a Synchronizable object type is defined in PREMCQuas#ype for all objects which
may be subject to synchronization. This object is defined to be a finite stathine. The possible states,
the state transitions, and the operations resulting in state i@rssiare shown in Figure 2. The initial state is
STOPPED. Note that nobservableoperation is defined for a transition into state WAITING; the only veay
Synchronizable object can go into the WAITING state is through an operatiernal to its processing cycle.

resume

resume
play

resume

stop
pause | STOPPED

PAUSED

Figure 2: The States and Transitions of Bynchronizabl®©bject Type.

The Synchronizable object type places no particular interpretation on thedes, except that certain oper-
ations can only be performed in certain modes. Apart from mode, the typera&es use of a notion of
direction, which defines the meaning of progress through the coordipate:

Direction ::= Forward | Backward
The positions within a synchronizable object at which some action neeadké place is marked by a synchro-

nization element. Synchronization is defined in terms of the PREMO evdrhsy$he basic unit of this is the
event structure, defined below.



— FEvent
Simple PREM O Object

eventName : String
eventData : seq Key x Value)
eventSource : EnhancedPREMO Object

| Technical Note:| The object typeFvent inherits only fromSimple PREMOObject; it is used as a structure
type to encapsulate information about events. It uses the follovataytgipes:

e String is a given type representing character strings;

e Key is a given type representing names that can be used as the first component of
key-value pairs, where th&alue component is a disjoint union over the non-object
data types of PREMO;

e FEnhancedPREMOObject is the root of the active object hierarchy, and thus the
source of an event can be any active PREMO object.

In the 1ISO documents, the type efentSource is Ref EnhancedPREMOObject, since

the standard is explicit about the use of object references. In Object-Bstamce of an
object type is implicitly a reference to an object of that type, i.e. referencepaateof

the semantic model underlying Object-Z, and are not mentioned explitithe text of a
specification.

A synchronization element contains a reference to an event handler, plustiteteat should be signalled to
that handler when the element is activated; thentHandler object type is described in Section 5. The third
component of the element is a boolean flag;t. When a synchronization object encounters an element with
this flag set to true, it enters pause mode immediately upon signalkrgytnt to the handler. This is necessary
to enable synchronization between multiple media objects. Here it maydmtiamt to ensure that the position
within the media does not advance once the event has been signalled, and béosessage delays, network
latency, or contention between objects, this control cannot be guaranteadltthe use of normal messages.

___SyncElement
Simple PREM O Object

eventHandler : Callback
syncFEvent : Event
waitFlag : B

| Technical Note:| Callback is the name of an object type that defines an operation calléidick that accepts

an inputcallback Value? of type Event. By inheriting from Callback, the interface of an
object type will contain theallback operation, and instances of the object type can then
be used as targets for event notification. The object typiglbackByName, a subtype

of Callback, is similar, except that theventName field of the event passed as input to
callback is taken to be the name of an operation, and in processing the event thereceiv
invokes that operation on itself.

An action element, like a synchronization element, contains a referenc€idliack object, but in this case
only the name of an event is provided. The event data will be definedetmotiitext in which the action element
is used.

ActionElement
FSimplePREMOObject




eventHandler : Callback
eventName : String

2.2 The ‘Synchronizable’ Object Type

A specification of the synchronizable object type appears below. The gersdmepter C represents the
coordinate system restricted to be an extended integer, extended reaérmtexktime.

—Synchronizable [C :: Lo | Roo | TIMEo]
EnhancedPREMO Object redef (initialize, initialize OnCopy)
CallbackByName

The following declarations are read-only attributes, i.e. each comes withgitit operation
for getting its value, but the value can only be changed by the action offispgoérations in
the interface of the type.

currentDirection : Direction

loopCounter : N [number of loops completed]
currentState : SyncMode [playing, paused etc]
currentPosition : C

mazimumPosition : C

minimumPosition : C [fixed bounds of the span]

|Technica| Note:| The match between Object-Z access concepts and PREMO access concepts, for exam-

ple read-only, is not trivial. PREMO uses concepts of read-only ateghutad/write at-
tributes, and internal (protected) operations. The latter is derived irfioan the access
control facilities provided by C++ and Java [10]. Although Object-£sibave a concept

of (externally visible) attribute, there is no direct counterpart tdgxted operations. The
PREMO standard defines a number of conventions for ‘decorating’ operatinasito in-

dicate the accessibility of the operation. These are not used in the spémwifiedthough

we do utilise the Z convention of naming an operation schéifiaf .S is not a final oper-

ation but a ‘frame’ that captures a common pattern of processing that wilkee as the

basis for defining subsequent operations.

The declarations in this fragment of the specification are readable and wragthbutes,
i.e. each comes with implicit operations for setting and getting its valle fiFst pair of
attributes identify the user-selectable subset of the coordinate s ée tih be processed or
presented.

startPosition : C
endPosition : C [user-definable boundary]

minimumPosition < startPosition
startPosition < stopPosition
stopPosition < maximumPosition

|Technica| Note:| Within the standard, setting the values of these attribute may causetiexsepThis is
difficult to document formally in Object-Z, as the set and get methods @ramexplicit
part of the text. This is a good example of one of the trade-offslird in specification, in
this case between explicitness and readability. It could be argued that spiesifgtatuld
prompt and assist a designer to be explicit about the behaviour ata@nsyand this in turn




requires being explicit about the components of the system that catettibbits behaviour.
The cost is that a model can quickly become cluttered with detail.

Two further read/write attributes are provided:

repeatFlag : B [should the presentation cycle?]
nloop : N [total number of loops required]

The remainder of the state contains variables introduced to suppopéb#isation of the intended behaviour
of this object type. They are not mentioned explicitly in the funciigoart of the Standard. The ability of
a client to either set the presentation into an infinite cycle, or to spedifynaber of iterations, means that a
given location within the coordinate space may be visited multiplesinmt is useful in the specification to
distinguish between ‘visits’ to a given coordinate. To achieve thjga is defined that combines a position in
the space with a visit number,

| Location == C x Ny
and we define a total order over this type.

_prec_: Location < Location

Ver,e0:05 ny,me:Ne
(e1,m) prec (ca,m2) & m < na V(n =na A cg < ¢2)

No invariant is given at this point to link the coordinates visitedinigitraversal with the parameters that
determine traversal behaviour. Operations defined later in this objezttip update these parameters, and it
simplifies the specification if the relationship between these variablestisredmas part of a ‘framing’ schema
that is then used to define the effect of such operations. Hgpeints defines the synchronization elements
that have been associated with specific reference pdinigStart is the coordinate that progression will start
from initially. The locations that will be passed during traversalmethespan, while the relation< defines
the order in which locations will be traversed.

refpoints : C + SyncElement [the sync. points]
loopStart : C [the starting coord for loops]
span : P Location [locations to be traversed]
_ =< _: Location <> Location [order of traversal]

domrefpoints C minimumPosition . .. maximumPosition
currentDirection = forward = loopStart = startPosition A (<) C prec

currentDirection = backward = loopStart = endPosition A (<) C prec™!

