
ata

A Standard Model for Multimedia Synchronization: PREMO
Abstract. This paper describes an event–based Maintaining the presentation of a continuous media d

Synchronization Objects

Ivan Herman1, Nuno Correia2, David A. Duce3, David J. Duke4, Graham J. Reynolds5, James Van Loo6
1 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
2 Instituto de Engenharia de Sistemas e Computadores (INESC), 9, Alves Redol, 1000 Lisboa, Portugal
3 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
4 University of York, Heslington, York YO1 5DD, United Kingdom
5 Commonwealth Scientific and Industrial Research Organization (CSIRO), Division of Information Technology, GPO Box 664,

Canberra ACT 2601, Australia
6 SunSoft, MTV 10-228, 2550 Garcia Avenue, Mountain View, CA 94043-1100, United States of America
ion
and

e-
n-

t

se-
nce
ot
 ac-
e-
t of

to a
ith
su-

be
ni-
on.
he
by
]
fi-
e-
 the
ri-

 can-
ng
ro-
nts
i.e.,
ec-

olu-
ure
ted
n
o-
he
synchronization mechanism, which is at the core of the int
media synchronization in the upcoming standard f
Multimedia Presentation, PREMO. The synchronizatio
mechanism of PREMO is a powerful tool, based on a sm
number of concepts, and on cooperation among ac
objects, and represents a synthesis of various synchroniza
models described in the literature. This model can serve a
basis for the implementation of complex synchronizati
patterns in multimedia presentations, both purely eve
based, as well as time–based.

Key Words: PREMO, multimedia systems, active object
standards, multimedia synchronization, inter–med
synchronization

1 Introduction

1.1 Synchronization problems in multimedia

The term “multimedia” is frequently used, but rarely define
It is perhaps difficult to pin down the essence of multimed
since the term appears in very different contexts, includ
non–technical ones. It is not the purpose of this article to en
this terminological debate; however, one generally accep
and important characterization of multimedia systems, ap
cations, and programming environments, etc., is that th
managecontinuous mediadata. “This term refers to the tem
poral dimension of media, such as digital video and audio
that at the lowest level, the data are a sequence of sample
each with a time position. The timing constraints are enforc
during playback or capture when the data are being viewed
humans.”[19] In some cases, such as animation and synth
3D sound, the samples may result from (sometimes comp
internal calculations (synthesis) whereas, in other cases,
samples are available through some data capture process

Correspondence to: I. Herman

tion
vel-
.C)

e–mail: ivan@cwi.nl, nmc@inesc.pt, dad@inf.rl.ac.uk,
duke@minster.york.ac.uk, graham.reynolds@cbr.dit.csiro.au,
james.vanloo@sun.com
er–
or
n
all

tive
tion
s a

on
nt–

s,
ia

d.
ia

ing
ter
ted
pli-
ey

-
 in
s —
ed
 by
etic

lex)
 the
.

stream at a sufficient rate and quality for human percept
represents a significant challenge for multimedia systems,
may impose significant resource requirements on the multim
dia computing environment. Aside from this inherent co
straint (sometimes referred to as the problem ofintra–media
synchronization) a further difficulty arises from the fact tha
multimedia applications often wish to useseveral instances of
continuous media data at the same time: an animation
quence with some accompanying sound, a video seque
with textual annotations, etc. The difficulty here is that n
only should the individual media data be presented with an
ceptable quality, but well–defined portions of the various m
dia content should appear, at least from a perceptual poin
view, simultaneously: some parts of a sound track belong
specific animation sequence, subtitles should appear w
specified frames in a video sequence, etc. This problem is u
ally referred to asinter–mediasynchronization. The specific
problems raised by intra–media synchronization will not
addressed in this article; in what follows, the term synchro
zation is always used to refer to inter–media synchronizati

Synchronization has received significant attention in t
multimedia literature, see, for example, the recent book
Gibbs and Tsichritzis[8] or the article of Koegel Buford[19
for further information and references on the topic. An ef
cient implementation of inter–media synchronization repr
sents a major load on a multimedia system, and it is one of
major challenges in the field. What emerges from the expe
ence of recent years is that, as is very often the case, one
not pin down one specific place among all the computi
layers (from hardware to the application) where the synch
nization problem should be solved. Instead, the requireme
of synchronization should be considered across all layers,
in network technology, operating systems, software archit
tures, programming languages, etc. and user interfaces.

This article concentrates on one aspect of a complete s
tion, namely, on a conceptual model and software architect
aimed at inter–media synchronization. The object–orien
model is currently part of the PREMO specification[18], a
ISO/IEC standard under development for multimedia pr
gramming. Being part of an upcoming ISO/IEC standard, t
model represents a synthesis of the various synchroniza
techniques used in practice. It has also been inspired by de
opments carried out by some of the authors (I.H., G.J.R, N

Published in: Multimedia Systems, Vol. 6, 1998.

2

 a
Clock Synchronizable

TimeSynchronizable

TimeLine

SysClock Timer

TimeSlave Stream

SyncStream

Fig. 1. Type hierarchy of synchronization objects in PREMO. The various object types are further described in the paper.

Name Object type

Subtyping

Legend:

in the course of the MADE project[13], and by the specifica-
tion of the Multimedia System Services, as defined by the In-
ternational Multimedia Association[16,27]. A revised version

1.2 A short overview of PREMO

This section gives a very short overview of PREMO; for

sult

h–
of
nly
er
en-

ese
d
 no
nts.

ng,
red

ex-

a)
s of

cu-
of the Multimedia System Services is now an integral part of
the PREMO document, and the PREMO model can be viewed
as a superset of the so–called stream model defined in the IMA
document. However, the original ideas have been revised by a
number of independent experts before its incorporation as part
of the PREMO specification. The synchronization model pre-
sented below relies on advanced technologies in networking
and operating systems and an application making use of the
model may have to build a more abstract layer on top of this
basis, e.g., on some constraint–based systems or other forms
of reasoning techniques. Fig. 1 gives a schematic overview of
the various object types involved in the PREMO synchroniza-
tion approach; further specialization of these objects leads to
concrete media objects, such as video, audio, animated graph-
ics, etc. However, this paper does not go into the details of
these concrete media objects, and concentrates on the underly-
ing synchronization paradigms only.

PREMO standardization is still at a development stage,
hence a short overview of the main goals of this Standard are
given below in Sect. 1.2. The details of the PREMO synchro-
nization model are presented in Sects. 2, 3, and 4, with a short
example in Sect. 5. Sect. 6 compares the PREMO model with
some other synchronization mechanisms.

more detailed presentation the interested reader should con
[12] or [14]1.

Today’s application developers needing to realize hig
level multimedia applications which go beyond the level
multimedia authoring do not have an easy task. There are o
a few programming tools that allow an application develop
the freedom to create multimedia effects based on a more g
eral model than multimedia document paradigms, and th
tools are usually platform specific (e.g., QuickTime[26] use
as a programming interface). In any case, there is currently
available ISO/IEC standard encompassing these requireme
A standard in this area should focus primarily on thepresen-
tation aspects of multimedia, and much less on the codi
transfer, or hypermedia document aspects, which are cove
by a number of other ISO/IEC or de–facto standards (for
ample, MHEG[17]). It should also concentrate on thepro-
gramming tool side, and less on, e.g., the (multimedi
document format side. These are exactly the main concern
PREMO.

1 The reader may also refer to the current draft of the PREMO do
ment itself, which is publicly available. The World Wide Web site
“http://www.cwi.nl/Premo/ ” gives a good starting point to
navigate through and access all available documents.