Three further variables are used to define how progress is made duringyblde moving
from processing one item of data in the coordination space to the next.

stepping : B [true while moving from current to new]
requiredPosition : Location [determined by progressPosition]
point : Location [location in span while moving to requiredPosition]

The final state variable represents actions that may be associated with spscsfinf gtates,
with the semantics that the event handler component of the action wil itsvcallback’
method invoked with an event containing the name stored in action whethev&ynchroniz-
able object makes a transition from the first state to the second.

actions : SyncMode x SyncMode -+ ActionElement
Vs, t: SyncMode o (s, t) € domactions = s # t




In the initialisation section below, the initial position is setlie tfront’ of the media, and the
direction to forward. There are no refpoints, and the state of the oisjé8TOPPED".

__INIT
startPosition = minimumPosition
endPosition = mazimumPosition

currentPosition = loopStart
loopCounter = 0

repeatFlag = False

nloop = 1

refpoints = &

currentState = STOPPED
currentDirection = Forward
point = (loopStart, loop Counter)

|Technica| Note:| Object-Z officially does not accept parameters to the init description, smicks ia state,
rather than an operation. This means that some initialisations in PREMOnee/ to
be modelled by explicit operations. More problematic from a specifinatiewpoint,
PREMO objects may also have amitializeOnCopy operation. Copying is part of the
operational machinery involved in executing a program on a machine, and & cun-
cept that can be described (easily) within a specification, without makingsefaihe
underlying machine (for example, locations) explicit in the model.

From quite early on in the specification, we will be describing operattbat can change the state of a syn-
chronizable object and therefore may cause the invocation of an action assodthtéteworresponding state
change. Rather than repeat the relevant fragment of specification text in evhrgseration, it is more con-
venient for us first to define flaming schemahat captures this common situation, and to then include this as
part of the description of those operations that might result in a @ghengurrentState.

_ ®DoAction
A(currentState)

(currentState, currentState') € domactions
=
3 callbackValue? : Event e
callbackValue?.eventName = actions(currentState, currentState’).eventName
callbackValue?.eventSource = self
actions(currentState, currentState').eventHandler.callback

The callback operation will be invoked with the event data given in tle@estructure.

The next part of the specification addresses the meaning of progressoghtthe coordinate space. If the
object’s state is PLAY, the object carries out its internal processinga@op of processing stages. Each stage
consists of the following steps:

1. The value of the current position is advanced using a (protected) mpegabgressPosition which
returns the required next position. Here ‘protected’ means that thetipeis not accessible to clients
of the object via its interface, but can be modified within object types timgrit from this class.

2. This required position is compared with the current position aedettd position, and the following
actions are performed:

(a) If there are reference points lying between the current position anukthly calculated position,
then any associated synchronization actions are performed (in the ordeicim tivhy are defined
on C). This means:



e perform data presentation for any data identified by the points on thgrgssion space be-
tween the current position or the previous reference point and thergefexence point or the
end point;

¢ invoke the operation, whose description is stored in the referencs, oi the object whose
reference is stored at the reference point, using the stored event as an @tggumen

o if the Wi t flag stored in the synchronization element belonging to the referenceipciet
to TRUE, the object’s state is changed to WAITING. This internal tiéorsis the only means
by which the WAIT state can be entered. If the state of the object is set baaktually, to
PLAY, the stage continues at this point.

(b) If the required position is smaller than the end position, théntiecomes the local position and
the processing stage is finished.

The details of these steps will be explained through a series of opeggimitions. Note however that two
aspects of this processing cycle are left unspecified in the definitiSgrafhronizable:

¢ what ‘data presentation’ means, and

¢ the detailed semantics of theogressPosition operation.

Both these aspects should be specified in the appropriate subtyfgs@fonizable. The abstract specifica-

tion of a synchronizable object is such that no media specific semanticsracdydattached to it. Subtypes,

realizing specific media control should, through specialization, attach siEsiam the object through their

choice of the type of the internal coordinate system, through a pspmmification of what data presentation
means, and through a proper specification of jiheressPosition operation. The latter defines what it re-
ally means to “advance” along the internal coordinate system. For exam@@rtdgression may mean the
generation of the next animation frame, decoding the next video frame, @eliratime, etc.

The following operation calculates the next location required; it iseetgd that it will be
specialised by subclasses to address behaviour specific to various typesliaf nit is a
‘protected’ operation in the sense that clients dfiymchronizable object are not supposed
to invoke this. The point in the coordinate space that will be egsitext is returned as an
output.

__progressPosition
A(requiredPosition, stepping)
newPosition! : C

currentState = PLAY A — stepping
3 count : N | count < nloop e
(newPosition!, count) € span
requiredPosition’ = (newPosition!, count)
stepping’

| Technical Note:| Once anew location has been calculated, the object is placed into a ‘steppuhg’ Wos is
not a mode behaviour described in the standard, but rather is an artefaetspfetcification
introduced to model the sequence of operations that are assumed to takenfeacally.
While it could be argued that such detail is better captured in a processauti@niguage,
a better alternative (in principle) would be to find a more declarative mebsigecifying
the behaviour of the object, perhaps through invariants over behaviou

The technical point above raises an important issue about PREMO, whichmpléssaitions for other standards
and systems, for example VRML [17]. In developing a standard, péatigun an area where performance is
a non-trivial concern, there may be implicit assumptions about the gmeauodel that will be used to realise
the system. In the case of PREMO for example, the specificatigmogfessPosition given above, and the

10



semantics of the internakepping mode that will be presented shortly, involve a level of operationalitet
that normally one would associate more with a design or implementakiom problem is that a more abstract
description of the intended behaviour may be rather more difficult tietstand; state machines are after all a
well understood engineering concept, a fact that has been borne out by #réeagp of others in designing
languages to document requirements and specifications [18].

We return to the semantics of a synchronizable objeatépping mode. This is captured through four con-
ceptual operations which represent the aspects of the processing cycle, ahdavehlater composed into a
description of stepping behaviour.

The ®step operation represent the selection of the next location in the span fahvthe
related data will be presented. Some of the locations between the currahapdithe new
point may be skipped. However, no location for which the underlyingdinate has a refer-
ence point can be skipped.

In the formal text, the functionst andsnd select the first and second components of a tuple
respectively.

_ ®bstep
A(point, span, loop Counter)

stepping A point # requiredPosition

point < point’

- requiredPosition < point’

let skipped == {loc : span | loc < point'} e

fst( skipped |) N domrefpoints = &

loop Counter' = loop Counter+ | snd(point') — snd(point) |
span’ = span \ skipped

Technical Note:| PREMO itself describes an ideal situation where the progression space roagtimeious.
The stepping mechanism introduced here has a discrete flavour. Theraisgpoadence
with the sampling and quantization processes that occur when continuoies anegro-
cessed by digital systems.

The ®signal schema is a framing schema that describes the relationship between the loca-
tion of the current point in the coordination space and the synchatorspoint, if any, that

is located at that coordinate. If a synchronisation point has been set, theemtrisesig-

nalled to the appropriate event handler, and further, if the wait flag hasdmstethe object
enters WAITING mode. If no synchronisation element is present, the statee object is
unchanged.

__ Psignal
A(currentState)
& DoAction

let coord == fst(point) e
coord € domrefpoints
3 callback Value? : Event o
callback Value = refpoints(coord).syncEvent
= refpoints(coord).eventHandler . callback
refpoints(coord).wait = currentState’ = WAITING
= refpoints(coord). wait = currentState’ = currentState
coord ¢ domrefpoints
= currentState’ = currentState

The callback operation will be invoked with the event data given in tle@estructure.

11



The “eventHandler” object in the synchronization element (i.e., the object which has to hieabthat the
synchronizable object has reached a reference point) can be any PREMO objecttit firdim theCallback
object type. PREMO offers several different types of objects which full¢hiterion, for example

¢ so-called “controller” objects, which are essentially finite state machines;
¢ event handler objects, which can dispatch events among several registeetst targ

¢ other synchronizable objects.
The next two parts of the behaviour description deal with terminatfatepping mode. This
will happen when:
¢ the value ofpoint reachesequiredPosition as established byrogressPosition, or
¢ while in WAITING mode, the object undergoesSa@OP or PAUSE operation, or
¢ the object completes playing.
The first two cases are describediidoneStepping, the latter in® donePlay.

— ®doneStepping
A(stepping, currentPosition)

point = requiredPosition N\ — stepping’ A currentPosition’ = fst(point)

__®donePlay
A(stepping)
stop [Defined on next page]

span = & N currentState’ = STOPPED A — stepping’

Each cycle of processing is then defined by the progression to a neviopdsiiowed by
a sequence of step and signal operations. As a consequence of the modiogdirny
the stepping flag, this processing is forced to continue until the required pashias been
reached.

S behaviour = (Pstep N\ Psignal) V ®doneStepping V ® donePlay

A number of operations are provided to move a synchronizable objectdrancturrent state to another, and
to modify various attributes that define the behaviour in PLAY mode.aAssult of these operations the set
of points and the successor relation between points can change. Rather thda thelvelationships between

these parameters as a state invariant, a framing schema delledateSpan defines the relationships as a
postcondition. By using this schema as an initial framework for ofmerathat can affect playback parameters,
the postcondition of these operations will ensure that the stateeddliject is left in a state consistent with the
most recent settings.

The following framing schema defines the value of the specification varigbh that is used
to describe how progress occurs through the coordinate space of an obgtthve current
state of the object is ‘PLAY’. The schema captures a general invariant tHateakéquired to
hold after certain other operations, defined below.

In general the play operation can involve making several iterations thrtheycoordinate
space, and thus any coordinate may be visited a number of times. This isechipyuithe use
of the Location type rather than the generic coordinate space paranieterrepresent the
span.

An auxiliary function is defined to determine the target number of itematizased on the
value of the ‘repeatFlag’ and ‘nloop’ attributes. Note that, as the valtiee ‘loopCounter’
attribute represents the number of completed loops, its target valbe tate that the repeat
flag is false is one less than the number of loops required.

12



target : B x N — N,

Vloops : N e
target(true, loops) = oo
target(false, loops) = loops — 1

The span is updated to the set of all locations where the coordinate ligsdyethe start and
end positions and the loop number is between zero and the target computesifipdtion
above minus those locations that have already been visited. This restriction is negessar
a span may need to be recomputed when a synchronizable object has been paused.

__® UpdateSpan
A(span)

span' = (startPosition .. endPosition) x (0..target(repeatFlag, nloop))

\

{loc : Location | loc < (currentPosition, loopCounter)}

The operations that modify the main parameters of a synchronizable olgatgfimed next. Some of these are
only applicable in certain ‘modes’, and therefore come with preconditions

|Technica| Note:| The notation used in this part of the specification for describing exaeptind error han-

dling is described in Appendix A.

The first pair of operations allow the object to be placed into the stat&YPar ‘STOPPED'.
The former can only be achieved when the media object is stopped; if thilitioonis not
met, an error is raised. A media object can however be stopped when it is intaay s
Stopping an object causes its position and loop counter to be reset tnitiaiivalues, and
therefore requires ‘internal’ variables to be updated.

__play
A(currentState)
®DoAction
® UpdateSpan

currentState € {PLAY , STOPPED} — WrongState
currentState’ = PLAY

WrongState — currentState’ = currentState

__stop
A(currentState, loop Counter, currentPosition, stepping)
® UpdateSpan

®DoAction

currentState’ = STOPPED
loopCounter’ = 0
currentPosition' = loopStart
— stepping’

If the object is PAUSED or WAITING, then it can only react to a very restsicset of operation requests: the
attributes of the object may be retrieved (but not set) and the resume pesi®p operations may be invoked,
which may result in a change in state. The difference between PAUSED and W&IH that, in the latter

case, the object returns to the place where it had been suspendatfdiyflag, whereas, in the former case,

13



a complete new processing stage begins. The differentiation betweentihestates, i.e., the usage of the
Wait flag, is essential; this mechanism ensures an instantaneous control oveh#wiolir of the object at a
synchronization point. If the object could only be stopped by anothiecbvia a pause call, an unwanted race
condition could occur.

__pause
A(currentState, stepping)
®DoAction

currentState # STOPPED A currentState’
\Y
currentState = STOPPED A currentState’ = currentState

PAUSED A — stepping'

__resume
A(currentState)
® DoAction

currentState € {PLAY , PAUSED, WAITING} — WrongState
currentState’ = PLAY

WrongState —> currentState’ = currentState

The remaining operations are relatively straightforward, and invodgeng or retrieving the values of state
components. Again, some of these involve preconditions.

The ‘current state’ of an object can be inquired.

__getState
currentState! : SyncMode

currentState! = currentState

Both the start and end positions within an object can be set to new catedjprovided that
the start position remains strictly less than the end position.

__setStartPosition
A(startPosition)
® UpdateSpan
startPosition? : C
startPosition? < endPosition — [exc] Wrongvalue
currentState = STOPPED — [exc] Wrongstate
startPosition’ = startPosition?

WrongValue — startPosition’ = startPosition

__setFEndPosition
A(endPosition)
® UpdateSpan
endPosition? : C
endPosition? > startPosition — [exc] wrongvalue
currentState = STOPPED —> [exc] wrongState

endPosition' = endPosition?

Wrongvalue — endPosition’ = endPosition

The current value of both the start and end positions can be inquired.

14



_ getStartPosition _getEndPosition
startPosition! : C endPosition! : C

startPosition! = startPosition endPosition! = endPosition

In addition to the progression caused in ‘PLAY’ state, the positiothiwithe coordinate
space can also be changed explicitly, usingjthep operation. The Standard requires that
the object is in ‘PLAY’ or ‘WAITING’ state, and that the new positionust be within the
bounds of the object.

__jump
A(currentPosition)
® UpdateSpan
newPosition? : C

currentState € {PAUSED,STOPPED} — WrongState
newPosition? € startPosition . .. endPosition — WrongValue

currentPosition’ = newPosition?

WrongStateV WrongValue —3 currentPosition’ = currentPosition

At any time, the current position can be inquired.

__getPosition
currentPosition! : C

currentPosition! = currentPosition

Therepeat flag determines what will happen when the position reaches the end of thé exten
defined by the start and end locators. If true, the position will be resgplayback continues.
The value of this flag is set and queried by the pair of operations givewbelo

_setRepeatFlag _getRepeatFlag
A(repeatFlag) repeatFlag! : B

i)

T?U.'pIgatGSpan repeatFlag! = repeatFlag

currentState = STOPPED
— WrongState

repeatFlag' = r?