3

It is quite natural that the initiative for a standardization ac- standard object–oriented techniques, a PREMO imple-
ct–
ibe

O.
n-
 in
 of

 ob-
trast
he
el-
me
ds of
bil-
cts
an
ugh
ome
re-
n-

 to
ect
 al-
con-
ate
, or
ob-
ion

ily
n-
re-
ve
to
 ap-
ose
us-

l is
ent
ding
ay
ser

n-
f

iza-
tivity aiming at such a specification came from the group
which has traditionally concentrated on presentation aspects
over the past 15 years, namely ISO/IEC JTC1/SC24 (Compu-
ter Graphics). Indeed, this is the ISO subcommittee whose
charter has been the development of computer graphics and
image processing standards in the past. The Graphical Kernel
System was the first standard for computer graphics published
in this area; it was followed by a series of complementary
standards, addressing different areas of computer graphics and
image processing. Perhaps the best known of these are PHIGS,
PHIGS PLUS, and IPS (see, e.g., Arnold and Duce[1] for an
overview of all these Standards). The subcommittee has now
turned its attention to presentation media in general as a way
of augmenting traditional graphics applications with continu-
ous media such as audio, video, or still image facilities, in an
integrated manner. The need for a new generation of standards
for computer graphics emerged in the past 4–5 years to answer
the challenges raised by new graphics techniques and pro-
gramming environments and it is extremely fortunate that the
review process to develop this new generation of presentation
environments coincided with the emergence of multimedia. In
consequence, a synergistic effect can be capitalized on.

The JTC1 SC24 subcommittee recognised the need to de-
velop such a new line of standards. It also recognised that any
new presentation environment should include more general
multimedia effects to encompass the needs of various applica-
tion areas. To this end, a project was started in SC24 for a new
standard called PREMO (PresentationEnvironment forMul-
timediaObjects) and is now a major ongoing activity in ISO/
IEC JTC1 SC24 WG6. The subcommittee’s goal is to reach
the stage of a Draft International Standard in 1997.

The major features of PREMO can be briefly summarised
as follows.

• PREMO is a Presentation Environment. PREMO, as well
as the SC24 standards cited above, aims at providing a
standard “programming” environment in a very general
sense. The aim is to offer a standardized, hence conceptu-
ally portable, development environment that helps to pro-
mote portable multimedia applications. PREMO
concentrates on the application program interface to
“presentation techniques”; this is what primarily differen-
tiates it from other multimedia standardization projects.

• PREMO is aimed at a Multimedia presentation,whereas
earlier SC24 standards concentrated either on synthetic
graphics or image processing systems. Multimedia is con-
sidered here in a very general sense; high–level virtual
reality environments, which mix real–time 3D rendering
techniques with sound, video, or even tactile feedback,
and their effects, are, for example, within the scope of
PREMO.

• PREMO is Object Oriented. This means that, through

mentation becomes extensible and configurable. Obje
oriented technology also provides a framework to descr
distribution in a consistent manner.

A precise object model constitutes a major part of PREM
The object model is fairly traditional, and is based on the co
cepts of subtyping and inheritance. It is also very pragmatic
the sense that it includes, for efficiency reasons, the notion
non–object (data) types, as is the case with a number of
ject–oriented languages, such as C++ or Java, and in con
to “pure” object–oriented models, such as SmallTalk. T
PREMO object model originates from the object model dev
oped by the OMG consortium for distributed objects, but so
aspects of the OMG model have been adapted to the nee
PREMO. A strong emphasis is placed in the model on the a
ity of objects to be active. This means that PREMO obje
have, conceptually, their own thread of control; objects c
communicate with one another through messages, i.e., thro
the operations defined on the object types. Objects can bec
suspended either by waiting for an operation invocation to
turn, or by waiting on the arrival of an operation request. Co
sequently, operations on objects serve as a vehicle
synchronize various activities (note that this concept of obj
synchronization is not the same as media synchronization
though, of course, the concepts are related). Whether the
current activity of active objects is realized through separ
hardware processors, through distribution over a network
through some multithreaded operating system service, is
livious to PREMO and is considered to be an implementat
dependency.

The emphasis on the activity of objects stems primar
from the need for synchronization in multimedia enviro
ments and forms the basis of the synchronization model p
sented in this paper. Using concurrency to achie
synchronization in multimedia systems is not specific
PREMO. Other models and systems have taken a similar
proach (see, for example, [5,8,13,21,24]) and PREMO, wh
task is to provide a synthesis for standardization, has obvio
ly been influenced by these models.

2 Event–based synchronization

As described above, the PREMO synchronization mode
based on the fact that objects in PREMO are active. Differ
continuous media (e.g., a video sequence and correspon
sound track) are modelled as concurrent activities that m
have to reach specific milestones at distinct and possibly u
definable synchronization points. This is theevent–based syn-
chronization approach, which forms the basic layer of sy
chronization in PREMO. Although a large number o
synchronization tasks are, in practice, related to synchron

4

ong
 rel-
 op-

e

Event Instance

Object reference

Synchronizable Object

Reference Point

Synchronization Element

Fig. 2. A Synchronizable object

Wait Flag

tion in time, the choice of an essentially “timeless” synchroni-
zation scheme as a basis offers greater flexibility. While time–
related synchronization schemes can be built on top of an
event–based synchronization model (see Sect. 3), it is some-
times necessary to support purely event–based synchroniza-

dia objects may represent time, or video frame numbers al
this space. Attributes of the progression, such as span (the
evant interval on this coordinate space), can be set through
erations defined on these objects.

Reference points are points on the internal coordinat
le-
is,
the
end-
 one

ble
fer-
p-

 an

-
em,

add
roni-

 be
ite
ions,
n in

con-

ro-

xt
tion to achieve special effects required by some application
(see, for example, the application described in Sect. 5).

In line with the object–oriented approach of PREMO, the
synchronization model defines abstract object types that cap-
ture the essential features of synchronization. For the event–
based synchronization scheme two major object types are de-
fined:

• synchronizable objects, which form the supertypes of,
e.g., various media object types;

• synchronization points, which may be used to manage
complex synchronization patterns among synchronizable
objects.

These objects are described in somewhat more detail below.

2.1 Synchronizable objects in PREMO

Synchronizable objects in PREMO are autonomous objects,
which have an internal progression along an internal one di-
mensional coordinate space. This space can be:

• extended real (ℜ∞), or

• extended integer (Z∞),

where “extension” means the inclusion of positive and nega-
tive “infinity” to the real and integer numbers, respectively.
(The symbol“C” is used in this section to denote either an ex-
tended real or an extended integer.) The obvious extension of
the notions “greater than”, “smaller than”, etc., on these types
allows the behaviour of synchronizable objects to be defined
more succinctly. Subtypes of synchronizable objects may add
a semantic meaning to this coordinate space. For example, me-

space of synchronizable objects wheresynchronization ele-
ments can be attached (see also Fig. 2). Synchronization e
ments contain information on an event instance (which
essentially, a structure containing the object reference of
sender, a unique event type identity, and some event–dep
ent data), a reference to a PREMO object, a reference to
of the operations of this object, and, finally, a booleanWait

flag. When a reference point is reached, the synchroniza
object makes a message call to the object stored in the re
ence point, using the operation reference to identify which o
eration it has to call, and using the event instance as
argument to the call. Finally, it may suspend itself if theWait

flag is set toTRUE. Through this mechanism, the synchroniz
able object can stop other objects, restart them, suspend th
etc. Operations are defined on synchronizable objects to
and delete reference points, and to add and delete synch
zation elements associated with reference points.

In more precise terms, aSynchronizable object type is
defined in PREMO as a supertype for all objects which may
subject to synchronization. This object is defined to be a fin
state machine. The possible states, the major state transit
and the operations resulting in state transitions, are show
Fig. 3. The initial state isSTOPPED. Note that no operation is
defined for a transition into stateWAITING; the only way a
Synchronizable object can go into theWAITING state is
through its internal processing cycle (see below).

If the object’s state isPLAY,the object carries out its inter-
nal processing in a loop of processing stages. Each stage
sists of the following steps:

1) The value of the current position is advanced using a (p
tected) operationprogressPosition (defined as part of
the object’s specification) which returns the required ne
position.

5

over
he
STOPPED

PLAY

PAUSED

play

pause

stop

resume

stop

WAITING

resume

stop

pause

Fig. 3. Synchronizable object state machine

2) This required position is compared with the current posi-
tion and the end position, and the following actions are
performed:

sential; this mechanism ensures an instantaneous control
the behaviour of the object at a synchronization point. If t
object could only be stopped by another object via apause
te
is

gin-
irec-

ec-

sub-

tics
dia
 the
di-
res-
the
-
m.
 the
nce

za-
er.
t it-
a-
o

i) If there are reference points lying between the current
position and the newly calculated position, then any
associated synchronization actions are performed (in
the order in which they are defined onC). This means:

- perform data presentation for any data identified by
the points on the progression space between the
current position or the previous reference point and
the next reference point or the end point;

- invoke the operation, whose description is stored in
the reference point, on the object whose reference
is stored at the reference point, using the stored
event as an argument;

- if the Wait flag stored in the synchronization ele-
ment belonging to the reference point is set to
TRUE, the object’s state is changed toWAITING. If
the state of the object is set back, eventually, to
PLAY, the stage continues at this point.

ii) If the required position is smaller than the end posi-
tion, then this becomes the local position and the
processing stage is finished.

If the object isPAUSED orWAITING, then it can only react to
a very restricted set of operation requests: the attributes of the
object may be retrieved (but not set) and theresume or stop

operations may be invoked, which may result in a change in
state. The difference betweenPAUSED andWAITING is that,
in the latter case, the object returns to the place where it had
been suspended by aWait flag, whereas, in the former case, a
complete new processing stage begins. The differentiation be-
tween these two states, i.e., the usage of theWait flag, is es-

call, an unwanted race condition could occur.
The progression of the object along its internal coordina

space happens within a (possibly infinite) interval of th
space, called thespan. Facilities are provided to modify the
span, to ensure a cyclic behaviour, i.e., to return to the be
ning of the span when the end is reached, to change the d
tion of the progression, etc.

Note that two aspects of this specification are left unsp
ified in the definition ofSynchronizable :

• what “data presentation” means, and

• the semantics of theprogressPosition operation.

Both these aspects should be specified in the appropriate
types ofSynchronizable . The abstract specification of a
synchronizable object is such that no media specific seman
are directly attached to it. Subtypes, realizing specific me
control should, through specialization, attach semantics to
object through their choice of the type of the internal coor
nate system, through a proper specification of what data p
entation means, and through a proper specification of
progressPosition operation. The latter defines what it re
ally means to “advance” along the internal coordinate syste
For example, this progression may mean the generation of
next animation frame, decoding the next video frame, adva
in time, etc.

The complete and detailed specification of a synchroni
ble object is too complex to be fully reproduced in this pap
The reader should refer to Part 2 of the PREMO documen
self[18] for further details; note that a more formal specific
tion of the object’s behaviour, using Object–Z[7], is als
available[6].

6

ect,
o
 a
video

audio

time linegraphics

“start audio”

“map graphics”
“start timer”

“unmap graphics”

Fig. 4. An example for synchronization

event handler

“dispatch”

The “target” object in the synchronization element (i.e.,
the object which has to be notified that the synchronizable ob-
ject has reached a reference point) can be any PREMO object,

2) As a result of the message received from the video obj
the audio object begins to play (in parallel with the vide
object). When it reaches its reference point, it sends
(the
me
on-

l, a
int
 is
the

the

-
yn-

ct
at-
ich
 ac-
free
er
provided some simple restrictions on the signature of the tar-
get operation are fulfilled. PREMO offers several different
types of objects which can reasonably be used as targets in a
synchronization scheme, e.g.,

• so–called “controller” objects, which are essentially finite
state machines;

• event handler objects, which can dispatch events among
several registered targets;

• other synchronizable objects.

These alternatives, with some more examples, will be elabo-
rated in further detail in Sect. 2.2.

Fig. 4 shows a very simple example using the synchroniza-
tion mechanism described above. The three media objects
(video, audio, and graphics) in the figure are subtypes of
Synchronizable , as is the time line object. They all add spe-
cific semantics to this supertype. Reference points and syn-
chronization points are set up for the objects; the name of the
operation referred to in synchronization elements are denoted
on the figure. The effective synchronization pattern is:

1) The video starts to play; when it reaches its reference
point, it sends a message to the audio object. The video
object then continues to progress.

message to both the graphics and the time line objects
role of the event handler object is to dispatch the sa
event among several targets). The audio object then c
tinues to progress.

3) The graphics appears on the screen and, in paralle
timer begins to tick. The timer has its own reference po
set to, e.g., 15 seconds; when this reference point
reached, the message “unmap graphics” is sent to
graphics media object, which unmaps the image from
screen.

Although this example is obviously a simplified one, it illus
trates the main mechanism at work when event–based s
chronization is used.

2.2 Synchronization points

The simplicity of the example in Fig. 4 is partly due to the fa
that there are only a few “interactions” among the particip
ing media objects. The video object starts up the audio, wh
starts up the graphics and the timer but, once the start up
tions have been performed, both the video and audio are
to continue their own activity independently from whatev
happens to the other objects.

7

ith
 the

ent
Fig. 5. Another example for synchronization using a synchronization point

video

“dispatch”

“resume”

“resume”

ANDSynchronizationPoint

audio

Clearly, most applications have more complex require-
ments; mechanisms for “feedback” and mutual synchroniza-
tion are also necessary. This kind of control is delegated in

Prospective recipients of events register themselves w
these event handler objects, placing a request based on
event type. The recipients are then notified by the ev
a-
l is
ice

ent
s at

ded
h

sub-
ire-
is
al
ject

t
nts,
the
re

, for
ad-
es-
n,
ty,
t of
are
is-
ir
PREMO to the objects which are the targets of the message in-
vocations at each reference point.

As mentioned earlier, the PREMO specification does not
impose any significant restriction on what this target object
may be. PREMO includes the specification of a number of
other objects, defined independently of the synchronization
mechanism, which are useful in combination with synchroni-
zation objects. These are:

• Controller Objects. A controller object is an autonomous
finite state machine (FSM). State transitions are triggered
by a special operation invoked by other objects. The
actions related to a specific state of a controller object
may cause messages to be sent to other PREMO objects,
including controller objects, permitting a hierarchy of
controllers to be defined. Subtypes of a controller can be
defined which either have a specific state transition pattern
coded into them or which allow the end user to freely pro-
gram the FSM (e.g., through some script language). Com-
plex synchronization patterns can be modelled through an
FSM, which then becomes the main focal point of a spe-
cific synchronization scheme.

• Event Handler Objects. These objects provide control
over event propagation. Events in PREMO are structures,
containing a name together with event data, including a
reference to the source of the event. The essential service
provided by event handlers is the separation between the
source of the events (e.g., a mouse, some external hard-
ware, or, in the case of synchronization, a synchronizable
object), and the recipient of these events. Sources broad-
cast events without having any knowledge of which
objects will eventually receive them; this is achieved by
forwarding the event instance to the event handler objects.

handler on the arrival of an event, together with inform
tion about the event source. This event handling mode
compatible with (and has drawn upon) the event serv
specification of OMG[23].