A bounded number of repetitions can be requested by setting the ‘numloepsf variable
through the operation defined below left; the value of this variable cambeired through
the operation on the right.

_setNumberOfLoops _ getNumberOfLoops
® UpdateSpan numberOfLoops! : N
A(nloop) loopCounter! : N

L ?:
numberOffoops? : N numberOfLoops! = nloop

currentState = STOPPED loop Counter! = loop Counter
— WrongState

nloop’ = numberOfLoops?

15



While in play mode, a loop counter keeps track of the number of loops et heen com-
pleted through the media object. This count can be reset to the numbepsfdpecified by

nloop.

__resetLoopCounter
A(loopCounter)
currentState = STOPPED — WrongState
loopCounter’ = nloop

The extreme bounds of a given media object can be discovered througét Bends oper-
ation given below.

__getBounds
minimumPosition! : C
mazimumPosition! : C

minimumPosition! = minimumPosition
mazimumPosition! = maximumPosition

The remaining operations are those that manipulate the synchroniediments, for example setting a new
one at a reference point or deleting an existing one. The first groupesétbet and delete individual points,
and allow enquiry about the set of points between two given coordinates.

A synchronization element can be set at a given coordinate within the extentexia object.
This cannot be done while the object s in ‘PLAY’ state, and the specifiedlatate must be
valid for that object, i.e. between the minimum and maximum bounds.

__setSyncElement
A(refpoints)
refpoint? : C
syncData? : SyncElement

currentState € {PAUSED,STOPPED} — WrongState
refpoint? € minimumPosition . .. mazimumPosition — WrongValue

refpoints’ = refpoints ® {refpoint? — syncData?}
WrongStateV Wrongvalue — refpoints’ = refpoints

A synchronization element at a given coordinate can be deleted, by passingtieate
to the deleteSyncElement operation. As before, this cannot be done while the object is in
‘PLAY’ state, and the specified coordinate must be valid for that object.

__deleteSyncElement
A(refpoints)
refpoint? : C
currentState € { PAUSED,STOPPED} —— [exc] wrongstate
refpoint? & domrefpoints —— [exc] Wrongvalue

refpoints’ = {refpoint?} <4 refpoints

WrongStateV Wrongvalue —  refpoints’ = refpoints

16



The synchronization elements occurring between two specified coordinates chtalmed
through the operatiopetSyncElements given below. The sequence of values returned does
not necessarily preserve the order of the points; instead, each valueseghence is a pair
consisting of the synchronization element, plus the coordinate at vittoclours.

__getSyncElements

refpoint, ? : C

refpointy? : C
syncData! : sed SyncElement x C)

minimumPosition < refpoint;? < refpoints? < mazimumPosition
— [Lexc] Wrongvalue

letinrange == {s : SyncElement; ¢ : C | refpointy? < ¢ < refpoints? A
s = refpoints(c)} o
ransyncData! = inrange A #syncData! = #inrange

Wrongvalue — syncData! = ()

Itis also possible to set and delgieriodicsynchronization elements, in terms of a base coordinate plus offsets
from that base.

Periodic events are specified by two coordinates, one giving the tinfeedirst event, the
other giving the time that should elapse between events (the perjgdithe common syn-
chronization element that should be invoked on each occurrence of an eventgsvalsas
an argument to the operation.

__setPeriodicSyncElement
A(refpoints)
startRefPoint? : C'
periodicity? : C
syncData? : SyncElement

currentState € {PAUSED,STOPPED} — WrongState
startRefPoint? € minimumPosition ... mazimumPosition — WrongValue

let points == {n : N e (startRefPoint? + n x periodicity?)} e
(minimumPosition . .. mazimumPosition)
refpoints’ = refpoints & N
{p : points e p — syncData?}

WrongStateV WrongValue — refpoints’ = refpoints

17



Technical comment: To describe the operation, we first construct the (infinite) set of all
the time points that are related by the start point and periodicity. Eaft in this set is
mapped to the common sychronization element, and this mapping, restodieel bounds
of the object’s coordinates, is written into the reference points. Atstiag synchronization

point that happens to occur at the same time as a periodic event is thasagply the new
event.

__deletePeriodicSyncElement
A(refpoints)
startRefPoint? : C'
periodicity? : C

currentState € {PAUSED,STOPPED} — WrongState
startRefPoint? € minimumPosition ... mazimumPosition — WrongValue

let points == {n : N e (startRefPoint? + n x periodicity?)} e
refpoints’ = points < refpoints

WrongStateV WrongValue — refpoints’ = refpoints

The next two operations set and remove actions that are to be invokemhsitibns between states.

|Technica| Note:| The handling of actions invoked by state changes is orthogonal to othectasof the
synchronizable object type, and probably would be better defined in a sepapatetype
of synchronizable, both in the specification presented here, and in the Standar

__setActionOnPair
A(actions)
stateOld? : SyncMode
stateNew? : SyncMode
action? : ActionElement

stateOld? € SyncMode A stateNew? € SyncMode — [exc] WrongsState

actions’ = actions @ {(stateOld?, stateNew?) — action?}

WrongState — actions’ = actions

__removeActionOnPair
A(actions)

stateOld? : SyncMode
stateNew? : SyncMode

stateOld? € SyncMode A stateNew? € SyncMode — [exc] wrongsState

actions’ = {(stateOld?, stateNew?)} < actions

WrongState — actions’ = actions

The final operation clears all of the synchronization elements.

__clearSyncElements
A(refpoints)
currentState € {PAUSED,STOPPED} — WrongState

refpoints’ = @&

WrongStateV WrongValue —3 currentPosition’ = currentPosition

18



Before concluding this section, it is worth mentioning one furtheatness in the specification which is a con-
sequence of the use of the ‘internafdepping mode to define the meaning of progression. From a client’s view,
the progression of an object consists of atomic steps, and in particutgresation request to an object should
only be received and processed outside of ‘stepping’ activities. In areimgaitation, progression through the
coordinate space would be achieved through the internal invocatiore gfrtlyress Position operation, and
other operation requests would either be blocked or buffered until tbaepsing was accomplished. In other
words, the existence of thgepping mode should be invisible to the environment of an object. However,
in the formal specification, operations such as changing the current magdtiolg various attributes should
have— stepping as a precondition. Including this would result in a more cluttered fipation, and may

be misleading to an implementor. In a sense, the approach taken to the spenifieet forced us to posit

a mechanism for explaining the concept of progression. However,heibehaviour that emerges from this
mechanism, rather than its components, that is important. Finding afwkgsoribing such behaviour without
introducing implementation details or bias into the specification appedye & challenge. A more abstract
model perhaps based on traces or behaviours might be suitable, but dlésuhow well such an approach
would cope with the structural complexity of tSgnchronizable object type, or how directly it would map to
the text of the Standard.