Fig. 4 already shows a typical, albeit simple use of an ev
handler: events are multiplexed to several event recipient
the same reference point of a synchronizable object.

PREMO also contains object types that have been ad
with the requirements of synchronization in mind (althoug
they could be used for other purposes, too). These are all
types of event handlers, abstracting some common requ
ments of synchronization. Note that further work in th
respect is still going on in the PREMO group and addition
object types may be added to the Standard. The current ob
types are:

• Synchronization Point.Event handler objects do no
impose any general constraints on the dispatched eve
i.e., all incoming events are automatically broadcast to
registered event recipients. Synchronization points a
special subtypes of event handlers, which can be used
example, to restrict the object instances which can bro
cast events. In other words, event handlers restrict the d
tination of events, synchronization points can, in additio
restrict the source. To achieve this additional functionali
synchronization points maintain a separate, internal se
events registered through special operations; events
dispatched if and only if they have been previously reg
tered in this set. (Events include information on the
sources.)

• AND Synchronization Point.A further specialization is
offered by the ANDSynchronizationPoint object

8

(defined as a subtype of a Synchronization Point) which3.1 Clock objects

-
n-

ject
le,

ro–
on,
ific
 se-
ra-
.

ts,

cy

-

ce

ra-
ese
ra-
es

e
,

 of
e
 and
s

In
e

 the
redefines the behaviour of event dispatching. In an
ANDSynchronizationPoint object events are not auto-
matically forwarded to event recipients; instead, the
arrival of an event is recorded using a boolean flag associ-
ated with each element of the set of registered events.
Only if all events, registered in this object, have this flag
set toTRUE, are the event recipients notified.

Fig. 5 shows another simple example of synchronization using
the AND synchronization point. The goal of the example is to
fully synchronize both the video and audio objects at a specific
point, i.e., the objects should continue their respective pro-
gression if and only if both objects have reached the specified
reference point. This kind of requirement is very typical when,
for example, audio and video samples are to be presented to-
gether. The synchronization pattern in the example is as fol-
lows:

1) The corresponding reference points of both media objects
are connected to an instance of an AND synchronization
point. TheWait flags in both synchronization elements
are set toTRUE, and theresume operations of the media
objects are registered as event recipients with the synchro-
nization point.

2) When a media object reaches its reference point, it dis-
patches an event to the synchronization point and, because
theWait flag is true, it then performs a state transition to
WAITINGstate, i.e., it suspends its own progression.

3) When both media objects have reached their reference
points, the synchronization point sends aresume message
to both media objects; consequently, both objects perform
a state transition toPLAY and they are then able to con-
tinue displaying subsequent video and audio samples,
respectively.

Of course, in a more realistic situation many reference points
may be set on the media objects to achieve the desired effects;
however, the synchronization mechanism is identical.

3 Time and synchronization

The synchronization model presented in Sect. 2 is event–
based, i.e., the notion of time is not part of that abstraction lev-
el in the model. Clearly, applications also require a more elab-
orate version, which would allow them to reason with time.
This is achieved in PREMO through the specification of a sep-
arate hierarchy of clock objects and the specialization of the
basic synchronizable object to include the notion of time.

The abstractClock object type provides PREMO with an in
terface to whatever notion of time is supported by its enviro
ment. This type assumes the existence of two non–ob
types:Time , to measure elapsed ticks (realized, for examp
as a 64 bit integer), andTimeUnit , which defines the unit rep-
resented by each clock tick, for example an hour or a mic
second. The clock object type supports an operati
inquireTick , to measure the time elapsed since a spec
moment. Subtypes of the clock object attach a more precise
mantics to what kind of value this operation returns. Ope
tions are also defined to measure the accuracy of the clock

PREMO defines two specific subtypes of clock objec
which are as follows.

• System Clock objects.SysClock is a subtype ofClock ,
and provides real–time information (modulo the accura
of the clock) to PREMO systems.SysClock does not add
any new operations toClock , but attaches a final seman
tics to the operationinquireTick , which is defined to
return the number of ticks that have occurred sin
00:00am, 1st January 1995, UTC.

• Timer objects. A Timer is a subtype ofClock , and pro-
vides facilities modelled after a stop–watch. It has ope
tions to start, stop, pause, and reset the clock; all th
operations are formally defined as state transition ope
tions of a finite state machine containing the stat
RUNNING, PAUSED, and STOPPED. The operation
inquireTick is defined to return the elapsed time th
object spent in theRUNNING state since the last reset
without counting any time spent in thePAUSED state.

3.2 Time synchronizable objects

A TimeSynchronizable object type is aSynchronizable

object type enriched with aTimer interface through multiple
subtyping. Multiple subtyping means that the behaviours
Timer andSynchronizable objects are merged. This merg
has several aspects, and introduces some new attributes
operations onTimeSynchronizable . These aspects are a
follows.

1) Both theTimer and theSynchronizable object type
are defined in terms of finite state machines.
TimeSynchronizable , these finite state machines ar
merged, i.e., the RUNNING state of the
Synchronizable “part” is merged with theRUNNING
state of theTimer “part”, etc. The result is that the finite
state machine governingTimeSynchronizable has the
same states asSynchronizable , but the semantics of
each of these states includes the semantics of both
Timer and theSynchronizable . Also, all state transi-

9

tion operations defined both inTimer and in cal timers will have a slightly different speed, accuracy, etc.
ay

s
 dis-
MO
im-
ew

he

r.

 is
ter.
as-
-
r.

n
nt

val-

as-

s-
re-
 of

s-
tick

i-
ow
ve a
Synchronizable can be used to induce the appropriate
state transitions.

2) An attribute is defined, conveniently calledspeed , which
relates progress through the progression space, inherited
from Synchronizable , with time as measured by the
Timer . The value ofspeed defines the number of units
(e.g., number of frames) that the object will progress
through in one tick. By default, this value may be set by
the application, which can therefore exhibit control, e.g.,
over the playback speed. Various subtypes of
TimeSynchronizable objects may restrict their behav-
iour so that the speed becomes read–only.

3) Synchronizable has a number of attributes and opera-
tions to set/retrieve reference points, set/retrieve minimum
and maximum positions, etc. which are expressed in terms
of the native progression space. When using
TimeSynchronizable the client may want to use the
abstraction offered by the notion of relative time, i.e., the
time possibly returned by aninquireTick operation
call. For this purpose, thereset operation (inherited
from Timer) is redefined inTimeSynchronizable to,
conceptually, put a marker against the current position on
the native progression space as well as to reset the time
register. This marked position on the progression space
will serve as the zero point for relative positioning
expressed by time values. The various operations on set-
ting/retrieving reference points are conceptually over-
loaded, i.e., the client may also set these values using
relative time as arguments, and the object will internally
transform these values to the progression space.

TheTimeSynchronizable object has all the usual synchro-
nization features attached by various multimedia systems to
their basic media representation. However, in most of the sys-
tems, the distinction between (relative) time and the internal
progression space (e.g., video frames) is blurred, usually in fa-
vour of time only. PREMO maintains this dual nature of media
data, and leaves it to applications to decide which aspect of
media behaviour is more relevant in a concrete synchroniza-
tion setting. This separation is one of the advantages of a clear
object oriented specification offered by a standard such as
PREMO.

3.3 Time slave objects

TimeSynchronizable objects are appropriate for creating
complex synchronization patterns involving time. In an ideal
world, where all local timers would represent an absolutely
precise real time, this would be enough. However, multimedia
systems rarely operate in an ideal world, and in practice all lo-

Hence the necessity of implementing mechanisms which m
monitor possible discrepancies.

PREMO does not aim at offering a full solution for thi
problem, because the necessary reactions, the tolerated
crepancies, etc., are usually application dependent. PRE
defines the basic mechanism which allows applications to
plement a specific behaviour, and it does this in terms of a n
object type, called aTimeSlave object. What this object es-
sentially does is to control its own behaviour in terms of t
timer data of anotherTimeSynchronizable object.

In more precise terms, aTimeSlave object is a subtype of
TimeSynchronizable which permits synchronization over
multiple TimeSynchronizable object instances. Amaster
object can be attached to aTimeSlave object, and the latter
will attempt to synchronize its progression with its maste
This means the following:

1) The speed value of theTimeSlave object (relating the
progress through progression space with time ticks)
measured in terms of the ticks as returned by the mas
This also means that if the client changes the way the m
ter Timer operates (i.e, changing the ticks) this will influ
ence allTimeSlave objects attached to the same maste

2) TheTimeSlave object measures the alignment betwee
its ownTimer values and the one of the master. A clie
of the TimeSlave object may either inquire the align-
ment, or attachEventHandler -s to various thresholds
values. TheTimeSlave object will raise specific events if
the alignment between the master and the slave time
ues exceeds the threshold.

In order to calculate the possible alignment between the m
ter and the slave time values, thereset operation of
TimeSlave also stores all necessary information on the ma
ter clock (current value of tick, accuracy, units of measu
ment). Alignment values are always referred to in the units
TimeSlave . Using these terms, the alignment value is:

whereg() is a function which transforms the ticks of the ma
ter into the units of the slave, and takes into account the
value of the master when thereset operation has been in-
voked onTimeSlave .

3.4 Time lines

The TimeLine object of PREMO does not add any signif
cantly new feature to PREMO, but is a good example of h
the abstractions of the various objects may be used to deri
specific, and useful object type. A TimeLine object is de-

Tickslave g Tickmaster()–

10

he
es-
ce
stop

stop

Fig. 6. State transition diagram for aStream object

STOPPED
PAUSED

play, mute, prime

pause
stop

resume

WAITING

resume

pause

MUTED

PLAY

PRIMING
prime

mute

DRAINING

drain

Refinement
of the PLAY
state

PLAY

play

play

mute play

fined as a subtype ofTimeSynchronizable , where the pro-
gression space is defined to be an integer large enough to
represent time, and the value ofspeed is set to be of constant

In a dataflow–like network of streams one can refer to t
“source” and the “destination” of media data, and the progr
sion of such data also involves some form of buffering. Hen
ed
 is

a
a
he

f
n-
he
our

a-

-
ew

e
ha-
value 1. This object can be used to send events at predefined
moments in time to dedicated PREMO objects, and may there-
by serve as a basic tool for time–based synchronization pat-
terns.

4 Streams

Stream objects represent a further step in specialization to-
ward a possible representation of concrete media objects. As
suggested by their name, these objects are closely related to
the progression of media data where various media streams are
connected in a dataflow–like network. Although this is not the
only possible way of managing media control, this model of
multimedia processing is very widespread in practice. For ex-
ample, the Multimedia System Services of IMA[16,27] gives
a framework for such dataflow–like multimedia processing
and, in fact, most of the content of this section originates from
the adaptation of the original IMA document into a part of
PREMO.

one of the difficulties of this model: applications are suppos
to have control over buffering, because the way buffering
done may affect an application as a whole.

TheStream type of PREMO, and its subtypes, provide
single point of focus for all inquiry and control of medi
stream progress in a media type independent way. T
Stream object is defined as a subtype o
TimeSynchronizable and, as such, adds a finer media co
trol to its supertype. This finer control is achieved through t
refinement of the finite state machine governing the behavi
of TimeSynchronizable .

TheStream object adds three new states to the state m
chine of TimeSynchronizable , namely MUTED,
PRIMING, andDRAINING.Three new operations are also de
fined, which control the state transitions to and from these n
states:mute , prime , anddrain (see also Fig. 6).

MUTED and PRIMING are refinements of thePLAY state
of TimeSynchronizable . The additional semantics in thes
states is related to the notion of data presentation. As emp
sized in Sect. 2.1, the specification ofSynchronizable re-

11

fers to data presentation in very general terms only, as one5 An example of event based synchronization

s,
 in-

ol,
the
li-
ch-
his

on,
ism

ans
 are
ered
nce

wo
 a
G

ag-

ed
le,
ter a
t rate
ith

ed
 by
 end
er-
nt
d up

 suf-
er

 be
re-

sed
t ref-
oop,
rk

ne
es
l
ry
 by
abstract processing step of the object at that level of abstrac-
tion. The specification leaves the semantic details of what
presentation means to the various subtypes of
Synchronizable . Although theStream object does not
specify what presentation means either (and leaves the details
to the subtypes ofStream), the specification ofMUTED and
PRIMING gives a somewhat finer control on the behaviour of
the Stream object with respect of presentation. This refine-
ment is as follows:

• MUTED: no presentation occurs while the object is in this
state, and media data are discarded. In other words, pro-
gression on the stream occurs (i.e., all synchronization
actions are performed) without any presentation effects.

• PRIMING: no presentation occurs while the object is in
this state, and the media data are buffered in an internal
buffer. In other words, progression on the stream occurs
(i.e., all synchronization actions are performed) and the
media data are stored internally instead of being pre-
sented. If the internal buffer of the object becomes full,
i.e., no stream data can be stored any more, the object
makes an internal state transition toPAUSED.

The third additional state,DRAINING, is the counterpart of
PRIMING in buffer control. When set to this state, the object
empties the buffer filled up by a previousPRIMING state;
when the buffer is empty, the object makes an internal state
transition toPAUSED. The operationdrain is defined to set
theStream object intoDRAINING state; although not clearly
stated on Fig. 6, this state transition operation can be issued in
any state, exceptSTOPPED.

Subtypes ofStream may add additional semantics to buff-
er control. As a typical case, if the streams are aware of their
positions within a dataflow network, some of the operations,
like prime or drain , may also generate private control flow
among the streams in this network. For example,prime on a
Stream may also generate a control information to the
Stream object “up–stream”, i.e., the stream providing the da-
ta. Whether such additional protocol is defined or not depends
on the subtypes of theStream object and is currently not
standardized by PREMO.

Finally, theSyncStream type is designed to permit the
synchronization of multiple media streams. The client
specifies a secondStream object to provide a master position
reference to theSyncStream . This functionality is achieved
by inheriting the behaviour of theTimeSlave objects.
SyncStream is indeed defined as a (multiple) subtype of both
theStream and theTimeSlave object types, thereby refining
the finite state machine of aTimeSlave object the same way
as Stream objects refine the behaviour of
TimeSynchronizable objects.

usage

There is a large literature, as well as application program
which describe and use various synchronization processes
volving time, time discrepancies, sophisticated time contr
etc. Some classifications of these, and their relations to
PREMO model, is described in Sect. 6 below. However, app
cations requiring a purely event–based synchronization me
anism are less frequent, and hence less well–known. T
section gives a very short overview of one such applicati
which requires an event based synchronization mechan
like the one described by PREMO.

The application involves so–calledcineloops, which are a
movie–like representation of a sequence of ultrasound sc
made for medical purposes. Details of how these cineloops
created are not of real interest here; they should be consid
as special media objects which behave much like a seque
of images. Fig. 7 shows a screen snapshot involving t
cineloops, taken by scanning the human heart. When
cineloop is recorded, one will usually also record an EC
trace (an electrocardiogram), shown below the cineloop im
es.