3 The ‘Clock’, and Related Object Types

The clock object type provides PREMO with an interface to whatever nofidime is supported by its en-
vironment. Specifically, the clock object type supports an operatiopire Tick, that returns the number of
ticks elapsed. This start of era is defined for all PREMO systems in the @thndowever, the accuracy and
units with which a particular PREMO implementation can describe the elagpatiah since the start of era
will vary, and for this reason the clock object type provides two inguinctions for determining the perfor-
mance of the local object. The clock object type assumes the existence ofltlnérfg two non-object types,
one to measure elapsed ticks (realised for example as a 64-bit integetheaotther, an enumerated type, to
define the unit represented by each clock tick, for example a year or micro-second

[Time]
[ TimeUnit)
— Clock
tickUnit : TimeUnit
accuracyUnit : TimeUnit
accuracy : Time [read-only]
ticks : Time
_®Tick _inquireTick
A(ticks) ticks! : Time
ticks' > ticks ticks! = ticks

Suppose that the output dfquire Tick is T, and ofinquireAccuracy is A. Suppose the start of era#s Then
mathematically, the actual time in the world whemuire Tick is called will be betweet® + (T — f(A4)/2)
andE+ (T +f(A)/2),i.eE+ T+ f(A)/2, wheref(A) is a function which converts the accuracy value from
its own units to the units of .

|Technica| Note:| The operatior® T'ick is intended to represent the progression of time by requiring that the
number of ticks after the operation occurs is larger than the number ofliEkse. How
occurrences of the operation should be related to the notion of timeiarthironment of
PREMO is an open problem. Note that this operation is only defined inpiafication,
and does not appear in the Standard, where the semantics of time are confesradlly.

19



A system clock is a clock for which thawquire Tick operation returns the number of ticks elapsed since the
start of the PREMO era, which in the Standard is defined to be 00:00anarii&ry 1995, UTC.

__SysClock
Clock redef (inquire Tick)

__inquire Tick
ticks! : TIME

ticks! = ticks

PREMO also provides an object type called'aner, which intuitively behaves like a combination of a clock
and a state machine similar to that governing the modes of a synchran@tgbtt. There are three timer states,
identified by distinct natural numbers:

‘ TRUNNING, TSTOPPED, TPAUSED : N
‘ #{TRUNNING, TSTOPPED, TPAUSED} =3

The specification of the timer object type appears below; in many ways ittss sjmilar to the Synchronizable
object type, raising a question of whether these two types should beddrom a common supertype in the
Standard.

— Timer
Clock redef (inquire Tick, ® Tick)

| timerCurrentState : N

__inquire Tick
ticks! : Time

ticks! = ticks

Technical Note:| The standard indicates that theguire Tick operation of Timer redefines that oflock,
since the implementation of the former may be substantially diffeddotvever, in terms
of the abstract model, the operations are the same, and so the usalef Is strictly
unnecessary.

—run
A(timerCurrentState)

timerCurrentState € { TRUNNING, TSTOPPED}
timerCurrentState’ = TRUNNING

_pause _stop
A(timerCurrentState) A(timerCurrentState)
timerCurrentState’ = TPAUSED timerCurrentState’ = TSTOPPED

20



__resume
A(timerCurrentState)

timerCurrentState € { TRUNNING, TPAUSED}
timerCurrentState’ = TRUNNING

_reset _® Tick
A(ticks) A(ticks)
ticks' =0 timerCurrentState = TRUNNING
ticks' > ticks

Note that the internab Tick operation has been redefined to indicate that ticks should only be recorded when
an instance of the object type is IBRUNNING mode. The technical comment following tli&ock object
type still applies, however.

4 The ‘TimeSynchronizable’, and Related Object Types

A TimeSynchronizable object type is a synchronizable object type enriched with a timer interfadeaan
attribute calledpeed which relates progress through the coordinate space inheritedSyaahronizable with

the progression of time as measured by ffieer. In other words, speed defines the number of coordinate
space units that an instance of the object type will progress througaick.

— TimeSynchronizable [ T)

Synchronizable [ T] redef (play, stop, resume, pause)
Timer redef (play, stop, resume, pause)

speed : C

Speed represents the number coordinate space units in C that are processé&d in PL
mode per unit tick.

The operations for moving &imeSynchronizable object instance from one mode to another redefine the like-
named operations from the two inherited classes. In the new operatiensyd machines state machines
are slaved, so that a change in mode at the outer level is realised by chamgimgpde of both component
machines.

rUn = Timer ::run § Synchronizable :: run

play
stop

Timer :: play § Synchronizable :: play

Timer :: stop § Synchronizable :: stop

resume = Timer ::resume § Synchronizable :: resume

pause = Timer :: pause § Synchronizable :: pause

The reset operation inherited froniimer is extended to place a marker on the corresponding point of the
coordinate space. Some aspects of the marker concept are unclear, and therefma# tifithe specification

is tentative. Since the value of thearker is persistent, it is introduced as a component of the internal state.
From the text, it seems likely that the initial valuematirker is startPosition.

Init
marker : C limarker = startPosition

21



—_reset
A(marker)

marker’ = currentPosition

Two operations are defined for converting between values of time relatiee tmérker, and positions within
the coordinate space.

__timeToSpace
positionTime? : Time
positionSpace! : C

positionSpace! = marker + positionTime? X speed

__spaceToTime
positionSpace? : C
positionTime! : Time

positionTime! = (positionSpace? — marker)/ speed

The TimeSynchronizable object type overloads a number of operations inherited fiymchronizable to
allow time values to be used as alternatives to positions within thelowie space.

Technical Note:| Object-Z, like many specification languages, does not allow such overlgastirtge fol-
lowing block of specification text would be rejected by a type checker.

Jump
= timeToSpace § Synchronizable :: jump [positionSpace! | refPoint?)

setSyncElement
= timeToSpace § Synchronizable :: setSyncElement [positionSpace!/ refPoint?]

deleteSyncFElement
= timeToSpace 3 Synchronizable :: deleteSyncElement [positionSpace! | refPoint?]

setPeriodicSyncElement
= timeToSpace g Synchronizable :: setPeriodicSyncElement [positionSpace! [ refPoint?)

deletePeriodicSyncFElement
= timeToSpace § Synchronizable :: setPeriodicSyncElement [positionSpace! [ refPoint?)

The final part of this object type is a promoted varianyefSyncElements which uses values of typ&ime
rather thanC' to define the boundaries for obtaining the synchronization points.

|Technica| Note:| The specification of this operation uses a framing schema to convert ioptyise Time
into values of typeC. This can then be composed with theSyncElements operation
from the Synchronizable class, though the previous comment concerning overloading still

applies.

_ ®convert
refPoint1? : Time
refPoint2? : Time
rpll: C
rp2!: C

self .timeToSpace[rpl!/positionSpace!]
self .timeToSpace[rp2! [ positionSpace!]

22



getSyncElements =
® convert >> Synchronizable :: getSyncElements [rp1?/refPoint1?, rp2? /refPoint2?]

The TimeLine object type extends th€meSynchronizable object type with a constraint that each coordinate
represents one unit of time; in other words, the speed is fixed at ‘1’.

TimeLine
TimeSynchronizable [ Time)

speed = 1

The remaining time-related object type is call&dneSlave, and allows progression of an instance through its
coordinate space to be related to that of a ‘master’ object of HipeeSynchronizable.

—_ TimeSlave [C]
TimeSynchronizable [C)

master : TimeSynchronizable
speed : C

The value ofmaster is either a reference to anothé&timeSynchronizable object or the
NULLObject. In the latter case, no synchronization with an external master is done. In
the former case, the value gficed is measured in terms of theaster object’s ticks.

A master-slave relationship allows the calculation of time discrepaneiggen the clocks of the two objects
involved. This requires the slave to have access to a function, calietkr ToSlave in the specification, that
maps ticks of the master clock into ticks of the slave clock. In the spedificahis function is defined as a
state variable. Also defined in the state are a set of alignment threshofdssting of a mapping frorffime

to Callback object references. The meaning of these are, that when the difference betweeartia trme of
the slave, and the time of the master convertedwiater ToSlave exceeds a particular threshold, thélback
operation of the corresponding object is invoked.

masterToSlave : Times, — Times
thresholds : sed Time x Callback)

In the Standard, theeset operation is redefined to allow data for time discrepencies to be requestedteo
master. This is not needed in the specification, since the definition akgiancy assumes the existence of a
suitable conversion function, and operations in the specification aedetas

The currentalignment between the slave and master can be inquired usirgratiapcallednguire Alignment.

It is not clear how this operation should behave in the event that ncemiaas been set. Callbacks for time
discrepencies can be set vi@&SyncEventHandlers, and are cleared by providing an empty sequence as input.
From this, it is assumed that it is not possible to update the set lbfack, other than by removing all and
asserting a new set.

__inquire Alignment
positionSpace! : Time

positionSpace! = | ticks — masterToSlave(master.ticks) |
__setSyncFEventHandlers
A(thresholds)

syncEventHandlers? : sed Time x Callback)

thresholds' = syncFEventHandlers?

23



The remaining part of the specification is an extension tabtiiéck operation that was introduced to model the
behaviour of time-related objects. It is unclear from the Standard exah#ywme discrepencies are checked;
here it is assumed that the check takes place after each tick. It is also unclear wbratkarallback objects
have been notified of a discrepancy, continued deviation should redulther notifications.

— @ Tick
let dev == |ticks — masterToSlave(master.ticks)| o
Yt : Time; c: Callback | (t,c) € ranthresholds N dev >t e
= Ju: Time | u € domranthresholds A dev > u >t
= 3 callbackValue? : Event |
callback Value?.eventName = ‘OutofSync’
callbackValue?.eventData = (‘Discrepency’— dev)
callbackValue?.eventSource = self o
c.callback

5 The ‘EventHandler’ Object Type

The EventHandler object type provides basic support for allowing objects to registerést in particular
events, and for those objects to be notified, via the handler, when gantseccur. Some preliminary defini-
tions are required. When an object registers interest in an event, tiséragign is given a uniquéventld that
can be used subsequently to unregister interest. Also, a sequence cdictsisin the key-value properties of
events can be provided as an additional filter. A constraint matching mbeé(Jr) determines whether all
constraints, or only some, must match for success. Rather than represkatdstails of such constraints, we
make use of the abstraction provided by specification languages and sidjggte that there is a satisfaction
relationship §at) between constraints and key-value pairs such as those that appear as event data.

[Eventld)] - Identifiers for event registration.
[Constraint] - The constraint description language.
AndOr == And | Or - Constraint matching mode

_sat _: sedKey x Value) +» Constraint

The EventHandler object type is an enhanced PREMO object that also inherits ffitback to enable
instances oftventHandler to be themselves the targets of event natification.

__ FventHandler

EnhancedPREMO Object
Callback redef (callback)

registered : F Fventld

notify : Fventld + Callback
constraints : FEventld - seqConstraint
matchMode : Eventld +» AndOr

event Type : Eventld -+ String

registered = dommnotify = domconstraints = dommatchMode = domevent Type

The (internal) state of an event handler consists of the set of evemea'ssenting registra-
tion, together with the information associated with each registrafibis consists (in order)
of the object that registered (and should therefore be notified), thetredmts on the event
data required to trigger notification, whether all or any constraints imeishet, and the type
of event on which notification is to occur.

The operations of registering and unregistering interest in an evejuate straightforward.

24



__register
A(registered, notify, constraints, matchMode, event Type)
event Type? : String

constraints? : seqConstraint

fullConstraintMatchMode? : AndOr

objectRef? : Callback

id! : Eventld

id! & registered
registered’ = registered U {id!}
eventType' = eventType & {id! — eventType?}
constraints’ = constraints & {id! — constraints?}
matchMode' = matchMode @ {id! — fullConstraintMatchMode?}
notify’ = notify @ {id! — objectRef?}

__unregister
A(registered, notify, constraints, matchMode, event Type)
id? : Fventld

id? € registered — InvalidEventid

registered’ = registered \ {id?}

eventType' = {id?} <9 eventType

constraints’ = {id?} < constraints

matchMode' = {id?} < matchMode

notify’ = {id?} <9 notify

InvalidEventld — Tegistered’ = registered A eventType' = eventType
constraints' = constraints A\ matchMode' = matchMode
notify' = notify

Dispatching an event to the event handler invokes the callback operatiohaffj@tts that have registered
interest in the event and for which the associated constraint is satisfibe leyent instance.

__dispatchEvent
newBvent? . Event

Ve : registered o
eventName(e) = newEvent?.eventName
matchMode(e) = AND = Y ¢ : ranconstraints(e) o newEvent?.eventData sat ¢
matchMode(e) = OR = T c : ranconstraints(e) o newFvent?.eventData sat ¢
=
notify(e).callback [newEvent? [ callback Value?)

| Technical Note:| The universal quantifier in the predicate part of this operation effectsgdygests that the
notifications are performed in parallel. In practice, notification may welldggiential, and
as a result of execution time and propagation delays (particularly forteeaixjects), race
conditions are a possibility. For example, a callback to one object nggetrprocessing
that sends an ‘unregister’ request back to the event handler for an objebathabt (yet)
been notified of the current event. It should also be noted that the diémerg this and
other operations in which an operation is invoked on some object refererezagtically
on the semantics of object identity developed recently for Object-Z.

The callback routine of an event handler is just the dispatch event operadity an appropriate renaming of
the input variables.

callback = dispatchEvent [callback Value? / newEvent?)

25



6 The ‘SynchronizationPoint’ Object Type

A synchronization point is an event handler, specialised so that a seteiftslgian be associated with each
event name. Subclasses of this type can specialise the behaviour of egattkling so that conditions of this
set are checked before the operation associated with the event is invokegu€bngpecialization is defined
later in this section. For brevity, we introduce a type name to reptéiserkey-value pairs that are used as the
data component of events:

EventData == sed Key x Value)
The base type for synchronization points is introduced below.

___SynchronizationPoint

A Synchronization point is a kind of event handler, but we redefine iggatchEvent opera-
tion as the default behaviour - invoking the operation associated hétlntent - is no longer
legitimate.