In many cases, it is useful to compare cineloops record
under different conditions or at different times. For examp
a stress test compares the movement of the heart wall af
rest and just after the person has exercised, when the hear
is much higher. Fig. 7 shows two such recordings, each w
its corresponding ECG trace.

The difficulty of playback, when these cineloops are us
in a medical application, is that physicians want to see side
side a particular event of the heart beat, e.g., the start or the
of a contraction of a heart chamber. They are not really int
ested in the timing of the movements. However, the differe
phases of movement that constitute a heartbeat do not spee
with the same rate when the heart beats faster, i.e., it is not
ficient to just speed up or slow down the cineloops. In oth
words, synchronizing between the two cineloops cannot
done in terms of time; indeed, the notion of time does not
ally make any sense in this particular case.

The synchronization problem can be solved if event–ba
approach is used. Synchronization elements are set agains
erence points representing the required events in the cinel
and the playback can be synchronized within a framewo
similar to that used in Fig. 5. Details of how this can be do
can be found in the paper of Lie and Correia[20], which us
the MADE toolkit[13] for this purpose in a real–life medica
application involving such cineloops (this toolkit uses a ve
similar synchronization mechanism to the one proposed
PREMO).

12

r

yn-
Fig. 7. Example for an event–based synchronization application

6 Comparison with other approaches

This section gives a review of some characterisations of sys-
tems and models that provide mechanisms for multimedia
synchronization and discusses their relationship to the

• Cyclic Synchronization: Repetitive presentation of one o
more objects.

• Conditional Synchronization: Presentation of an object
linked to the satisfaction of a condition.

These requirements give a good characterization of the s

dia

r-
rs
 all
ved

re-
va-
 by
ject
 is
PREMO model. To begin with, however, we describe some
generic definitions and requirements for multimedia synchro-
nization and evaluate the PREMO synchronization objects
against these.

The MHEG Standard[17,22], a standard for multimedia in-
terchange, defines the following requirements for multimedia
synchronization:

• Elementary Synchronization: Synchronization of two
objects, either both with regard to the same reference ori-
gin time, or one with regard to the other.

• Chained Synchronization: Presentation of a set of objects
one after the other in the form of a chain.

chronization mechanisms offered by a number of multime
systems.

All of these requirements can be satisfied within the cu
rent synchronization model of PREMO, i.e., the model offe
an appropriate framework to describe and/or to implement
these schemas. Elementary synchronization can be achie
directly using the synchronization element mechanism by
lating the start or any other event in one object with the acti
tion of the other. Chained synchronization can be achieved
setting synchronization elements such that stopping one ob
would start another. Cyclic synchronization for one object
supported directly in theSynchronizable object type by the

13

attributerepeatFlag . Cyclic synchronization in multiple ob- In Gibbs et al.[8], an object–oriented framework for com-
n-
l
on-
ia
D

,

n.
ms:
e
e-

en-

lti-

the

e
the
 al-
n
oni-
ex
n-

h
p-
ts,
rds.
y-
m-
ed
rent

cale
 dif-
 in
ick-
that

a
on
en-
 di-
, but

 co-

an
jects can be achieved by proper setting of synchronization el-
ements at the end of the last object. Finally, conditional
synchronization can be supported either directly by the basic
synchronization model (when one object reaches a point in its
internal coordinate space the condition is true and an action is
invoked), or by the synchronization point mechanism combin-
ing several conditions into a more complex one. Some of this
functionality could also be achieved by manager objects with
specific semantics (see below) that would program the tempo-
ral and reference point behaviour of the objects they manage.

In all these examples, clients have the choice to set the syn-
chronization data either using the native progression space of
the object (i.e., stay on theSynchronizable level) or to use
the relative, inherent time values of the objects (i.e., using the
abstraction offered byTimeSynchronizable).

Another classification of multimedia synchronization,
which focuses on the way synchronization is modelled and im-
plemented, is presented in Blakowski et al.[4]. Some of the
functional requirements above can be realized in more than
one of the synchronization categories below.

• Hierarchical synchronization: Multimedia objects are
regarded as a tree consisting of nodes denoting serial or
parallel presentation.

• Synchronization on a time axis: Single–media objects are
attached to a time axis that represents an abstraction of
time.

• Synchronization at reference points: Single–media presen-
tations are composed of subunits presented at periodic
times. The position of a subunit in an object is called a ref-
erence point.

Synchronization by means of reference points is the most flex-
ible approach, allowing objects to be synchronized not only at
the beginning or end of presentations, but also during a pres-
entation. It is also well–behaved when objects have unpredict-
able duration.

The PREMO synchronization model is based on the refer-
ence point synchronization model, and other synchronization
mechanisms, such as time–axis and hierarchical, are built on
top of the fundamental objects and concepts. The
Synchronizable object implements reference point syn-
chronization and theTimeSynchronizable object adds
time–axis behaviour. Hierarchical synchronization requires
the use of appropriateController objects whose purpose is
to manage several simple or mono–media objects. These ob-
jects program the reference points and synchronization ele-
ments and any time related behaviour, such as duration, start
time, in the objects they manage. Currently, such special
Controller objects should be created by the application, al-
though later revisions of PREMO may also introduce such
specialized “utility” objects as part of the Standard.

posite multimedia is described. Composite multimedia is co
structed from multimedia primitives and tempora
transformations. The Gibbs system is also based on the c
cept of active objects. A set of object classes (“multimed
primitives”) provide access to several kinds of media (e.g., C
audio, MIDI). Multimedia object classes inherit fromActi-

veObject andMultimediaObject . The methods ofActi-

veObject provide activity control for a multimedia object
such as start, stop. The methods ofMultimediaObject deal
with temporal coordinates, composition and synchronizatio
These methods make use of two temporal coordinate syste
world time and object time. The origin and units of world tim
are set by the application; object time is relative to a multim
dia object. Each object can specify the origin, units and ori
tation of object time. The methods ofMultimediaObject

that affect the order and timing of the presentation of a mu
media object are called temporal transformations (e.g.Scale

scales the duration of an object).
Some of the concepts in this model are present in

Synchronizable and TimeSynchronizable objects of
PREMO, including the methods to control activity (start ,
stop , pause , resume) and the time scales. However, th
PREMO model provides a more general framework, since
notion of time is not introduced in the base class, thereby
lowing for different coordinate spaces. Also, the notificatio
between objects supported by the reference points/synchr
zation elements mechanism of PREMO allows for compl
synchronization patterns and not only for start/stop relatio
ships.

QuickTime[9,26] is an extension to the Apple Macintos
System 7.0 operating system for multimedia application su
port. This extension comprises system software, file forma
compression management, and human interface standa
The Movie format is used to manage different forms of d
namic data. QuickTime uses a track model for organizing te
porally related data of a movie. Tracks are time–order
sequences of media types and they begin and end at diffe
times during a presentation. Each track has its own time s
as its own coordinates in the screen. Tracks of the same or
ferent media can be grouped for synchronization, ordered
sequences, and joined in transitions. The system part of Qu
Time synchronizes the playing of tracks and makes sure
all data are decompressed when needed.

The track concept in QuickTime is similar to the Athen
Muse[15] concept of time dimension: elements of informati
to be displayed can be attached to points in this time dim
sion. Dimensions other than time are also allowed. These
mensions do not need to represent physical time and space
can represent any changing parameter in the system.