EventHandler redef (dispatchEvent)

The state of an object contains a register of source objects that are syizafgwia an event.
This variable relates ‘signals’, defined as the combination of an event nasinevant data,
with references to the objects that have registered as sources for this Egemixample, if
en : String, ed : FEventData ando : objref, then(en, ed) — o € sources means that the
objecto has registered an interest on synchronizing on thasevents that carrgd data.

events : F FEvent
sources : (String x FventData) <> EnhancedPREMOObject

domsources = {e : events ® e.eventName X e.eventData

Initially, the registries of sources and events are empty.

initialise

lievemfs =g

A new synchronization event can be defined by passing an event containixgtitehame and data of interest

to a synchronization point. The name and data components of the everseai¢o identify the kind of event
being registered, while theventSource field of the event represents an object that can notify the handler that
the event has occurred; notifications from unregistered sources aredyriorthe Standard, attempting to add
an event twice results in an exception being generated.

_addSyncEvent
A(sources, events)
syncFvent? : Event

syncBvent? ¢ events — RepeatedEvent
signal == (syncEvent?.eventName, syncEvent?.eventData)
source == syncEvent?.eventSource

L]
events' = events U {syncEvent?}
sources’ = sources U {signal — source}

RepeatedEvent—>  sources’ = sources A events' = events

An event can be removed from the set of registered events; attemptingte delon-existent
event raises an exception.

26



__deleteSyncPoint
A(sources, received, events)
syncEvent? . Event

syncFvent? € events — UnknownEvent
let signal == (syncEvent?.eventName, syncEvent?.eventData)
source == syncFEvent?.eventSource

[ ]
events' = events \ {syncEvent?}
sources’ = sources \ {signal — source}

UnknownEvent — sources’ = sources A received’ = received

The dispatch operation, at this point in the object type hierarchy, dstigre corresponding operation inherited
from EventHandler by checking the validity of the input event, and raising an exceptidmsfévent has not
previously been registered.

__dispachFvent
newBvent? . Event

newFEvent? € events — UnknownEvent

UnknownEvent — received’ = received

7 The ‘ANDSynchronizationPoint’ Object Type

A particular form of synchronization, representing a common need in mettia applications, is defined by a
subtype ofSynchronizationPoint called A NDSynchronizationPoint. Instances of this object type wait until
all objects that have registered as event sources have signalled thelmfens, the object then invokes the
callback operation on objects that have registered interest in being natifitlie event. The description of
this behaviour in the Standard is somewhat unclear, for example arltdteonship between the registration
facilities defined inFventHandler and theaddSyncFvent operation inherited fronSynchronizationPoint.

To model the behaviour of this object type, the state is extended wihiable that records event notifications.

___ANDSynchronizationPoint
SynchronizationPoint redef (dispatchEvent)

The Standard indicates all of the operations fréfywnchronizationPoint are redefined

in this object type. However, from a specification viewpoint, only behaviour of the
dispatchEvent operation need be redefined explicitly; other operations can either be ex-
tended, or in the case afldSyncFElement, inherited without any change.

received : (String x EventData) <> EnhancedPREMOObject

received C sources

The invariant indicates that any naotification of an event must correspaat évent that has
been registered.

initialise
Freceived =g

The deleteSyncFEvent operation can remove an event from the set of registered events, anddaghiany par-
tial notifications (i.e. cases where some, but not all, of the sources b#fiedthe object of this event) must be

27



cleared. Note that this operation extends the descriptiateleteSyncFEvent from the SynchronizationPoint
object type.

__deleteSyncEvent
A(received)
syncFvent? : Event

let signal == (syncEvent?.eventName, syncEvent?.eventData) e
received’ = {signal} < received

The ‘dispatch event’ operation in this type checks whether the objectitiralied the latest event completes
the set of objects that have registered interest in that event. If segdhieed register is reset so that the objects
can again synchronize on the event, anddfiéhack action is invoked on objects that have registered interest
in this event, subject to the same filtering mechanism as described in siervef this operation defined in
EventHandler. Note again that this aspect of the behaviour of this object type is eat fiom the Standard.

If all required objects have not yet signalled the event, the latest ewgification is added to theeceived
register.

__dispatchEvent
A(received)
newEvent? : Event
newFEvent? € events — UnknownEvent
signal == (newFEvent?.eventName, newEvent?.eventData)
source == newEvent?.eventSource

[ ]
received (| {signal} ) U {source} = sources( {signal} |) =
received’ = {signal} <4 received
FventHandler :: dispatchFvent
Y e : registered o
eventName(e) = newEvent?.eventName
matchMode(e) = AND =
Y ¢ : ranconstraints(e) o newFEvent?.eventData sat ¢
matchMode(e) = OR =
J ¢ : ranconstraints(e) o newEvent?.eventData sat ¢
=
notify(e).callback [newEvent? | callback Value?)
received | {signal} |) U source # sources( {signal} |) =
received’ = received U {signal — source}

UnknownEvent —% received’ = received

8 Conclusion

A substantial part of this document was written at the same time as theahttat was entered into the Work-
ing Draft of the PREMO document. The result was that a number of isso#dspiinor and non-trivial, were
detected before they became embedded into a Standards document and therefobgettieof formal com-
menting. In this way, the use of formal specification has been of signifiedptn supporting the development
of the PREMO Standard. It was fortunate in that at the time the WoilRnadt was produced, both the editor of
the relevant part of the PREMO document (PREMO Part 2) and the first anfttitus paper were at the same
institution, and it was possible to develop both documents in gralith the two authors sitting in a room
and exchange comments directly. Following further meetings of the PRRE{#porteur Group, the Time and
Synchronization aspects of PREMO underwent several changes, and the apgioification became incon-
sistent with the base document. In preparing this paper, the two legrerbaligned, though in the process we

28



have discovered a significant number of issues and questions concembegltinical content of PREMO that
will need to be resolved within the Rapporteur Group. In summaryy#hge of a document such as this is
twofold. First, it contains a precise statement of the expected behafiauportion of the PREMO standard.
Second, the process of writing the document has, we believe, contritautegbroving the overall quality of
that Standard.

With respect to technical content of the specification, we have found thac@bjprovides a good starting
point for building a description of PREMO in a way that mirrors theisture of the ISO document. This is
important, since not all members of the Rapporteur Group are expdamiral specification or Object-Z, and
the close mapping simplifies the task of explaining consequences aed idemtified from the formal model
in terms of the material as presented in the normative document. The pofcaapping the PREMO object
types into Object-Z classes is not however straightforward. In an eadpmar5] we reported on issues related
to differences in the object models of PREMO and Object-Z. The concernsfidértere are wide ranging,
but a general theme has been that the state-operation style of Object-Z cantatecessioding aspects of
PREMO object type behaviour in a rather operational style. This is pettegisilustrated by the model of
internal progression within th8ynchronizable object type.

The concerns raised in this paper are not criticisms of Object-Z. Thereeissioh in specification language
design between providing an expressive language while maintainingpdesiinderlying semantic model. Lan-
guages that attempt to handle all aspects of systems, for example concusyeratyonisation, real time, and
error handling are likely to become difficult to understand and to use. &lflevie that progress in taming the
intellectual complexity of systems like PREMO is likely to come, notrirnew and more complex specifica-
tion logics, but from developing approaches that support the iatiegr of partial specifications that capture
particular aspects of a system in an appropriate representation. A basiéatimg these representations may
then be found by examining the underlying mathematical structuresidélaeof formal specification, is after
all, to utilise the simplicity, elegance and richness of mathematicsderstand the behaviour of systems such
as PREMO. Specification languages are simply one means to this end.