The track or dimension concepts can be mapped in the
ordinate space concept defined in theSynchronizable ob-
jects; in other words, the model advocated by QuickTime c

14

be implemented within the framework of the PREMO model7 Conclusions and related work

l for
e-
ia

var-
ach
een
ow-
ate

x-
aper
 in-

tion
E

er-
s-
of
ere

O
pec-

a-
 ar-
to
in
ac-
the
cts
orts
rm
n-

 go
ob-
the
ad-

de-
n-
, in
of a
nsi-
ng

pa-
ga-

O

without further complications. Of course, applications using
the PREMO synchronization mechanisms could also use the
QuickTime format for storing or interchanging multimedia
presentations.

The model described in Hamakawa et al.[11] introduces
the concept of temporal glue as an extension of TeX’s glue. An
object composition model is built using this glue concept, de-
scribing the static aspects of multimedia interfaces. It is essen-
tially a hierarchical synchronization model allowing relative
positioning of objects. It also has some features to bypass the
strict hierarchy and attach constraints at certain points in time.
The resulting library is a set of C++ classes and there are sev-
eral composite objects with predefined layouts for the objects
they manage. This approach has similarities with the work re-
ported in Guimarães et al.[10] although the latter uses Xt rath-
er than Interviews.

The main limitation of these models, which use concepts
based on graphical user interface toolkits, is the difficulty of
integrating the usual hierarchical organization between ob-
jects derived from the graphical model with the need to bypass
this hierarchy to have generic synchronization relations be-
tween objects. Nevertheless, the concept of space/time iso-
morphism gives a uniform way of programming relations and
more importantly, composition in multimedia toolkits. Pro-
posals for extensions to the PREMO synchronization objects
related with composition should take these graphical models
into account, too.

The MHEG standard[17] provides an encoding scheme for
multimedia/hypermedia information that can be used and in-
terchanged by applications. The standard aims to provide ge-
neric multimedia/hypermedia structures also suited for
synchronization. The MHEG standard defines a number of at-
tributes and behaviours that content objects and “rt-objects”
(view objects) may have under the control of an “MHEG en-
gine”. Several of these attributes and behaviours are used by
temporal relations, for example, speed, temporal position and
timestones. Although the Standard sets requirements, as al-
ready cited above, it does not give details on how these re-
quirements should be fulfilled. This is where the two
standards, i.e., MHEG and PREMO, meet. The focus of
PREMO is to give a model for the presentation process, rather
than on the interchange requirements.

All the attributes of MHEG are, in general, supported by
PREMO objects, so they can be used as the basis for the (con-
ceptual or concrete) implementation of an MHEG engine. As
an example, the speed and temporal position attributes are sup-
ported within theSynchronizable object and timestones
can be supported by the reference point mechanism. A com-
plete mapping of MHEG to PREMO would be to complex to
include here, but the PREMO objects were designed taking
into account the time and synchronization requirements of the
MHEG standard.

This paper has presented a standard, object–oriented mode
inter–media synchronization in multimedia systems to b
come part of an international ISO Standard on multimed
presentation. The model represents a clean integration of
ious synchronization methods used in practice. The appro
chosen maintains a clear conceptual separation betw
event–based and time–based synchronization, thereby all
ing applications to choose whichever view is more appropri
to their specific application.

Although no complete implementation of PREMO yet e
ists, the major components of the model presented in the p
have been tested through the various systems which have
fluenced the design. The purely event–based synchroniza
(Sect. 2) has been implemented through the MAD
toolkit[13,20], although the specification currently in PREMO
is much more precise and more detailed than the toolkit v
sion. Similarly, experimental implementation of the MSS sy
tem[16], which has deeply influenced the specification
streams (Sect. 4), have been explored by SunSoft but, h
again, integration of the initial MSS design with the PREM
framework has lead to a much cleaner and more precise s
ification.

Although the synchronization objects described in this p
per may be used in complete isolation from the rest of the
chitecture defined in PREMO, they are primarily intended
be used as building blocks of other, complex units with
PREMO called virtual devices. These virtual devices are
tive entities which are responsible for the input, output, and
processing of multimedia data. The synchronization obje
appear as controlling entities on the input and the output p
of these devices. Together they form a portable, i.e., platfo
independent abstraction for processing multimedia data. U
fortunately, the detailed description of these objects would
beyond the scope of this paper. However, some of the pr
lems arising in multimedia systems are solved through
complex interaction of these entities. Some of these are
dressed below.

7.1 Complex synchronization patterns

Multimedia presentations are often defined through the
scription of complex structures, involving time–based co
straints (an entity should be presented before the other
parallel with another, etc.). These descriptions are usually
descriptive nature, and a special processing entity is respo
ble for parsing such descriptions and driving the underlyi
presentation units accordingly.

Whereas the synchronization objects described in this
per control the low–level processing of media data propa
tion, such descriptive structures are also defined in PREM

15

(modelled after well–understood descriptive approaches, see,2. W. Appelt and A. Scheller, “HyperODA — Going Beyond

d
an
f

rg,

r
a
l
for

ine
r

e
/

n
”,

–
d

,

.

nd
”,
n

.A.
,
r a
:

 on
for example, [2] or [25]), together with special objects (called
Synchronizers) whose role is to parse these descriptions and to
set the synchronization points on the ports of the various vir-
tual devices. The reader should refer to the PREMO document
for the details of this mechanism.

7.2 Quality of service

The notion ofquality of service(QoS) has received significant
attention in the past. This term is used to represent the appli-
cation requirements for specific resources, such as minimal or
maximal resolution, allowed error rates, timing requirements,
etc. Systems including QoS services are expected to dynami-
cally change their behaviour to fulfil the required QoS, for ex-
ample, reducing the quality of the generated image, lowering
the sample rate, etc.

PREMO does include a mechanism for a rudimentary con-
trol over quality of service, primarily in the framework of vir-
tual devices. This mechanism, and the corresponding tools
used by it, may be used to control the degradation of media
flow. Description of this mechanism would go beyond the
scope of this paper. In any case, further work to develop a con-
sistent and general model for QoS for PREMO is still neces-
sary. Such a model would have some influence on the
synchronization model (and vice versa).

7.3 Constraint satisfaction problems

The requirements of synchronization, primarily of time–based
synchronization, are very close to general constraint manage-
ment problems. The PREMO group has investigated the pos-
sibility of including “hooks” for general constraint satisfaction
algorithms into PREMO. However, in view of the conflicts be-
tween the object–oriented paradigm and the requirements of
constraint satisfaction (e.g., encapsulation of global state), at
the present time it does not seem feasible to include a general
definition of such hooks. This investigation will, however,
continue in future.

Acknowledgements.Most of the work presented in this paper has
been carried out under the auspices of the ERCIM Computer Graph-
ics Network, funded under the European Communities CEC HCM
Programme. The authors would like to acknowledge the participation
of members of this programme, and particularly those involved in
Task 1.

References

1. D.B. Arnold and D.A. Duce,ISO Standards for Computer
Graphics: The First Generation, Butterworths, London, 1990.

Traditional Document Structures”, in:Computer Standards &
Interfaces, 17(1):13-21, 1995.

3. P.J. Barnard and J. May, “Interaction with Advance
Graphical Interfaces and the Deployment of Latent Hum
Knowledge”, in: Design, Specification and Verification o
Interactive Systems DSV-IS’94, F. Paternò (editor), Springer
Verlag, Focus on Computer Graphics Series, Heidelbe
1995.

4. G. Blakowski, J. Hübel, and U. Langrehr, “Tools fo
Specifying and Executing Synchronized Multimedi
Presentation”, in:Proceedings of the Second Internationa
Workshop on Network and Operating System Support
Digital Audio and Video, 1992.

5. R.B. Dannenberg, T. Neuendorffer, J. Newcomer, D. Rub
and D. Anderson, “Tactus: Toolkit-level Support fo
Synchronized Interactive Multimedia”,Multimedia Systems
Journal, 1(2):77-86, 1993.

6. D.J. Duke, (editor), PREMO Object Types for
Synchronization, A Formal Specification, doc. no. ISO/IEC
JTC1/SC24/WG6/OME–116, 1995, available on line on th
URL address ftp://ftp.cwi.nl/pub/premo/RapporteurGroup
Miscellaneous/OME-116.ps.gz.

7. R. Duke, G. Rose, and G. Smith, “Object–Z: A Specificatio
Language Advocated for the Description of Standards
Computer Standards & Interfaces, 17(5-6):511-534,
September 1995.

8. S.J. Gibbs, L. Dami, and D.C. Tsichritzis, “An Object
Oriented Framework for Multimedia Composition an
Synchronisation”, in:Multimedia (Systems, Interaction and
Applications), L. Kjelldahl (editor), EurographicSeminar
series, Springer Verlag, Berlin — Heidelberg — New York
1992.

9. S.J. Gibbs and D.C. Tsichritzis,Multimedia Programming,
ACM Press, Addison-Wesley, Wokingham — Reading, 1995

10. N. Guimarães, N. Correia, and T. Carmo, “Programming Time
in Multimedia User Interfaces”, in: Proceedings of the
UIST’92 Conference, Monterrey, CA, USA, 1992.

11. R. Hamakawa, and J. Rekimoto, “Object Composition a
Playback Models for Handling Multimedia Data Processing
in: Proceedings of the First ACM International Conference o
Multimedia (MM’93),Anaheim, CA, USA, 1993.

12. I. Herman, G.S. Carson, J. Davy, P.J.W. ten Hagen, D
Duce, W.T. Hewitt, K. Kansy, B.J. Lurvey, R. Puk
G.J. Reynolds, and H. Stenzel, “Premo: an ISO Standard fo
Presentation Environment for Multimedia Objects”, in
Proceedings of the Second ACM International Conference
Multimedia (MM’94), San Francisco, D. Ferrari, editor, ACM
Press, 1994.

16

13. I. Herman, G.J. Reynolds, and J. Davy, “MADE: A 27. “Middleware System Services Architecture”, in:Multimedia

Multimedia Application Development Environment”, in:
Proceedings of the IEEE International Conference on
Multimedia Computing and Systems (ICMCS’94), Boston,
L.A. Belady, S.M. Stevens, and R. Steinmetz, editors, IEEE
CS Press, Los Alamitos, 1994.

14. I. Herman, G.J. Reynolds, and J. Van Loo, “PREMO: An
Emerging Standard for Multimedia Presentation”,IEEE
MultiMedia, 3(3),1996.

15. M. Hodges, R. Sannett, and M. Ackerman, “A Construction
set for Multimedia Applications”,IEEE Software, January
1989, 22(1):37–43.

16. IMA, Multimedia System Services, Interactive Multimedia
Association, September 1994, ftp://ima.org/pub/mss/.

17. International Organization for Standardization,Information
Technology — Coding of Multimedia and Hypermedia
Information (MHEG) (ISO/IEC 13522–1), October 1994.

18. International Organization for Standardization,Information
processing systems — Computer graphics — Presentation
environment for multimedia objects (PREMO), ISO/IEC
14478, September 1996, http://www.cwi.nl/Premo/docs.html.

19. J. F. Koegel Buford, “Architecture and Issues for Distributed
Multimedia Systems”, in:Multimedia Systems, J.F. Koegel
Buford (editor), ACM Press, Addison Wesley, Reading, 1994.

20. A. Lie and N. Correia, “Cineloop Synchronization in the
MADE Environment”, in: Proceedings of the IS&T/SPIE
Symposium on Electronic Imaging, Conference on Multimedia
Computing and Networking, San Jose, 1995.

21. V. de May and S. Gibbs, “A Multimedia Component Kit”, in:
Proceedings of the First ACM International Conference on
Multimedia (MM93),P.V. Rangan, (editor), Anaheim, ACM
Press, 1993.

22. T. Meyer–Boudnik and W. Effelsberg, “MHEG Explained”,
IEEE Multimedia, 2(1):26–38, 1995.

23. OMG, Joint Object Services Submission (JOSS), Event
Service Specification,OMG TC Document 93.7.3, Object
Management Group, July 1993.

24. H. Tokuda, “Operating System Support for Continuous Media
Applications”, in: Multimedia Systems, J.F. Koegel Buford
(editor), ACM Press, Addison Wesley, Reading, 1994.

25. M. Vazirgiannis and T. Sellis, “Event and Action
Representation and Composition for Multimedia Application
Scenario Modelling”, in:Interactive Distributed Multimedia
Systems and Services, Proceedings of the European Workshop
IDMS’96, Berlin, B. Butscher, E. Moeller, and H. Pusch,
editors, Springer Verlag, 1996.

26. P. Wayner, “Inside QuickTime”,Byte, 37–43, December 1991.

Systems, J.F. Koegel Buford (editor), ACM Press, Addison
Wesley, Reading, 1994.

	A Standard Model for Multimedia Synchronization: P...
	Abstract

	1 Introduction
	1.1 Synchronization problems in multimedia
	1.2 A short overview of PREMO

	2 Event�–based synchronization
	2.1 Synchronizable objects in PREMO
	2.2 Synchronization points

	3 Time and synchronization
	3.1 Clock objects
	3.2 Time synchronizable objects
	3.3 Time slave objects
	3.4 Time lines

	4 Streams
	5 An example of event based synchronization usage
	6 Comparison with other approaches
	7 Conclusions and related work
	7.1 Complex synchronization patterns
	7.2 Quality of service
	7.3 Constraint satisfaction problems

	References
	1. D.B. Arnold and D.A. Duce, ISO Standards for Co...
	2. W. Appelt and A. Scheller, “HyperODA — Going Be...
	3. P.J. Barnard and J. May, “Interaction with Adva...
	4. G. Blakowski, J. Hübel, and U. Langrehr, “Tools...
	5. R.B. Dannenberg, T. Neuendorffer, J. Newcomer, ...
	6. D.J. Duke, (editor), PREMO Object Types for Syn...
	7. R.�Duke, G.�Rose, and G.�Smith, “Object–Z: A Sp...
	8. S.J. Gibbs, L. Dami, and D.C. Tsichritzis, “An ...
	9. S.J. Gibbs and D.C. Tsichritzis, Multimedia Pro...
	10. N. Guimarães, N. Correia, and T. Carmo, “Progr...
	11. R. Hamakawa, and J. Rekimoto, “Object Composit...
	12. I. Herman, G.S. Carson, J. Davy, P.J.W. ten Ha...
	13. I. Herman, G.J. Reynolds, and J. Davy, “MADE: ...
	14. I. Herman, G.J. Reynolds, and J. Van Loo, “PRE...
	15. M. Hodges, R. Sannett, and M. Ackerman, “A Con...
	16. IMA, Multimedia System Services, Interactive M...
	17. International Organization for Standardization...
	18. International Organization for Standardization...
	19. J. F. Koegel Buford, “Architecture and Issues ...
	20. A. Lie and N. Correia, “Cineloop Synchronizati...
	21. V.�de May and S.�Gibbs, “A Multimedia Componen...
	22. T. Meyer–Boudnik and W. Effelsberg, “MHEG Expl...
	23. OMG, Joint Object Services Submission (JOSS), ...
	24. H. Tokuda, “Operating System Support for Conti...
	25. M. Vazirgiannis and T. Sellis, “Event and Acti...
	26. P. Wayner, “Inside QuickTime”, Byte, 37–43, De...
	27. “Middleware System Services Architecture”, in:...