Acknowledgements

The work presented in this paper was carried out under the auspices of tH¥EREnputer Graphics Net-
work, funded under the CEC Human Capital and Mobility Programme (@oh€HRX-CT93-0085). The
authors are grateful to Dr Mieke Massink for valuable comments on thk reported here.

References

[1] D.B. Arnold and D.A. DucelSO Standards for Computer Graphics: The First GeneratB®uatterworths,
1990.

[2] J.F. Koegel Buford. Architecture and issues for distributedtimgdia systems. IMultimedia Systems
ACM Press/Addison Wesley, 1994.

[3] D.A. Carrington, D.J. Duke, R.W. Duke, P. King, G.A. Rose, an®@ith. Object-Z: An object-oriented
extension to Z. In S. Vuong, editdfprmal Description Techniques (FORTE'8®orth Holland, 1990.

[4] R.B. Dannenberg, T. Neuendorffer, J. Newcomer, D. Rubine, and Desod. Tactus: Tolkit-level
support for synchronized interactive multimedMultimedia Systems Jounydl(2):77-86, 1993.

[5] D.A. Duce, D.J. Duke, P.J.W. ten Hagen, |. Herman, and G.J. Reyn#&loisnal methods in the devel-
opment of premoComputer Standards and Interfa¢dd (5-6):491-509, 1995. Special Issue on Formal
Methods and Standards.

[6] D.A. Duce, D.J. Duke, P.J.W. ten Hagen, and G.J. Reynolds. Premoniteh approach to a formal
definition. Computer Graphics Foruml3(3), 1994. Conference Issue: Proc. Eurographics’94, Oslo,
Norway.

29



[7] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specificatioguage: Version 1. Technical
Report 91-1, Software Verification Research Centre, University of Queehdlaal.

[8] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language adméat the description of
standardsComputer Standards and Interfacd3(5-6):511-533, 1995. Special Issue on Formal Methods
and Standards.

[9] D.J. Duke (editor). Time and synchronisation in PREMO: A forrsécification of the NNI proposal.
Technical Report OME-116, ISO/IEC JTC1 SC24/WG6, 1995. ftp:&fti.nl/pub/Premo.

[10] A. Freeman and D. IncéActive Java: Object-Oriented Programming for the World Wide Waiidison-
Wesley, 1996.

[11] S.J. Gibbs and D.C. Tsichritzisultimedia ProgrammingACM Press/Addison-Wesley, 1995.

[12] 1.J. Hayes.Specification Case StudieSeries in Computer Science. Prentice Hall International, second
edition, 1992.

[13] I. Herman, G.S. Carson, J. Davy, P.J.W. ten Hagen, D.A. Duce, MéWitt, K. Kansy, B.J. Lurvey,
R. Puk, G.J. Reynolds, and H. Stenzel. Premo: An ISO standard for a @&sergnvironment for
multimedia objects. In D. Ferrari, editdProceedings of the Second ACM International Conference on
Multimedia (MM’94) ACM Press, 1994.

[14] I. Herman, G.J. Reynolds, and J. Van Loo. PREMO: An emerging atdrfdr multimedia presentation.
IEEE Multimedia 1996. To appear.

[15] Geneva ISO Central Secretariat. Information processing systefiasmition technology, coding of
multimedia and hypermedia information (mheg). ISO/IEC 13522994.

[16] Geneva ISO Central Secretariat. Information processing systemgutengraphics, presentation envi-
ronment for multimedia objects (PREMO). ISO/IEC 14478, 1996:Hitww.cwi.nl/Premo/docs.html.

[17] Geneva ISO Central Secretariat. Information processing systemputengraphics, virtual reality mod-
elling language (VRML). ISO/IEC 14722, 1996.

[18] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Remeints specification for process
control systemslEEE Transactions on Software Engineeri@(9):684—707,1994.

[19] G.J. Reynolds, D.A. Duce, and D.J. Duke. Report of the ISOJEC1/SC24 special rapporteur group
on formal description techniques. Technical Report ISO/IEC JTC1/SQ24R| 1ISO, 1994.

[20] J.M. Spivey.The Z Notation: A Reference Manu@rentice Hall International, second edition, 1992.

A Exception Handling in a Specification

The formal specifications of PREMO Obiject types published to date haveatatied explicit descriptions of
exceptions. The PREMO Standard does define an explicit model of exceptimhisdicates the circumstances
in which particular exceptions should be raised. A preliminary approactottelling exceptions within Object-
Z specifications appeared in an internal report by members of the PREMO Rap@ndep [9]. The approach
taken in this paper is a development of that first attempt.

We introduce the following type to define the exception values thatliamissed in the formal specification.
The list given below is not complete, but it should be clear that it coaldiumerated if required.

Exception ::= Okay — Used in the specification to indicate no exception
‘ WrongState

‘ WrongValue

‘ EndPosition

|

— to be completed

30



A common problem with dealing with exceptions in any representatioratstie details of exceptional cases,
and the corresponding actions, can easily obscure the normative bet@haowoperation. However, one of the
values of a formal specification is that it helps to identify possible céaieséailure, so it is highly desirable to
document both normal behaviour and the behaviour that results wheregatiop is invoked inappropriately.
To overcome the problem of detail, we introduce notation to hide sointlee detail. For example, the full
specification ofsetSyncElement operation from the clasSynchronizable appears below. What is of concern
here is the amount of material needed to describe the two exceptions.

__setSyncElement
A(refpoints)
refpoint? : C
syncData? : SyncElement
exceptions! : Exception

currentState € {PAUSED,STOPPED}
refpoint? € minimumPosition . .. mazimumPosition
refpoints’ = refpoints ® {refpoint? — syncData?}
exceptions! = Okay
\Y
currentState ¢ {PAUSED,STOPPED} A exceptions! = WrongState
A refpoints’ = refpoints

V
refpoint? & minimumPosition . .. mazimumPosition
exceptions! = WrongValue A refpoints’ = refpoints

Another specification of the same operation is given below, this timegusime conventions to structure the
description of exceptions and related behaviour.

__setSyncElement
A(refpoints)
refpoint? : C
syncData? : SyncElement

currentState € {PAUSED,STOPPED} — WrongState
refpoint? € minimumPosition . .. mazimumPosition — WrongValue

refpoints’ = refpoints ® {refpoint? — syncData?}
WrongStateV Wrongvalue —  refpoints’ = refpoints

The points to note are that:

1. Preconditions whose failure should raise an exception are gatheveddpéecial section of the operation,
and each such condition is tagged by the name of the exceptionagstatd) that should be raised if
that precondition is not satisfied when the operation is invoked.

2. We assume that all exceptions are returned through a varatdgtions! of type Exception, which is
implicitly declared in any operation that defines exceptions.

3. The ‘normal processing’ of an operation is written as usual, withré¢hern of an ‘okay’ value through
exceptions! being implicit.

4. A gap is used to separate the ‘normal’ behaviour of an operation fredigates that describe required
behaviour in exceptional cases. In this section of the operation, exoepimes are related to the
predicate that should hold in the operation if that exception is raised.

31



